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Abstract 
In this work, a pulsed metal inert gas welding process (PMIGW) is modeled by using a 

hybrid soft computing technique. Ant colony optimization and back propagation neural 

network models are combined to predict the ultimate tensile strength of butt-welded 

joints. A large number of experiments have been conducted; and comparative study 

shows that the hybrid neuro ant colony-optimized model produces faster and also better 

weld-joint strength prediction than the conventional back propagation model. 

 

Keywords Back propagation neural network, Ant colony optimization, PMIGW, Weld 

strength. 

 

1 Introduction 

Pulsed metal inert gas welding (PMIGW) is a type of arc welding process which offers 

certain inherent advantages such as deep penetration, smooth weld bead, high welding 

speed, large metal deposition rate, lower spatter, lower distortion and shrinkage, and 
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lesser fusion defects [1]. Although PMIGW has found wide spread acceptance in the 

industry, stricter quality control norms being followed now-a-days require a robust and 

reliable method to precisely predict the weld quality in different operating conditions. A 

lot of research has been carried out for online weld quality prediction; but a low cost, 

reliable and easily deployable monitoring system for industrial use is yet to be developed.  

Weld quality can be measured directly or indirectly. Direct methods are visual 

inspection and vision sensing [2, 3] of the weld puddle; indirect methods are arc sensing 

[4-6], infrared sensing [7, 8], radiographic sensing [9], inductive sensing [10], arc sound, 

and acoustic and ultrasonic sensing [11-13]. Among the various sensors used, arc sensors, 

i.e., current and voltage sensors, are considered to be the most reliable, simple and 

competitive [14, 15]. 

Arc sensors monitor the electrical parameters of the arc, i.e., current and/or 

voltage. A large number of researchers [1, 4-6, 16] have proposed arc sensing technique 

for seam tracking in the arc welding process. In addition to this, arc sensing technique has 

been used for online monitoring and control of the welding process [17]. 

Johnson et al. [18] conducted a series of experiments by using two different 

power sources and three different metal transfer modes. In their experiment, audible 

range of the sound, welding current and voltage fluctuations were recorded. These 

recorded signals were then correlated to detect droplet transfer mode with the aid of the 

high-speed film data. Rajasekaran et al. [19] determined the droplet detachment in a 

pulsed gas metal arc welding (GMAW) process by using current and voltage signals. 

Time-domain analysis of the voltage signal for monitoring the welding quality in a short 

circuit GMAW process has been developed by Adolfsson et al. [20]. Wang et al. [21] 
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monitored high frequency and hybrid pulsed tungsten inert gas micro-welding process 

through arc sensing technique wherein the mean voltage, the probability density 

distribution and the dynamic voltage-current graph of the arc were used to determine the 

weld penetration. Chu et al. [22] analyzed the current and voltage signals by using power 

spectral density and time-frequency domain analysis for welding stability and weld 

quality monitoring in a short circuit GMAW process.  

Welding is a highly complicated and nonlinear process; which is influenced by 

many variables, such as process parameters, composition of workpiece and electrode 

materials, shielding gas environment, welding position etc. As a consequence, it is very 

difficult to obtain an analytical model, which can accurately predict the weld quality from 

the arc or any other sensor data. Artificial neural network (ANN) model can effectively 

be used to map the nonlinear relationship between the sensor signal features and the weld 

quality. Andersen et al. [23] pioneered the application of artificial neural network in the 

modeling of the arc welding process. Cook et al. [24] have used two back propagation 

network models for modeling and control of variable polarity plasma arc welding process 

and obtained good agreement with the experimental outputs. Kang et al. [25] developed 

an ANN model to select welding parameters, such as welding current, arc voltage, 

welding speed and weaving length for the required weld bead shape specification. Lee & 

Um [26] predicted the geometry of back-bead of MIG-weld plates by using an ANN 

model and then compared the result with that from a multiple regression analysis model 

to demonstrate that the prediction error from the ANN model was less than that of the 

multiple regression model. Chi & Hsu [27] developed a fuzzy radial basis function neural 

network to predict weld quality characteristic of a plasma arc welding process. Di et al. 
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[28] developed an ANN-based fuzzy logic control for fine tuning of the membership 

function and automatic fuzzy rules generation in modeling of an arc welding process. 

