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A B S T R A C T   

Introduction: There has been limited development and uptake of machine-learning methods to automate data 
extraction for literature-based assessments. Although advanced extraction approaches have been applied to some 
clinical research reviews, existing methods are not well suited for addressing toxicology or environmental health 
questions due to unique data needs to support reviews in these fields. 
Objectives: To develop and evaluate a flexible, web-based tool for semi-automated data extraction that: 1) makes 
data extraction predictions with user verification, 2) integrates token-level annotations, and 3) connects 
extracted entities to support hierarchical data extraction. 
Methods: Dextr was developed with Agile software methodology using a two-team approach. The development 
team outlined proposed features and coded the software. The advisory team guided developers and evaluated 
Dextr’s performance on precision, recall, and extraction time by comparing a manual extraction workflow to a 
semi-automated extraction workflow using a dataset of 51 environmental health animal studies. 
Results: The semi-automated workflow did not appear to affect precision rate (96.0% vs. 95.4% manual, p =
0.38), resulted in a small reduction in recall rate (91.8% vs. 97.0% manual, p < 0.01), and substantially reduced 
the median extraction time (436 s vs. 933 s per study manual, p < 0.01) compared to a manual workflow. 
Discussion: Dextr provides similar performance to manual extraction in terms of recall and precision and greatly 
reduces data extraction time. Unlike other tools, Dextr provides the ability to extract complex concepts (e.g., 
multiple experiments with various exposures and doses within a single study), properly connect the extracted 
elements within a study, and effectively limit the work required by researchers to generate machine-readable, 
annotated exports. The Dextr tool addresses data-extraction challenges associated with environmental health 
sciences literature with a simple user interface, incorporates the key capabilities of user verification and entity 
connecting, provides a platform for further automation developments, and has the potential to improve data 
extraction for literature reviews in this and other fields.   

1. Introduction 

Systematic review methodology is a rigorous approach to literature- 
based assessments that maximizes transparency and minimizes bias 
(O’Connor et al. 2019). Three main assessment formats (systematic 

reviews, scoping reviews, and systematic evidence maps) use these 
methods in a fit-for-purpose approach depending on the research 
question and project goals. Systematic reviews follow a pre-defined 
protocol to identify, select, critically assess, synthesize, and integrate 
evidence to answer a specific question and reach conclusions. The best 
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Box 1 
A comparison of the literature-assessment steps between scoping reviews/systematic evidence maps and systematic reviews1.  

Literature- Assessment Steps Task Description in Scoping Review 
(SCR) or Systematic Evidence 
Mapping (SEM) Workflow 

Task Description in Systematic 
Review (SR) Workflow 

Percent 
Time2 

Problem Formulation and Protocol 
Development 

Define research question and objectives, 
typically with a broad PECO3, and all 
methods before conducting review.  
• Best practice to publish protocol 

before conducting review for 
transparency; however, only minor 
impact on bias  

• Objectives are often open questions to 
survey broad topics and identify 
extent of evidence (i.e., areas that are 
data rich or data poor / data gaps)  

• Protocol should describe key concepts 
that will be mapped (e.g., exposures) 
to support objectives 

Define research question, PECO, and 
all methods before conducting 
review to reduce bias.  
• Best practice to publish protocol 

for transparency  
• Critical to publish protocol before 

starting evidence evaluation to 
reduce bias  

• Objectives are focused, closed 
questions (e.g., specific exposure 
outcome pairs/ hazards) 

8% 

Identify the 
Evidence 

Identify 
Literature 

Develop search strategy to identify 
evidence relevant to address the 
question.  
• Search is biased to address the degree 

of precision and certainty of the 
objectives where a comprehensive 
search may not be necessary  

• Searches conducted in one or more 
major literature database, or in a 
stepwise manner, to address 
objectives  

• Search terms are generally broad / 
topic based with lower specificity  

• Searches retrieve evidence supportive 
of multiple decisions and scenarios 

Develop comprehensive search 
strategy to identify all relevant 
evidence to address the question.  
• Search is biased toward maximum 

number of sources to ensure 
identification of all evidence 
relevant to synthesis  

• Search includes literature 
databases, sources of grey 
literature, and published data  

• Search terms are highly resolved 
and specified for key elements of 
the objectives 

7% 

Screen Studies Screen studies against eligibility criteria 
from objectives and PECO.  
• Inclusion and exclusion criteria are 

topic-based and may only address 
PECO at a high level  

• Included studies likely to address 
diverse scenarios 

Screen studies against eligibility 
criteria from objectives and PECO.  
• Inclusion and exclusion criteria 

specified in detail for all PECO 
elements  

• Assure specific research question is 
efficiently addressed 

17% 

Extract Data Extract study meta-data and 
characteristics to address objectives.   

• Flexible approach supports fit-for- 
purpose maps of varying degrees of 
comprehensiveness  

• Optional extraction of study findings 
and other characteristics depending 
on objectives 

Complete extraction of meta-data and 
results to address question.   

• Entities determined by project 
objectives 

15% 

Evaluate the Evidence Appraisal of studies is optional 
depending on objectives.  
• Study characteristics relating to 

quality of study design and conduct, 
or internal validity, may be extracted  

• May include stepwise approach (e.g., 
methods mapped relative to 
objectives), or quality only assessed 
for studies addressing key outcomes 

Critical appraisal of included studies 
is essential to characterizing 
certainty in bodies of evidence.  
• Performed as assessment of 

internal validity (risk of bias)  
• May include external validity, 

sensitivity, other factors 

9% 

Summarize and Synthesize Data SCRs and SEMs have limited or no 
synthesis – may only include 
summaries.  
• Primary output shows extent of 

evidence and key characteristics 
relative to question and objectives  

• SCRs provide narrative summaries 
(limited or no synthesis) of evidence 
relative to objectives 

Quantitative synthesis addresses 
question and objectives where 
appropriate; qualitative synthesis 
used if pooling not appropriate.  
• Synthesis supports a specific 

decision context  
• May include meta-analysis 

5% 

(continued on next page) 
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(continued ) 

Literature- Assessment Steps Task Description in Scoping Review 
(SCR) or Systematic Evidence 
Mapping (SEM) Workflow 

Task Description in Systematic 
Review (SR) Workflow 

Percent 
Time2  

• SEMs output includes evidence map, 
database, or tables to support and 
inform decision making on question  

• Although data may inform multiple 
decisions, summary may be specific 
for decision-making context in 
objectives  

• Synthesis should address key 
features separately (e.g., evidence 
streams, exposures, health effects)  

• Example for environmental health 
questions would synthesize hazard 
characterization data 