Other researchers [29, 30] have also developed back propagation neural network models 

to predict the bead geometry and weld penetration. Lightfoot et al. [31] predicted the 

distortion in welded plates by using an ANN model, in which the standard deviation was 

considered as the measure of the actual and the predicted distortions. Kim et al. [32] 

developed an intelligent system for automatic determination of the optimal welding 

parameters through a back propagation neural network (BPNN) models which was 

validated by comparing the results from a finite element model (FEM). 

Quero et al. [33] used current signal as one of the inputs of the ANN model to 

monitor the weld quality. In another significant development, Ohshima et al. [34] 

proposed a neuro-arc sensor model to simultaneously detect the deviation, the attitude 

and the height of the torch. 

Selection of optimum welding parameters is very essential to get a good weld 

quality. Many researches have been carried out for optimization of different welding 

processes. Ant colony optimization (ACO) algorithm, which is a non-traditional 

optimization technique, is inspired by the foraging behavior of real ants, which often 

follow the shortest path to the source of food and then back to nest. ACO has an 

advantage that it can find both the local and the global minima [35].  

 ACO algorithm can be used in the training of the neural network to achieve 

better convergence. Su-bing and Ze-min [36] applied this hybrid neuro-ACO technique in 

ATM (Asynchronous Transfer Mode) network traffic control. Blum and Socha [37] 

applied this novel hybrid technique for pattern classification and showed that this 
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algorithm is comparable to specialized algorithms for neural network training, and it has 

many advantages over other general purpose optimizers. Liu et al [38] have used this 

hybrid technique to predict coal ash fusion temperature based on the chemical 

compositions of the ash. This hybrid neuro-ACO model is not yet explored in the field of 

weld quality prediction or monitoring. In this paper, an attempt has been made to evaluate 

the efficiency of the hybrid ACO-BPNN model for prediction of the welded-joint 

strength. Time-domain features of the arc signals are acquired through current and 

voltage sensors during the butt welding of mild steel work-pieces in a PMIGW process 

and those are used along with the welding process parameters as inputs of the developed 

model. 

2 Soft Computing models  

2.1 Back propagation neural network 

Artificial neural network resembles the biological neural network and the neurons are 

logically interconnected in layered patterns, as shown in Fig. 1. ANN maps the input with 

the output without any conventional equation. It also possesses the property of fault 

tolerance i.e. it can predict accurately even if a few training data are faulty. 

A feed-forward neural network governed by a back propagation training 

algorithm is the most versatile model of ANNs. Single hidden layer feed forward network 

has a layered structure with an input, hidden and output layers as essential constituents of 

the network. The layers are in turn made up of units called nodes, which are connected in 

such a way that a node in a particular layer has connections to all the nodes of the 

adjacent layers. The number of input and output nodes depends on the problem in hand, 
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while the number of hidden nodes depends on the complexity of the problem. The 

knowledge is presented through the interconnecting weights, which are adjusted during 

the learning stage to produce minimum mean square error.  

A bias element, with unit output, is connected to all the nodes of the network. The 

weights associated with the bias interconnection act as a threshold function on the 

combined inputs of each node. Every node is fed with the weighted sum of all the outputs 

of the nodes in the previous layer, and produces an output through an activation function. 

The activation function f(x) provides a nonlinear relationship between input and output 

vectors. The weighted sum and the activated output from the jth node are, respectively, 

represented by  

                                                       
1

n

j i ij
i

x y w
=

= ∑ ,                                                           (1) 

and 

                                                       ( )j jO f x= ,                                                           (2) 

where jy  is the ith input form the previous layer to the jth node of the next layer, jx is the 

weighted sum of all inputs at the jth node, jO  is the activated output from node j, and n is 

the total number of nodes present in a layer. 

This process is carried out for all nodes, and the input vector is mapped 

nonlinearly onto the output vector. The input vectors from the training pattern are fed 

through the neural network one by one and the output vectors are obtained. These are 

compared with the expected output vectors, which are already known from the 

experimental results. The difference between the expected output and the output from the 

neural network is the error associated with that input vector: 
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                                                 ( ) ( ) ( )error j d j O j= − ,                                                    (3) 

where ( )error j , ( )d j and ( )O j  are, respectively, the associated error, the desired output 

and the neural network output from the jth output node. 