Integrate 
Evidenceand 
Report 
Findings 

Integrate 
Evidence 

SCRs and SEMs do not typically include 
integration or synthesis.  
• SEMs may identify regions of 

evidence with study characteristics 
associated with confidence or 
certainty 

Assessment of confidence or certainty 
in the results of the synthesis 
described according to the objectives.  
• Should address certainty of each 

body of evidence relative to 
questions or objectives  

• Includes integration of the 
evidence base as a whole  

• Example for environmental health 
questions would provide detailed 
certainty of evidence for hazard or 
risk conclusions from exposure 

8% 

DevelopReport All review outputs provided in 
accessible format.  
• SCRs and SEMs do not typically 

provide conclusions  
• Good SEMs are interactive, sortable, 

and searchable  
• Outputs support and inform decision 

making on question  
• Outputs should inform research and 

analysis decisions, where data rich 
areas may support conclusions or data 
poor areas may serve as areas of 
uncertainty that could be addressed 
by research or evidence surveillance 

Report all conclusions in clear 
language and accessible format with 
answer to review question.  
• Includes description of certainty of 

conclusions  
• Describes limitation in the review 

and limitations in the evidence 
base for assessing the question 

12% 

Project Management4 Oversight of team interactions and 
workflow performed to complete the 
review.  
• Develop materials and guidance for 

steps in the review (screening, data 
extraction, etc.) and provide training  

• Manage communication and 
meetings for workflow, track 
progress, and address problems  

• Arrange and conduct pilot testing of 
review steps and revise approach 
based on lessons learned  

• Arrange for workflow integration of 
new tools, machine learning and AI 
features  

• Recruit technical experts and new 
team members and address conflict of 
interest  

• Plan for protocol, data, and document 
review 

Oversight is the same as SCR and 
SEM with additional steps for critical 
appraisal and integration of 
evidence. 

19%  

1Note: For the purpose of the table, scoping reviews and systematic evidence maps are considered to have the same workflow; adapted from 
James et al. (2016) and Wolffe et al. (2020). 
2Estimated percent of work time to complete a systematic review adapted from Clark et al. (2020). 
3Research questions for scoping and systematic reviews should be stated in terms of the Population, Exposure, Comparator, and Outcome 
(PECO) of interest. Scoping reviews and evidence maps sometimes do not include a specific comparator. 
4Although project management is not typically considered a step in the literature review process, it took nearly 20% of time when considered as 
a separate function by Clark et al. (2020). 

SR = Systematic Review, SCR = Scoping Review, SEM = Systematic Evidence Map.  
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systematic reviews use a comprehensive literature search based on a 
narrowly focused question to facilitate conclusions. Scoping reviews 
utilize systematic-review methods to summarize available data on broad 
topics to identify data-rich and data-poor areas of research and inform 
evidence-based decisions on further research or analysis. Systematic 
evidence maps use systematic-review methods to characterize the evi
dence base for a broad research area to illustrate the extent and types of 
evidence available via an interactive visual format that may be a stand- 
alone product or part of a scoping review (Wolffe et al. 2020). All three 
of these assessment formats are generally time-consuming and resource- 
intensive to conduct, primarily due to the need to accomplish most steps 
manually (Marshall et al. 2017), but also driven by the complexity of the 
data under consideration and amount of relevant literature to evaluate. 

The specific steps in a literature-based assessment depend on the 
goals and approach used, with five basic steps in most assessments: 1) 
define the question and methods for the review (i.e., problem formula
tion and protocol development), 2) identify the evidence, 3) evaluate the 
evidence, 4) summarize the evidence, and 5) integrate the evidence and 
report the findings. Box 1 compares these steps across a scoping-review/ 
systematic-review map and systematic-review products. Many steps in 
the literature-based assessment process have repetitive and rule-based 
decisions, which lend the steps to automated or semi-automated 
approaches. 

The development and use of automation are steadily advancing in 
literature analysis, with much of its uptake focused on clinical and 
medical research. This progress may be related to funding advantages 
and the relative consistency of medical data and publications, or perhaps 
may be because clinical research has used systematic-review method
ology longer. Although data sources are similar for many literature- 
based assessments, there are differences and unique aspects of the 
data relevant for addressing toxicology or environmental health ques
tions versus clinical questions. One important difference is that envi
ronmental health assessments require the identification of research from 
multiple evidence streams (i.e., human, animal, and in vitro exposure 
studies), which necessitates training tools on publications addressing 
each evidence stream. In contrast, data that are relevant for addressing 
clinical and medical review questions come primarily from randomized 
controlled trials in human subjects. Even within the human data there is 
greater complexity in toxicology or environmental research, where a 
range of epidemiological study designs are used for investigating the 
health effects of environmental chemicals. Moreover, experimental an
imal studies measure more diverse endpoints and may report more data 
than clinical studies, resulting in longer and more complicated data 
extraction. Finally, cell-based assays and in vitro exposure studies pro
vide valuable mechanistic insights for the question at hand, but these 
assays cover an even more diverse range of endpoints, platforms, tech
nologies, and associated data. While clinical and environmental as
sessments both focus on health-related outcomes, the requirements for 
environmentally focused reviews expand beyond those considered in the 
medical field. Therefore, a tool that meets the needs of environmental 
health assessments could likely be applied successfully to clinical 
questions, while the opposite may not be true. 

The systematic-review toolbox (http://systematicreviewtools.com) 
provides a catalogue of over 200 tools that address parts of all five 
assessment steps as well as associated tasks such as meta-analysis or 
collaboration (Marshall and Brereton 2015). Within the toolbox, there 
are multiple resources that support developing and implementing 
literature assessments using manual processes. For instance, several 
tools provide web-based forms for review teams to capture objectives, 
record search strategies, detail quality-assessment checklists, and record 
manual steps such as extracting evidence and making risk-of-bias or 
quality-assessment judgements. The availability of tools that support 
full- or partial-automation of literature-assessment processes is much 
more limited, despite recent advances in natural language processing 
(NLP), machine learning, and artificial intelligence (AI). This is espe
cially true for the process of identifying evidence, where a combination 

of active learning and linguistic models can successfully predict the 
relevance of literature based on small samples of manually selected 
studies (e.g., Brockmeier et al. 2019; Howard et al. 2020; Rathbone et al. 
2017; Wallace et al. 2012). These approaches have now been incorpo
rated into several systematic-review tools. In contrast, the development 
and the adoption of automation methods for steps three through five of a 
systematic review has been limited (Box 1). The risk-of-bias assessment 
of individual studies is a critical and time-consuming process in assess
ments that is generally considered to require subject-matter experts to 
evaluate complex factors in study design and reporting. While a few 
models exist to predict risk-of-bias ratings for clinical research studies 
(Marshall et al. 2017; Millard et al. 2016), such methods have not 
translated into adoption within mainstream systematic-review tools. 

Several assessment steps rely on the extraction of identified data 
from text, another widely recognized time-consuming process. Recent 
developments in NLP, including both general extraction of named en
tities and relationships (surveyed in Yadav and Bethard 2018) as well as 
specific extraction of biomedical terms (e.g., chemicals, genes, and 
adverse outcomes (reviewed in Perera et al. 2020)), suggest that 
machine-based approaches are sufficiently mature for semi-automated 
data-extraction approaches. Some elements of human- and machine- 
based data extraction are straightforward, including identifying the 
species and sex of the experimental animal models. Other elements, such 
as identifying the results of experimental assays, questionnaires, or 
statistical analyses, are more complex because publications may report 
the results from numerous assays and endpoints after multiple expo
sures, doses, and time periods. Standardization of reporting is also 
lacking, such that authors may report the experimental details using 
different measurement units, different names for the same chemical, and 
other variations in terminology (Wolffe et al. 2020). In addition, this 
information may be located within the text of the publication or in a 
table, figure, or figure caption. 

In 2018, the Division of the National Toxicology Program (DNTP) 
participated in the National Institute of Standards and Technology Text 
Analysis Conference (NIST TAC) challenge by hosting the Systematic 
Review Information Extraction (SRIE) track to investigate the feasibility 
of developing machine-learning models to identify, extract, and connect 
data entities routinely extracted from environmental health experi
mental animal studies. The data entities included 24 fields such as 
species, exposure, dose level, time of dose, endpoint. Creating the 
training and test sets required structured annotation of the various data- 
extraction entities and labeling them in the text of each article. Devel
oping these datasets required more comprehensive study annotation 
than typical data extraction workflow because the training dataset 
needed to capture all entities and endpoints in a research publication 
rather than the subset that might be relevant for a given systematic re
view question. These training datasets are critical to providing a fixed 
format that can be automatically processed and interpreted by a com
puter for training and model development. Overall, the results of the 
challenge were promising in that model-derived annotation of design 
features from the methods section of experimental animal studies ach
ieved results in some extraction fields that neared human-level perfor
mance, suggesting that computer-assisted data extraction is a viable 
option for assisting researchers in the labor- and resource-intensive steps 
of data extraction in the literature-assessment process (Schmitt et al. 
2018). 

Given the positive outcome of the NIST TAC challenge, we developed 
Dextr, a web-based tool designed to incorporate NLP data-extraction 
models (including but not limited to models developed for the NIST 
TAC Challenge) into annotation and data-extraction workflows to sup
port literature-based assessments. Many potential features were 
considered as we established the design requirements for Dextr 
(Table 1), with three design features considered key for our needs. First, 
and most importantly, was the ability of the tool to make data-extraction 
predications automatically, with the user’s ability to manually verify the 
predicted entity or override and modify the extracted information (i.e., a 
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“semi-automated” data-extraction approach where automated pre
dictions are verified by the user). Second, we considered the capability 
to group the extracted entities (e.g., connect the species, strain, and sex 
of the animal model or the dose, exposure, and outcomes), critical to 
supporting hierarchical data extraction and greater utility of the 
extracted data. The third key feature was the ability of the tool to make 
token-level annotations (i.e., identifying a word, phrase, or specific 
sequence of characters) that can be used in either a typical data- 
extraction workflow as part of a literature review or to annotate 
studies for developing training datasets. The annotation of studies dur
ing data extraction has the potential to create training datasets without a 
separate, directed effort if the tool includes appropriate machine- 
readable export options. In addition to the three key features identi
fied above, Table 1 describes unique characteristics of environmental 
health data and key challenges for data extraction considered in devel
oping Dextr. Given the increasing volume of published studies, we 
believe that semi-automation of the labor-intensive step of data 
extraction by Dextr has great potential to improve the speed and accu
racy of conducting literature-based assessments and reduce the work
load and resources required without comprising the rigor and 
transparency that are critical to systematic-review methodology. 

In this paper, we briefly describe the methods development of Dextr, 
investigate the tool’s usability, and evaluate the tool’s impact on per
formance in terms of recall, precision, and time using this semi- 
automated approach in DNTP’s data-extraction workflow. 

2. Methods 

2.1. Tool development 

The underlying machine-learning model (Nowak and Kunstman 
2018) was developed as part of the NIST TAC 2018 SRIE workshop 
(Schmitt et al. 2018). Briefly, the model is a deep neural network con
taining more than 31 million trainable parameters. It consists of pre- 
trained embeddings (Global Vectors for Words Representations: GloVe 
and Embeddings from Language Models: ELMo), a bidirectional long 
short-term memory (LSTM) encoder, and a conditional random field 
(Nowak and Kunstman 2018). This model was developed and trained 
only on the methods sections of environmental health studies. There
fore, for this project, the model similarly was restricted to the methods 
section and performed the sequence tagging task by producing a tag 
(denoting a single data-extraction field) for every token from the input 
in the methods section. The goal for Dextr was to develop a flexible user 
interface that met the design requirements in Table 1 and leverage this 
model within a literature-review workflow. The project was conducted 

according to Agile software development methodology around two 
principal teams. A development team (AJN and KK) was formed to 
outline potential features and functions for Dextr and code the tool. An 
advisory team (AAR, CPS, RS, ARW, MSW, VRW) of experts with 
backgrounds in public health, literature analysis, and computational 
methods was then formed to guide the developers. The development 
team worked sequentially in “sprints” on clearly defined, testable pieces 
of functionality that could inform further planning and design. 
Throughout the process, the development team consulted with the 
advisory team, demonstrated newly added functionality, and presented 
mock-ups of the user interface illustrating key functions within the tool 
(e.g., project management screens, data import, extraction interfaces). 
As part of the Agile development sprints, each task had a test plan to 
verify its correctness. These test plans were then performed, first by the 
testers that were part of the development team, and then (if successful) 
by the advisory team. Members of the advisory team (ARW and RS) 
oversaw the project schedule and timeline and managed the develop
ment team and evaluation study. The development and advisory teams 
discussed potential refinements, suggested improvements, and agreed 
upon the approach to be implemented. When all features had been 
developed, a test version of the tool was produced and tested by the 
advisory team (ARW and RS). All issues or bugs identified during testing 
were addressed by the development team. When both teams agreed that 
the tool met the design requirements, the development team deployed 
the Minimum Viable Product (MVP) version of the tool to the Quality 
Assurance (QA) environment in April 2020. Before applying this initial 
version of the tool (Dextr v1.0-beta1) in daily work, QA testing and basic 
performance evaluation were conducted on the MVP version to quantify 
the potential gains in using a semi-automated workflow with Dextr 
compared to a manual workflow as described in the following section. 