The average squared error energy (ASEE) is then calculated as 

                                         2
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where trainN  and C are the number of training patterns and the number of neurons in the 

output layer, respectively. 

For a particular training set, ASEE represents the cost function as the measure of 

the training performance [39]. The synaptic weights are adjusted using back propagation 

algorithm based on gradient descent method to minimize the ASEE. 

2.1.1 Pseudo code for BPNN 

Step 1 : Definition 

• The ANN architecture is defined. Type of the activation function, values of the 

learning rate and the momentum parameter are assigned. 

Step 2 : Initialization 

• The synaptic weights and biases are initialized in this step. 

Step 3 : Forward pass 

• The output from each node is calculated by applying the user defined activation 

function to the weighted sum of a node. This becomes the input to the next layer. 

• This process is carried out first for each hidden node, and then for each output 

node. 
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• The difference between the actual output and the model’s prediction, i.e. the error 

for that output node, is calculated. 

Step 4 : Backward pass 

• All the synaptic weights are updated according to the gradient descent algorithm. 

Step 5 : ASEE Calculation 

• Steps 3 and 4 are repeated for the entire input vector. 

• ASEE is calculated. 

Step 6 : Termination 

• Steps 3, 4 and 5 are repeated until the ASEE converges within a user defined error 

tolerance. 

Step 7 : Return 

• The updated weights for the particular architecture are returned by the procedure. 

Step 8 : End 

• The BPNN training terminates. 

The aforementioned BPNN training algorithm is shown in a flowchart form in Fig. 2. 

2.2 Ant colony optimization 

Ant colony optimization algorithm was proposed by Dorigo et al. [40]. ACO is one of the 

swarm intelligence algorithms, which are based on the collective behavior of 

decentralized and self-organized systems, such as ants, flock of birds etc. Self-organized 

ant systems provide highly coordinated behavior of real ants. Among different aspects of 

the ant colony behaviour, foraging behavior inspires the ACO algorithm. Ants in a colony 

coordinate their activities via stigmergy, which is a form of indirect communication. Ants 
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follow the shortest path to the source of food and then back to the nest. The principle 

behind this phenomenon is that the ants secrete pheromone, an odorous chemical 

substance which ants deposit and smell, on the path they move; thus marking a trail on 

the path followed. A new ant, which encounters a trail, prefers to move in a path having 

higher pheromone density. This is an emergent behavior resulting from each ant's 

preference to follow trail pheromones deposited by other ants. The pheromone evaporates 

at a constant rate. Pheromone evaporation can be seen as an exploration mechanics that 

avoids quick convergence of all the ants towards a suboptimal path. The shortest path is 

followed with a high probability, i.e. more ants move in this path. So the pheromone 

concentration becomes high on the shortest path. Finally, all the ants in the colony follow 

the same path (shortest path). 

In ACO algorithm, a starting node is selected randomly, and the path is 

probabilistically selected according to the amount of pheromone present on the possible 

paths from the starting node. The ant then reaches the next node and selects the next path. 

This process continues until the ant reaches the destination node. The completed tour of 

the ant is analyzed for minimization of distance traveled. The trail is adjusted such that 

the better solution gets a higher trial than the weaker solution. This cycle is repeated until 

the convergence is reached (i.e. most ants choose the same path on every cycle). 

ACO algorithms are mostly used to solve minimization problems. The ant traces 

the path in the forward pass and remembers the path followed. Pheromone is deposited 

while tracing back (backward pass) a previously followed path. In the beginning of the 

search process, pheromone is assigned to all the paths randomly between 0 and 1. 
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The probability of kth ant, located at ith node to choose jth node as the next node is 

given by 

                                             

,   if  ;

0,               if  ;
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where k
iN  is the neighborhood of the kth ant when at the lth node, and ijτ  is the 

pheromone value between the ith and the jth nodes. 

In the path traversed by the kth ant, the pheromone value is changed from old
ijτ  to 

new
ijτ  as follows 

                                                    new old k
ij ijτ τ τ= + Δ                                                          (6) 

Where 1k
ijLτΔ =  and ijL  is the distance between the ith and the jth nodes. 