2.2. Evaluation 

The aim of the evaluation was to understand how the integration of 
Dextr, a semi-automated extraction tool employing a machine-learning 
model would perform in the DNTP literature-review workflow. Specif
ically, we sought to understand how the tool would impact data 
extraction recall, precision, and extraction time compared to a manual 
workflow. The performance of the underlying machine-learning model 
was evaluated previously and was not within the scope of this evaluation 
(Schmitt et al. 2018). Although Dextr enables users to connect extracted 
entities, there is no difference in this aspect of the workflow between 
manual and semi-automated approaches. Therefore, the connection 
feature was rigorously tested and subject to QA procedures, but not part 
of the evaluation. Similarly, as we have continued to refine the user 

Table 1 
Dextr design requirements.  

Challenge Description Dextr Features Addressing the Challenge 

Interoperability: Efficiently import and export necessary file types  • Ability to import various file types (i.e., CSV and RIS)  
• Allows bulk upload of PDFs (click and drag)  
• Exports as CSV or modified brat file types 

Usability features: User interface that operates with efficient mouse 
and key stroke options (flexibility for user 
preferences)  

• Selection with mouse click options.  
• Project management features  
• Easy to follow user interface  
• Ability to modify data extraction form 

Complex data: Environmental health sciences publications often 
report multiple experiments with various chemical 
exposures and doses and evaluate several endpoints 
(hierarchical data structure and groupings / 
connections)  

• Ability to extract multiple entities including multiple animal models, exposures, and outcomes  
• Ability to connect the metadata at various levels (i.e., dose-exposure-outcome pairings) 

Annotations: Capability to annotate studies within a typical data 
extraction workflow that can be used to develop 
annotated datasets needed for training or 
developing new models  

• Token-level (i.e., word, phrase, or specific sequence of characters) annotations recorded for each 
extraction entity  

• Ability to export annotations in a machine-readable format for model refinement and new model 
development 

Flexibility: Functionality that emphasizes flexibility for taking 
advantage of advancements in natural language 
processing  

• Ability to utilize regular expressions to identify a string of text (i.e., #### mg = dose) or keyword 
searches without models  

• Ability to add validated models (3rd party models) to the suite of available models  
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interface and develop new capabilities for Dextr, we did not evaluate 
new features (such as the ability to use controlled vocabularies) that 
were not expected to negatively impact recall, precision, or extraction 
time. The evaluation study was designed and conducted independently 
of the development team and consisted of two teams, a manual extrac
tion team (RS, ARW, RB, KS) and a semi-automated extraction team (JR 
and JS) (Fig. 1). The manual extraction team included two manual ex
tractors (RS and ARW), who read each study and manually extracted 
each data element, and two QA reviewers (RB and KS), who reviewed 
the manual data extractions and made any corrections as needed 
(Manual + QA). The semi-automated team included two QA reviewers 
(JR and JS) who reviewed the machine-generated data extractions and 
made any corrections as needed (Model + QA). The manual extractors 
had prior experience with Dextr related to development discussions and 
testing tasks. The QA reviewers on both teams had previous and similar 
levels of experience with conducting data extraction for literature re
views, received a user guide for Dextr, and completed a pilot test in 
Dextr prior to the evaluation. Reviewers were told to accept correct data, 
add missing data, and ignore data incorrectly identified by either the 
extractor or the model. Incorrect data were ignored to minimize any 
additional time reviewers would spend clicking to reject incorrect sug
gestions. This approach reflects use of Dextr for literature-based reviews; 
however, if Dextr is used to construct new training data for model 
development, then incorrect data would need to be labeled as such. 

Extractor time and reviewer time were recorded within Dextr. Prior 
to either beginning extraction or review, users started a timer on the 
tool’s user interface and paused or stopped the timer (as needed) until 
they completed their task. The times between start and stop actions were 
manually checked against a complete event log to identify potential 
cases of the timer not being started or stopped and summed for each 
study to provide a total extraction time. 

All the statistical analyses (JC) used in the evaluation were con
ducted using SAS Version 9.4 (SAS Institute Inc., Cary, NC). The 
generalized linear mixed model regressions were fitted using the 
GLIMMIX procedure with maximum likelihood estimation based on the 
Laplace approximation. Two-sided t tests were used to test the null hy
pothesis that a given fixed effect coefficient or a linear combination of 
the coefficients (such as the estimated difference between the log odds of 
recall for the manual and semi-automated modes averaged across fields 
and extractors) was zero. Similarly, one-sided F tests were used to test 
null hypotheses for interactions and contrasts, i.e., that all the corre
sponding linear combinations of the coefficients were zero. All statistical 
tests (two-sided t tests for estimated fixed effects and one-sided F tests 
for interactions and contrasts) were carried out at the 5% significance 
level. P-values are shown in the tables. There was no missing data and no 

removal of potential outliers. 

2.3. Pilot evaluation 

An initial pilot evaluation was conducted on 10 studies and the re
sults were used to calculate the sample size for the number of studies to 
be included in the evaluation. All software requires a general under
standing of the functionality and features to navigate the user interface 
and perform the tasks it is designed for – in this case to conduct data 
extractions. The goals of the pilot were to prepare for evaluating Dextr’s 
performance, not to assess the learning process of new users. Therefore, 
an extraction guidance document was written so participants would 
better understand how Dextr worked and minimize the impact of the 
learning curve. The guidance was developed and reviewed by the 
advisory team and the development team prior to sharing it with the 
extraction team. Extraction team members provided usability feedback 
after the pilot; however, no changes were implemented to Dextr before 
the evaluation study. Since no changes were made to the tool based on 
the pilot, the results from the 10 pilot studies were included in the main 
evaluation study. 

The evaluation sample size was selected using a statistical power 
analysis based on statistical models fitted to data from the pilot study. 
These statistical models used similar but less complicated formulations 
than the final models fitted to the final data. 

Using the same notation as in the Evaluation Metrics section, the 
pilot study statistical model for recall was of the form: 

Logit(recall) = intercept +αi + βc+ θs,

where αi is a fixed factor for the mode, θs is a random factor for the study, 
drawn from a normal distribution with mean zero, and c is the quanti
tative complexity score (i.e., the calculated score divided by 100). The 
logit is the log odds. The same model formulation was used for precision. 
The pilot study statistical model used for time was of the form: 

Log(time) = intercept+ αi + βc+ θs + error,

where error is normally distributed with mean zero and is independent 
of the random factor θs. For several candidate values of K, data for K 
studies were simulated from each fitted model 100 times each under the 
alternative hypotheses, and the same statistical model was refitted to the 
simulated data. 100 simulations were used since the iterative method for 
fitting the models is computer intensive. For recall, each field was 
assumed to have 4 gold standard tags (the average number in the pilot 
data, rounded to the nearest integer). For precision, each field was 
assumed to have 3 tags (the average number in the pilot data, rounded to 
the nearest integer). The simulated complexity scores were equally 
likely to be any of the 10 pilot study complexity scores. For the manual 
mode, the simulated data used the fitted statistical models for the 
manual mode. For the semi-automated mode, the simulated data for 
recall and precision used the same model but increased the log odds by a 
fixed amount, delta. For the semi-automated mode, the simulated data 
for time used the same model but decreased the geometric mean time by 
a fixed percentage, perc. The estimated statistical power was the pro
portion of the simulated models where the difference between the two 
modes was statistically significant at the 5% significance level. 

Based on 100 simulations from the fitted models and using a 5% 
significance level, we found that a sample of 50 studies would be suf
ficient to have an estimated statistical power of 100% (95% confidence 
interval (96.4, 100) %) to detect an increase or decrease of 1 in the log 
odds of recall, or a decrease of 1 in the log odds of precision; 98% (95% 
confidence interval (93.0, 99.8) %) to detect an increase of 1 in the log 
odds of precision, and 97% (95% confidence interval (91.4, 99.4) %) to 
detect a 20% decrease in median time. The confidence intervals account 
for the uncertainty due to the fact that only 100 simulations were used. 
Therefore, a final sample size of at least 50 studies was selected and 51 
studies were chosen for the gold-standard dataset. 

Fig. 1. Evaluation study design with two teams: manual extraction and semi- 
automated extraction. The manual-extraction team included two extractors 
who completed the primary extraction, followed by two QA reviewers. The 
semi-automated extraction team included the algorithm that completed the 
primary extraction, followed by two different QA reviewers. 
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2.3.1. Data-extraction fields 
We selected five data-extraction fields (test article, species, strain, 

sex, and endpoint) for the evaluation study from the full list of 24 
extraction fields included in the NIST TAC SRIE challenge dataset 
(Schmitt et al. 2018). The challenge evaluated models using the F1 
metric, which is a harmonic mean of precision (i.e., positive predictive 
value) and recall (i.e., sensitivity). The five data fields represented a mix 
of fields with high (species, sex), medium (strain), and low (test article, 
endpoint) F1 scores across all models previously evaluated in the 
challenge. 

2.3.2. Gold-standard dataset 
The gold-standard dataset comprised respiratory endpoints associ

ated with exposure to biocides manually extracted from 51 experimental 
animal studies (Supplemental File S1). Although in vitro, experimental 
animal, and epidemiological study designs are of interest, we focused on 
experimental animal studies for the evaluation of Dextr because the 
model used had been developed and trained on experimental animal 
studies. Guidance on respiratory outcomes or endpoints provided to the 
extractors and QA reviewers is shown in Table 2. The teams were told 
that the table was not an exhaustive list and were instructed to identify 
any respiratory effect evaluated. The gold-standard dataset was devel
oped by a separate extractor (PH), not included in either extraction 
team, who read the papers and extracted information on test article, 
species, strain, sex, and endpoints. A QA review was performed on the 
resulting dataset, or gold-standard dataset, by an independent QA 
reviewer (VW), who was also not on either extraction team. 

2.3.3. Evaluation criteria 
The results from Dextr were manually assessed by a single grader (RS 

or ARW) and compared to the gold-standard dataset. In brief, final data 
from the manual mode (Manual + QA) and from the semi-automated 
mode (Model + QA) were exported from Dextr into a CSV file. The re
sults of each study by mode (manual or semi-automated) were graded 
separately. Each extracted data element was compared to the gold 
standard and marked as either a “true positive” (TP), if a match with an 
element in the gold standard, or a “false positive” (FP), if an additional 
element was not included in the gold standard. Out of 3334 results, 985 
were identified as FPs. Fifty-five of these were manually flagged for 
further investigation for reasons such as a possible gold standard match, 
duplicate finding, or human error. Gold-standard data elements that 
were not included in the Dextr results were marked as a “false negative” 
(FN). Endpoints in the Dextr exports that were more specific than those 
in the gold standard were considered a TP. For example, if a Dextr result 
had an endpoint of “lung myeloid cell distribution” and “lung CD4 + T 

cell numbers,” but the gold-standard endpoint was “lung myeloid cell 
distribution (B and T cells),” then both Dextr-identified endpoints were 
considered TPs. Out of 1561 TP results, 540 were exact matches while 
1021 were not exact matches for reasons such as plural versus singular, 
abbreviated or not, order of terms differed, or more detail provided in 
one source or the other. Out of these non-exact matches, 282 did not 
exactly match due to plural/singular/abbreviation discrepancies while 
739 had a slight difference in wording, but were still considered a match. 
The graders consulted a tertiary grader (VW) to make a final decision in 
cases where a data element was identified in the Dextr results and 
missed in the gold standard. For QA, four studies were independently 
graded by a separate grader (either ARW or RS) and compared to the 
initial grading. Changes to the grading were made based on discussions 
between the graders. If questions between graders remained, then a 
tertiary grader (VW) was consulted to provide clarity and a final deci
sion. Duplicate data elements in the Dextr results were graded only once. 

We calculated a complexity score for each study to account for the 
additional effort an extraction would take based on the number of var
iations of an experiment. For example, we anticipated a study with 
multiple test articles would be more difficult to extract than a study with 
only one test article. We were unable to find an established method to 
address complexity, and therefore complexity scores were developed 
using expert judgment from experienced extractors. Although the 
complexity scores were designed to address study characteristics over
all, the score is based on study characteristics that relate to the specific 
data extraction elements for this paper. The number of data-extraction 
elements by field in the gold-standard dataset was multiplied by the 
weights shown in Table 3 and summed across the five data fields to 
calculate the score. The advisory team developed the weights for each 
field based on judgement related to how complex an extraction task was 
given multiple test articles, species, strains, sexes, and endpoints. 
Additional test articles and species were identified as introducing 
complexity to an extraction, while most studies examined multiple 
endpoints and did not dramatically add time to an extraction. 