After all the ants have moved to the next node, the pheromone evaporates 

according to 

                                                   (1 )new old
ij ijτ ρ τ= − ,                                                       (7) 

where ρ  is the pheromone evaporation rate. 

 

2.3 Hybrid ant colony-optimized back propagation neural network (ACO-BPNN)  

Ant colony optimization has already been successfully applied to many complex 

optimization problems [41]. In BPNN, the initial weights are generated randomly, so that 

the behavior of back propagation (BP) algorithm is inconsistent. In a hybrid ACO-BPNN 

algorithm, the best values for the initial weights are achieved by using ACO; and then the 
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BP algorithm is used to get their optimized values [36-38]. Better and steady convergence 

can be achieved by using this hybrid algorithm. 

In this hybrid ACO-BPNN algorithm, pheromones are equivalent to the synaptic 

weights of the ANN model. Now, for a specified number of ants (say m) equally 

distributed amongst the input nodes are allowed to traverse along the network one by one. 

All the nodes where a particular ant arrived during its journey towards output nodes are 

recorded. While an ant moves from a node in one layer to a node in the next layer, the 

selection of destination node is done probabilistically according to the following 

equation, 

,       if  ;

0,                if  ;

k
i

ij k
i

k il
ij l N

k
i

w
j N

wP

j N
∈

⎧
∈⎪⎪= ⎨

⎪
∉⎪⎩

∑                 (8) 

where k
ijP  is the probability of kth ant moving from ith node in the present layer to jth 

node in the next layer, and ilw  is the weight of the synaptic link between ith node in the 

present layer to lth node in the next layer. 

As ants move to the next node, the deposited pheromone evaporates according to 

the Eq. (7). After each ant reaches the output layer, they start traveling back in the same 

path laying down the pheromone trails which depends on the pheromone secretion rate 

(that is assumed to be same for every ant). The weights are updated )( new
ijw , according to 

the maximum error associated with the particular output node, where kth ant arrived 

during its forward journey (calculated previously), according to the following equation: 

                                                 ,new old k
ij ijw w w= + Δ                                                          (9) 
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where, ijw  is the weight of the synaptic link between the ith node in the present layer to 

the jth node in the next layer, and 

       
max_ ( )

kw
error l
γ

Δ = ,                                         (10) 

where γ  is a positive constant [36] used to control the pheromone adjustment rate and 

max_ ( )error l  is the maximum error for lth output node where the kth ant had finished its 

forward pass. 

This procedure is continued until a particular number of iterations (predefined) 

have been executed. Subsequently, these sub-optimized weights are used as the initial 

weights in the BP algorithm. 

2.3.1  Pseudo code for ACO-BPNN 

Step 1 :  Definition 

• The architecture, activation function, learning rate, momentum parameter, and 

pheromone secretion and evaporation rates are defined in this stage. 

Step 2 : Initialization 

• The following variables are initialized in this step: ants per node (m), weights 

(pheromone) for each synaptic link (τ), pheromone evaporation rate (ρ), 

pheromone secretion rate (λ), Tabu matrix [42] to store the path followed by ant, 

momentum parameter, learning rate, and activation constants.  

Step 3 : ACO-Forward pass 

• The output of each node is calculated by applying an activation function to the 

weighted sum of its inputs. This acts as input to the next layer. 
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• This process is carried out for each hidden node and then for each output node, to 

get to the final output. 

• The error between the actual output and the computed output for each output 

node, and for each training set is calculated. 

• Then the maximum error for each output neuron is calculated. 

Step 4: Traversal of the ants 

• For all the ants, the first elements of Tabu matrix with their starting nodes are set. 

• The probability with which an ant can travel, for each synaptic link, is calculated. 

• By following roulette wheel selection [39], the destination-hidden node and the 

output node for each ant are found and then those values are set as the second and 

the third elements of the Tabu matrix, respectively. 

Step 5: Pheromone update 

• All the synaptic weights, considering pheromone evaporation, are updated by 

(1 ).new oldw w ρ= −                                                       (11) 

• The weights of the path followed by all the ants are updated according to Eq.(9).                         

Step 6: Termination 

• Steps 3, 4 and 5 are repeated until the termination criterion is satisfied.  

• These weights are then returned to the back-propagation algorithm 

Step 7: BPNN training 

• The neural network model is then trained by using a back propagation training 

algorithm which is initialized with the weights determined from step 6. 

Step 8: End 

• The neural network training is terminated upon achieving sufficient accuracy. 

 

A flowchart representation of the ACO-BPNN algorithm is shown in Fig. 3. 
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3   Experimental procedure 

3.1 Specimen preparation 

In the present work, two mild steel specimens, with dimensions of 125 mm × 100 mm × 8 

mm of each were used as the workpiece. Optical emission spectroscopy (OES) has been 

done to find out the chemical composition of the base metal, and it is shown in Table 1. 

These specimens were prepared with a V-shaped groove, as shown in Fig. 4, where the 

groove angle, the root face and the root gap were 300, 2 mm and 2 mm, respectively. 

Thereafter, 53 pairs of such specimen with constant groove angle and root face were 

prepared, and faces were cleaned by a surface grinder. To make a butt joint, two plates 

were tacked at the two ends along the width, with a constant root gap of 2 mm. Once the 

welding is over, all weld plates were cut by using a DoAll Counter band saw cutter 

machine, to a required shape for conducting tensile test, as shown in Fig. 5. Tensile tests 

were conducted at room temperature by using a universal testing machine 

(Losenhausenwerk, Germany) on a 30 Ton scale. 

3.2 Equipment 

A Fronius make MIG welding machine is used in the present study. The power source is 

a constant voltage source, Transarc 500, and the control unit is of VR131 type. A 

schematic diagram of the experimental setup is shown in Fig. 6.  

The welding torch or welding gun (AW502) was mounted on a fixed arm. Mild 

steel plates were clamped on a motor-driven carriage with a variable speed in the range of 

1 mm/sec to 16 mm/sec. Copper coated mild steel wire of 1.2 mm diameter is used in the 

experiment as the electrode. This wire is fed through the welding gun by a four-roller 
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drive system. The shielding gas (argon, in this case) was supplied in a regulated manner 

at a constant flow rate of 15 l/min and at a constant pressure of 10 kgf/cm2. 

 A Hall-effect current transducer (LEM, LT 500S) was used to monitor the welding 

current. Moreover, the potential difference was sensed between the workpiece and the tip 

of the electrode. The voltage across the electrodes was scaled down in 1:11 ratio before 

being fed to the data acquisition card (Measurement computing corporation, PCI-DAS 

4020/12). The analog outputs from these sensors were converted into digital signals by 

the A/D card fitted to an IBM PC. The signals were sampled at 10 kHz and the magnitude 

of the sensor outputs were measured in ± 5V range. 

3.3 Experimental design  

Response surface method [43] was used to understand the effect of different process 

parameters on the weld bead geometry. Three levels, six factors and half fraction central 

composite experimental design with nine center points was performed. This design 

requires fifty-three experimental runs. Software package MINITAB [44] was used to 

setup the design matrix. Process parameters with their notations, units and values at 

different levels are listed in Table 2. The experimentally obtained values of the ultimate 

tensile strengths, which correspond to various process parameter settings, are shown in 

Table 3.  

 

4 Results and Discussion 
4.1 Optimum model parameter selection 

In a model, optimal values of important parameters must be used to get accurate 

predictions. The learning rate and the momentum coefficient are two important 
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parameters of a BPNN model. Likewise, pheromone secretion and evaporation rates are 

important parameters of the hybrid ACO-BPNN model. At higher secretion rates, weights 

change by a large amount; and larger number of epochs (steps in the training process of 

an artificial neural network) are required. On the other hand, if the secretion rate is low 

then the weights will be updated at a slow rate, thereby leading to higher number of 

epochs. Therefore, one needs to select optimum values for both these parameters so as to 

obtain good results from any particular data set. From a pool of 53 patterns available 

from experiments, 43 patterns were randomly selected for training and the rest were used 

for testing the neural network by using ACO-BPNN algorithm. The results obtained for 