2.4. Usability feedback 

After completion of the evaluation study, we asked manual and semi- 
automated QA reviewers to provide qualitative feedback on their user 
experience with Dextr. To summarize the assessment of usability across 
the reviewers, six open-ended user-experience questions were developed 
and responses for each question were recorded and compiled (Table S1). 
Note, that the feedback reflects user experience during the pilot and 
evaluation phases. 

2.5. Evaluation metrics 

We evaluated the utility of Dextr in DNTP’s workflow on three key 
metrics: recall, precision, and extraction time. The recall rate is the 
probability, prob(recall), that a gold-standard tag was correctly recalled. 
The precision rate is the probability, prob(precision), that an identified 
tag was a gold-standard tag. In the main paper, we compare arithmetic 

Table 2 
Respiratory outcome examples and key terms.  

Category Examples and Key Terms 

Organ/tissue nasal cavity and paranasal sinus, nose (including 
olfactory), larynx, trachea, pharynx, pleura, lung/ 
pulmonary (including bronchi, alveoli), glottis, 
epiglottis 

Signs/symptoms sneezing/sniffling, nasal congestion, nasal discharge 
(e.g., rhinorrhea), coughing, increased mucus/ 
sputum/phlegm, breathing abnormalities (e.g., 
wheezing, shortness of breath, unusual noises when 
breathing) 

Respiratory-related diseases 
or conditions 

fibrosis, asthma, emphysema, chronic obstructive 
pulmonary disease (COPD), pneumonia, sinusitis, 
rhinitis, granuloma (or other inflammation) 

Lung function 
measurements 

forced expiratory volume (FEV), forced vital capacity 
(FVC), peak expiratory flow (PEF), expiratory reserve 
volume (ERV), functional residual capacity (FRC), 
vital capacity (VC), total lung capacity (TLC), airway 
resistance, mucociliary clearance 

1Examples of outcomes or endpoints and key terms in this table provided in a 
guidance document for training of extractors and QA reviewers. 

Table 3 
Assigned weights to data extraction fields within 
Dextr.1  

Field Weight 

Endpoint(s) 0.5 
Sex 1 
Species 2 
Strain 1 
Test article 2  

1 Weights were developed using expert judg
ment to capture how additional extraction ele
ments introduced complexity into the extraction 
task. 
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means of the recall rate or precision rate or the median total extraction 
time with predictions from fitted statistical models “unstratified by 
field” that estimate the rates or medians as a single function of the mode, 
field, and other explanatory variables. In the Supplemental Materials, 
we present alternative models for the recall and precision rates “strati
fied by field,” where for each field the recall or precision rate is sepa
rately modeled. 

The log odds of recall is defined as logit(recall) = log {prob(recall) / 
(1 - prob(recall)) }, where “log” is the natural logarithm. The fitted 
statistical model is a version of the model used in Saldanha et al. (2016). 
The statistical model assumes that the log odds of recall for a given gold- 
standard tag is a function of the mode (i = manual or semi-automated), 
complexity score (c), field (f = endpoint, sex, species, strain, or test 
article), primary extractor (p = primary1 or primary2 for manual mode, 
NULL for semiautomated mode), quality assurance reviewer (q = q1 or 
q2 for the two semi-automated mode reviewers, q3 or q4 for the two 
manual mode reviewers), and study (s = different values for each of the 
51 studies). For each combination of study, mode, and field, the recall 
outcomes for each of the gold-standard tags are independent and have 
the same log odds, giving a binomial distribution for the number of gold- 
standard tags correctly recalled. For all these statistical analyses, the 
complexity score defined above was divided by 100 to improve model 
convergence without changing the underlying model formulation. The 
general model used the equation: 

Logit(recall)= intercept+αi+βc+γf +δp+εq +(αγ)if +(αβ)ic+(βγ)f c+θs.

In this general model, αiandγf are fixed factors for the mode and field; 
δp, εq, and θs are random factors for the primary extractors, QA re
viewers, and study, drawn from independent normal distributions with 
mean zero; and c is the quantitative complexity score (i.e., the calculated 
score divided by 100). The terms (αγ)if ,(αβ)i,and(βγ)f are interaction 
terms for mode × field, mode × complexity score, and complexity score 
× field. Thus, the model allows the effect of the field to vary with the 
mode or with the complexity score and allows the effect of the mode to 
vary with the complexity score. 

We were unable to fit this general model to the data due to problems 
with extremely high standard errors for the mode × field interaction and 
some convergence issues, although there were no problems with com
plete or quasi-complete separation of the logistic regression models. For 
example, in the initial model with random factors, the estimated vari
ance for the QA reviewer was zero, but the corresponding gradient of 
minus twice the log-likelihood was over 150 instead of being at most 
0.001, the convergence criterion. For the final model we therefore 
removed the mode × field interaction and replaced the random factors 
for the primary and QA reviewers by fixed factors. Replacing the random 
factors by fixed factors might limit the generalizability of these results to 
other potential reviewers. We also removed main effects and in
teractions that were not statistically significant at the 5% level. It is 
possible that excluding interactions and replacing random factors by 
fixed factors could have introduced some bias and might limit the 
generalizability of the study results. 

The final model was of the form: 

Logit(recall) = intercept+ αi + βc+ γf + δp + θs  

where the only random factor is the study effect. In particular, this 
model does not have an interaction between mode and field, so the 
estimated differences in log odds between modes are the same for every 
field. Additionally, as noted above, to evaluate differences in the mode 
effect across different fields we fitted alternative models stratified by 
field, and those results are shown in the Supplemental Materials. In 
particular, the stratified models show large differences between the 
estimated study variances for different fields. 

The precision rate is the probability, prob(precision), that an iden
tified tag was a gold standard tag. The log odds of precision is defined as 

logit(precision) = log {prob(precision) / (1 - prob(precision)) }. The 
general statistical model for precision was the same formulation as the 
above model for recall. As before, the final model did not include the 
mode × field interaction due to extremely high standard errors, and we 
replaced the random factors for the primary and QA reviewers by fixed 
factors. After removing non-significant main effects and interactions, the 
final model (using the same notation) was of the form: 

Logit(precision) = intercept+αi + βc+ γf +(αβ)ic+ θs  

where the only random factor is the study effect. In particular, this 
model does not have an interaction between mode and field, so the 
estimated differences in log odds between modes are the same for every 
field. For each study and mode, the total extraction time, including the 
primary and QA reviews, was recorded. The time taken for each field 
was not recorded. The general model for time taken assumes that the 
natural logarithm of the time taken is the following function of the 
mode, complexity score, primary extractor, and QA reviewer. Using the 
same notation as before, the general model is of the form: 

Log(time) = intercept+ αi + βc+ δp + εq +(αβ)ic+ θs + error  

where error is normally distributed with mean zero and is independent 
of the random factors δp, εq, and θs. The interaction term for mode ×
complexity score was not statistically significant, and again it was 
necessary for convergence to replace the random factors for the primary 
and QA reviewer by fixed factors. The primary extractor effect was not 
statistically significant at the 5% level. The final model was of the form: 

Log(time) = itercept+αi + βc+ εq + θs + error  

3. Results 

3.1. Dextr functionality 

The first version of the tool that we evaluated in this study fulfills the 
five design principles outlined at the tool’s inception. Specifically, the 
tool’s set-up feature provides interoperability within the existing DNTP 
workflow where users can upload .ris and .pdf files and export the 
extracted data in two forms, as .csv or .zip files. The .zip format allows 
exported data to be uploaded into brat (an open-source annotation 
software tool; https://brat.nlplab.org/). The ability to export data in a 
structure readable by brat allows users to leverage project data for future 
model development. 