ACO-BPNN while varying the pheromone secretion rate are shown in Table 4, and those 

obtained while varying pheromone evaporation rate are shown in Table 5. This study was 

carried for the 8-13-1 (8 input nodes, 13 hidden nodes, and 1 output node) network 

architecture and 7 ants were allowed to pass through each node. This architecture was 

chosen because it had shown the best performance for prediction of welding joint 

strength. All other network parameters were kept constant. The variation of mean 

percentage error with pheromone secretion and pheromone evaporation rates are plotted 

in Figs. 7 and 8, respectively.  From this study, the optimum values of pheromone 

secretion and evaporation rates for ACO-BPNN model are chosen as 0.1 and 0.01, 

respectively. 

4.2 Comparative study 

The same 43 experimental patterns selected earlier were used for training a BPNN model 

and the rest of the patterns were used for testing both BPNN and ACO-BPNN models. 

The common network parameters for both the models, i.e. the momentum coefficient, the 

learning rate and the constants of the activation function, were kept same. The optimum 
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values of pheromone secretion rate and pheromone evaporation rate were selected for 

ACO-BPNN. The selected values of all these parameters are given in Table 6. The 

number of input nodes and number of output nodes for both BPNN and ACO-BPNN 

models are 8 and 1, respectively. The number of hidden nodes is varied so as to choose 

the best network architecture. The number of ants traversing from each input node in 

ACO-BPNN model is also varied to choose the optimum number of ants to be passed in 

order to obtain good performance for a particular architecture. The results obtained for 

BPNN and ACO-BPNN models, by using the selected parameter values, while varying 

the hidden nodes, is shown in Table 7. For comparing the performance of different 

possible architectures, all these architectures used in this work are trained up to a fixed 

value of ASEE (0.002, in this case). The variations of ASEEs, showing the convergence 

rates, with the number of epochs for training of the neural network by using ACO-BPNN 

and BPNN algorithms are shown together in Fig. 9. The variations of mean error against 

the number of hidden nodes for both the models are shown in Fig. 10. These results show 

that the best weld strength prediction is obtained from an 8-4-1 network architecture for 

the BPNN model and from an 8-13-1 network architecture for ACO-BPNN model; 

whereas, 8-10-1 and 8-11-1 network architectures give the fastest convergence of ASEEs 

in case of ACO-BPNN model and BPNN model, respectively.  

From the results obtained, it may be concluded that the ACO-BPNN algorithm 

converges at faster rate than the BPNN algorithm. Moreover, it is observed that the mean 

percentage error in predictions from the ACO-BPNN model is less than that from the 

BPNN model. 
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5 Conclusions 
In this work, the ultimate tensile strengths of butt-weld joints in mild steel plates have 

been predicted by using a novel hybrid technique, called ACO-BPNN. Experiments were 

carried out for a large number of mild steel plates by varying six process parameters; 

namely, the background voltage, the pulse voltage, the pulse frequency, the pulse duty 

factor, the wire feed-rate and the table feed-rate. Time-domain features of arc signals, i.e. 

current and voltage, were used along with those six process parameters as the inputs to 

the hybrid model. Different network architectures were also considered in this work. 

It is observed that the ultimate tensile strength prediction performance of the 

neuro-ACO model is superior to the conventional BPNN model. The optimum network 

architectures and the number of ants, giving the best prediction performance and faster 

convergence during network training, have also been obtained. 
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Table 1. Chemical composition of the workpiece metal (in weight percentage) 

C Mn Si P Cu S Ni Cr Fe 
0.139 0.499 0.151 0.075 0.056 0.044 0.024 0.019 98.993 

 
 
Table 2. Process parameters and their values 

Sl. no. Process parameter Level 1 Level 2 Level 3 

1 Background Voltage ( bV ), volt 14 17 20 

2 Pulse voltage ( pV ), volt 30 34.6 39 

3 Pulse frequency ( f ), hz 80 130 182 

4 Pulse duty factor (η ) 0.35 0.50 0.65 

5 Wire feed rate ( wv ), m/min 7 9 11 

6 Table feed rate ( tv ), mm/sec 2.456 3.760 5.635 
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Table 3. Design matrix of the experiment (see nomenclature in Table 2) 
Sl. 
no. 