In terms of usability requirements, Dextr enables users to select text 
using their mouse or type a phrase into the extraction form. The default 
extraction form consists of the five extraction fields, all powered by the 
underlying model to provide predictions. Users can customize the data- 
extraction form; however, only the fields on which the model was 
trained are supported by automation. 

We designed the default form and the tool to be able to handle re
lationships between the extraction entities, called “connections.” This 
allows the user to specify a hierarchy between fields (e.g., multiple an
imal models can be defined, each with a species, strain, and sex). The 
animal model and endpoints can then be connected to a test article to 
create a separate experiment within the study, satisfying the third design 
principle related to handling complex, hierarchical data. 

After project set-up, users and team members can begin extracting 
data elements (manually or semi-automatically) via the “My Tasks” 
page. Users then claim available pdfs (i.e., select a given pdf as part of 
the user’s tasks) and access the full-text pdf within the tool to facilitate 
data extraction. The user can highlight the text and associate it with an 
extraction field. Additionally, if the exact text or phrase is not within the 
article itself, the user can type the appropriate text into the extraction 
field. These flexible options for highlighting text to populate the 
extraction form are useful for data extraction within a typical literature- 
assessment workflow, or for a more detailed annotation workflow by 
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generating a dataset that may be used by model developers, thus satis
fying the fourth design principle related to annotations. In both the 
manual or semi-automated workflows, the primary extractor or machine 
predictions are populated in the extraction form before a user accesses 
the study. The user then has the option to accept, ignore, or reject the 
extracted data or add additional data if it is missing within the form. 

The last design requirements, the ability for other models to be easily 
incorporated into the tool and the ability to adapt to new model de
velopments over time, were both addressed in the initial version of Dextr 
but not tested in the evaluation study. 

3.1.1. Usability feedback 
Three of the reviewers were available to participate in a feedback 

discussion of the tool’s usability (two of the semi-automated QA re
viewers and one of the manual QA reviewers). Two reviewers rated the 
usability of Dextr a 5 out of 10, while the other reviewer rated it an 8 out 
of 10. The semi-automated reviewers provided feedback on how the tool 
could be improved related to automatic page navigation and organiza
tion on the user interface. The semi-automated QA reviewers liked how 
the tool organized the extractions and agreed that the tool helped them 
stay organized. Once they were comfortable with the tool, they were 
able to work smoothly and efficiently. Reviewers identified one draw
back regarding how the tool handled endpoints. All three of the re
viewers found it difficult to keep track of endpoints identified by either 
the machine or a primary extractor. It was a challenge to find previously 
reviewed and accepted endpoints as reviewers continued searching for 
new endpoints in the extraction list. This issue was more noticeable 
when multiple, similar endpoints had been identified. They suggested 
that a more organized process for listing and tracking endpoints will 
improve the tool’s usability. 

3.1.2. Statistical models for recall, unstratified by field 
A total of 51 toxicological studies were included in the final dataset. 

The ability of the model to correctly apply the gold-standard tag, or 
modeled overall recall rate, was 97.0% for the manual mode and 91.8% 
for the semi-automated mode. The difference in recall rates for the 
manual mode compared to the semi-automated mode was observed to 
be statistically significant (p < 0.01) (Table 4). These results are com
parable to the arithmetic means of the recall rates across all studies and 
fields, which were 91.8% for the manual mode and 83.8% for the semi- 
automated mode. Table 4 also provides the estimate, standard error, and 
p-value for the difference between the log odds of the two modes. 
Table 5 shows the estimated log odds and recall probabilities as well as 
the very similar arithmetic mean recall rates for each field for the 
manual and semi-automated modes. Note that because there is no 
interaction term for mode × field, the estimated differences in log odds 
between the two modes are the same for every field and equal the values 
in the last row of Table 4. Estimates and standard errors for the fixed 
effects and random effects related to recall are shown in Table S2. 

3.1.3. Statistical models for precision, unstratified by field 
The modeled overall precision rate was 95.4% for the manual mode 

and 96.0% for the semi-automated mode. The precision rate for the 
semi-automated mode was higher, but the difference was not statisti
cally significant (Table 6). These results can be compared with the 
arithmetic means of the precision rates across all studies and fields, 
which were 92.5% for the manual mode and 93.2% for the semi- 
automated mode. Table 6 gives the estimated log odds and precision 
probabilities for the manual and semi-automated modes, weighting each 
field equally, along with their standard errors and p-values. Table 6 also 
provides the estimate, standard error, and p-value for the difference 

Table 5 
Recall comparison between manual and semi-automated modes for each mode and field, averaged over evaluators, based on the model unstratified by field.1.  

Extraction Mode Field Log Odds (Standard Error) P-value of Log Odds Probability (Standard Error) Arithmetic Mean Recall Rate 

Manual Endpoint 1.133 (0.115)  <0.0001 0.756 (0.021)  0.744 
Manual Sex 4.856 (0.726)  <0.0001 0.992 (0.006)  0.980 
Manual Species 5.444 (1.014)  <0.0001 0.996 (0.004)  1.000 
Manual Strain 3.893 (0.477)  <0.0001 0.980 (0.009)  0.980 
Manual Test article 2.091 (0.180)  <0.0001 0.890 (0.018)  0.883 
Semi-automated Endpoint 0.068 (0.106)  0.5259 0.517 (0.027)  0.523 
Semi-automated Sex 3.791 (0.721)  <0.0001 0.978 (0.016)  0.990 
Semi-automated Species 4.379 (1.011)  <0.0001 0.988 (0.012)  0.980 
Semi-automated Strain 2.828 (0.470)  <0.0001 0.944 (0.025)  0.922 
Semi-automated Test article 1.026 (0.168)  <0.0001 0.736 (0.033)  0.773 

3Assumes average study complexity scores (0.175). 