bV  
(volt)  

pV  
 (volt)  

f  
 (hz) 

η  wv  
(m/min) 

tv  
(mm/s)  

RMS current 
(A)  

RMS voltage 
(V) 

UTS 
(MPa) 

1 17 34.6 130 0.5 9 3.76 1.1939 2.7429 412.28
2 17 34.6 130 0.5 9 3.76 1.1415 2.7449 415.79
3 14 30 80 0.35 11 5.635 1.4385 1.6834 0 
4 14 39 80 0.35 7 5.635 1.1971 2.719 328.71
5 14 30 182 0.65 11 5.635 1.2566 2.3814 385.98
6 20 39 80 0.65 7 5.635 1.2773 3.2596 246.92
7 14 39 80 0.65 7 2.456 1.2791 3.1528 353.4
8 17 34.6 130 0.5 7 3.76 1.0516 2.7334 329.75
9 20 30 80 0.35 11 2.456 1.4692 1.9772 0 
10 17 34.6 130 0.5 9 5.635 1.1839 2.6688 214.38
11 17 34.6 182 0.5 9 3.76 1.1434 2.6927 452.31
12 17 30 130 0.5 9 3.76 1.1998 2.3022 190.69
13 14 30 80 0.65 7 5.635 0.9921 2.4823 193.88
14 20 39 80 0.35 7 2.456 1.1052 2.9427 463.03
15 20 30 182 0.65 11 2.456 1.4019 2.3886 231.11
16 17 34.6 130 0.5 9 3.76 1.1493 2.75 412.53
17 17 34.6 130 0.5 9 3.76 1.1945 2.7313 419.28
18 14 30 182 0.35 11 2.456 1.5672 1.7755 0 
19 14 39 80 0.65 11 5.635 1.5484 2.9822 461.73
20 14 30 80 0.65 11 2.456 0.7498 2.6086 331.28
21 17 34.6 130 0.5 9 3.76 1.165 2.7508 411.85
22 17 34.6 130 0.65 9 3.76 1.2652 2.8668 419
23 20 30 182 0.35 7 2.456 1.0122 2.4273 371.65
24 17 34.6 130 0.5 9 3.76 1.1989 2.7081 417.33
25 20 39 182 0.35 11 2.456 1.3841 2.6365 375.44
26 17 34.6 80 0.5 9 3.76 1.1516 2.7705 403.06
27 20 30 182 0.35 11 5.635 1.3825 1.9676 0 
28 14 34.6 130 0.5 9 3.76 1.1673 2.6496 424.97
29 17 34.6 130 0.5 9 2.456 1.1965 2.7268 463.8
30 14 39 182 0.35 11 5.635 1.3096 2.4468 282.97
31 20 39 182 0.65 7 2.456 1.246 3.2878 263.6
32 20 30 182 0.65 7 5.635 1.0026 2.5803 370.21
33 20 30 80 0.65 11 5.635 1.2856 2.4107 251.88
34 17 34.6 130 0.35 9 3.76 1.2128 2.3691 293.29
35 14 39 182 0.65 11 2.456 1.3787 3.1774 418.95
36 14 39 182 0.65 7 5.635 1.2979 3.1505 232.75
37 20 39 182 0.65 11 5.635 1.2026 2.7367 455.13
38 17 34.6 130 0.5 9 3.76 1.1717 2.7386 420.97
39 14 30 182 0.35 7 5.635 1.0123 2.0132 11.523
40 20 30 80 0.35 7 5.635 0.9973 2.2885 189.19
41 17 39 130 0.5 9 3.76 1.3221 2.9732 443.87
42 20 30 80 0.65 7 2.456 0.9922 2.6553 436.47
43 14 30 80 0.35 7 2.456 1.0072 2.2308 15.2
44 14 39 80 0.35 11 2.456 1.4916 2.2187 109.34
45 14 30 182 0.65 7 2.456 0.979 2.6119 356.67
46 17 34.6 130 0.5 11 3.76 1.3023 2.5549 402.58
47 20 39 182 0.35 7 5.635 1.1497 2.5602 265.93
48 17 34.6 130 0.5 9 3.76 1.2161 2.7163 410.64
49 20 39 80 0.65 11 2.456 1.3634 3.2698 453.11
50 20 39 80 0.35 11 5.635 1.3265 2.7507 367.01
51 14 39 182 0.35 7 2.456 1.107 2.6931 445.03
52 17 34.6 130 0.5 9 3.76 1.1947 2.6984 413.43
53 20 34.6 130 0.5 9 3.76 1.1786 2.6165 349.2
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Table 4. Effect of pheromone secretion rate on ACO-BPNN model 
Pheromone secretion rate Epochs Maximum error (%) Minimum error (%) Mean error (%) 
0.05 10752 6.73 0.40 3.69 
0.075 11006 9.30 0.774 4.26 
0.1 9268 6.19 0.094 2.90 
0.125 9866 6.17 2.35 4.61 
0.15 11308 6.58 0.79 3.68 
0.2 8028 6.95 1.53 3.78 
0.3 11639 7.47 2.23 4.96 
0.4 9007 5.79 2.48 4.05 

 

 

Table 5. Effect of pheromone evaporation rate on ACO-BPNN model 
Pheromone evaporation rate Epochs Maximum error (%) Minimum error (%) Mean error (%) 
0.005 10184 6.61 0.86 3.67 
0.0075 9714 7.28 0.59 4.16 
0.01 9268 6.19 0.09 2.90 
0.0125 13392 41.42 0.003 10.08 
0.015 9859 7.82 0.84 4.70 
0.02 10795 6.33 0.60 4.38 
0.03 9328 9.57 1.14 4.99 
0.04 9613 6.52 0.51 4.07 
0.05 9338 8.09 2.03 4.94 

 

 

Table 6. Parameters of BPNN and ACO-BPNN models 
Model parameter Value 
Learning rate 0.9 
Momentum parameter 0.9 
Pheromone secretion rate 0.1 
Pheromone evaporation rate 0.01 
 
 
Table 7. Comparison between ACO-BPNN and BPNN models, for different architectures 

ACO-BPNN BPNN  
Architecture Number 

of ants  Epochs Maximum 
error (%) 

Minimum 
error (%) 

Mean 
error (%) Epochs Maximum 

error (%) 
Minimum 
error (%) 

Mean 
error (%) 

8-3-1 1 17686 5.19 0.54 3.68 128230 12.76 2.86 6.52 
8-4-1 6 13888 5.42 0.56 3.69 15602 5.21 0.84 3.71 
8-5-1 8 8566 6.93 0.21 3.45 12904 5.24 2.35 3.86 
8-6-1 3 11209 5.32 0.65 3.71 11754 9.37 1.40 4.68 
8-7-1 1 9321 6.32 0.47 3.45 11971 6.37 2.19 4.4 
8-8-1 1 9273 6.66 0.47 3.35 12518 5.52 1.03 3.80 
8-9-1 5 10731 5.90 1.53 3.13 11635 11.67 1.23 5.28 
8-10-1 2 8349 5.94 1.04 3.59 14983 13.59 1.01 5.57 
8-11-1 6 9671 6.33 0.21 3.15 10911 10.63 1.50 5.38 
8-12-1 2 8512 7.44 0.65 3.43 12334 13.06 1.55 5.98 
8-13-1 7 9268 6.19 0.09 2.90 12672 7.77 1.23 3.69 
8-14-1 6 10065 7.69 0.22 2.96 11202 13.46 1.31 5.85 
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List of captions for the illustrations 
Fig. 1 A schematic diagram of a single hidden layer feed forward neural network. 

Fig. 2 Flow chart of the BPNN algorithm. 

Fig. 3 Flow chart of the hybrid ACO-BPNN algorithm. 

Fig. 4 V-grooved plate profile. 

Fig. 5 Schematic diagram of the tensile test specimen. 

Fig. 6 Schematic diagram of the experimental setup. 

Fig. 7 Plot of pheromone secretion rate versus the mean percentage error. 

Fig. 8 Plot of pheromone evaporation rate versus the mean percentage error. 

Fig. 9 Plot of mean square error versus the number of epochs for ACO-BPNN & BPNN 

models. 

Fig. 10 Plot of mean testing error versus number of hidden nodes for ACO-BPNN and 

BPNN models. 

 