Table 4 
Recall comparison between manual and semi-automated modes when averaged across fields and extractors, based on the model unstratified by field.3  

Extraction Mode Log Odds (Standard Error) P-value of Log Odds Probability (Standard Error) Arithmetic Mean Recall Rate 

Manual 3.483 (0.287)  <0.0001 0.970 (0.008)  0.918 
Semi-automated1 2.418 (0.278)  <0.0001 0.918 (0.021)  0.838 
Comparison2 − 1.065 (0.109)  <0.0001 –  –  

1 Dextr predictions confirmed by QA reviewer. 
2 Comparison between manual and semi-automated extraction modes. 
3 Assumes average study complexity scores (0.175). 

Table 6 
Precision comparison between manual and semi-automated modes when averaged across fields and extractors, based on the model unstratified by field.3  

Extraction Mode Log Odds (Standard Error) P-value of Log Odds Probability (Standard Error) Arithmetic Mean Precision Rate 

Manual 3.040 (0.281)  <0.0001 0.954 (0.012)  0.925 
Semi-automated1 3.174 (0.287)  <0.0001 0.960 (0.011)  0.932 
Comparison2 0.134 (0.151)  0.3765 –  –  

1 Dextr predictions confirmed by QA reviewer. 
2 Comparison between manual and semi-automated extraction modes. 
3 Assumes average study complexity scores (0.175). 
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between the log odds of the two modes. Table 7 shows the estimated log 
odds and precision probabilities as well as the very similar arithmetic 
mean precision rates for each field for the manual and semi-automated 
modes. Note that because there is no interaction term for mode × field in 
the final model, the estimated differences in log odds between the two 
modes are the same for every field and equal the values in the last row of 
Table 6. Estimates and standard errors for the fixed effects and random 
effects related to precision are shown in Table S3. 

3.1.4. Statistical models for time 
The modeled median time was 933 s for the manual mode and 436 s 

for the semi-automated mode. The median time, which is the expo
nentiated mean log(time), was significantly lower for the semi- 
automated mode (p < 0.01). These results can be compared with the 
arithmetic means of the time across all studies: 971 s for the manual 
mode and 517 s for the semi-automated mode (Table 8). For each mode, 
Table 8 gives the estimated means for log(time), the standard errors of 
the means, and the estimated medians for time. For this model, the 
median time is the same as the geometric mean time. Table 8 also pro
vides the estimate, standard error, and p-value for the difference be
tween the mean log(time) for the two modes. Estimates and standard 
errors for the fixed effects and random effects related to total time are 
shown in Table S4. 

4. Discussion 

Data extraction is a time- and resource-intensive step in the 
literature-assessment process. Machine-learning methods for auto
mating data extraction have been explored to address this challenge; 
however, the use of machine learning for data extraction has been 
limited to date, particularly in the field of environmental health sci
ences. Development and uptake of advanced approaches for extraction 
lag behind other steps in the review process such as literature screening, 
where automated screening tools have been established and used more 
widely. In this paper, we introduced Dextr, a web-based data-extraction 
tool that pairs machine-learning models that automatically predict data- 
extraction entities with a user interface that enables manual verification 
of extracted information (i.e., a semi-automated method). This powerful 
tool does more than provide a convenient user interface for extracting 
data; the tool’s extraction scheme supports complex data extraction 
from full-text scientific articles with methods to capture data entities as 

well as connections between entities. With this advanced approach, 
Dextr supports hierarchical data extraction by allowing users to identify 
relationships (e.g., the connections between species, strain, sex, expo
sure, and endpoints) necessary for efficient data collection and synthesis 
in literature reviews. When evaluated relative to manual data extraction 
of environmental health science articles, Dextr’s semi-automated 
extraction performed well, resulting in time savings and comparable 
performance in both recall and precision. 

O’Connor et al. (2019) provides a framework to describe the degree 
of independence or “levels of automation” across tools and discusses 
potential barriers to adoption of automation for use in literature re
views. The degree of automation can range from tools that improve file 
management (Level 1), tools that leverage algorithms to assist with 
reference prioritization (Level 2), tools that perform a task automatically 
but require human supervision to approve the tool’s decision resulting in 
a semi-automated workflow (Level 3), and tools that perform a task 
automatically without human oversight (Level 4). In developing Dextr, 
we intentionally chose to develop a Level 3 tool because we wanted a 
workflow that would allow expert judgment in a manual verification 
step to provide users the flexibility to accommodate entities where 
existing models may have an error rate that is too high to achieve the 
necessary performance. The decision to develop a semi-automated tool 
also addresses limited uptake of automation tools (van Altena et al. 
2019) and expected barriers to adoption (O’Connor et al. 2019) of 
automation within the systematic-review community (e.g., providing a 
user verification option to address mistrust by an end-user of the auto
mation tool, supporting transparency to demonstrate ability of the tool 
to perform the task, and providing a verification step similar to manual 
QA to lessen potential disruption of adding automation to current 
workflows). The work presented in this paper supports widespread 
adoption of a semi-automated data extraction approach because Dextr 
has been tested on complex study designs, in an existing workflow, and 
provides the user the ability to confirm the machine-predicted values, 
thereby increasing transparency and demonstrating compatibility with 
current practices. 

While systematic reviews, scoping reviews, and systematic evidence 
maps have different formats and goals, all literature-based assessments 
are used to inform evidence-based decisions. Therefore, the testing of 
new procedures and automated approaches is essential to assess both the 
impact on workflow and the accuracy of the results. Given that Dextr 
was developed to address the time-intensive step of data extraction, its 

Table 7 
Precision comparison between manual and semi-automated modes for each mode and field, averaged over evaluators, based on the model unstratified by field.1  

Extraction Mode Field Log Odds (Standard Error) P-value of Log Odds Probability (Standard Error) Arithmetic Mean Precision Rate 

Manual Endpoint 1.460 (0.152)  <0.0001 0.812 (0.023)  0.794 
Manual Sex 5.073 (1.021)  <0.0001 0.994 (0.006)  0.980 
Manual Species 3.366 (0.494)  <0.0001 0.967 (0.016)  0.990 
Manual Strain 3.330 (0.490)  <0.0001 0.965 (0.016)  0.978 
Manual Test article 1.972 (0.224)  <0.0001 0.878 (0.024)  0.883 
Semi-automated Endpoint 1.594 (0.168)  <0.0001 0.831 (0.024)  0.818 
Semi-automated Sex 5.207 (1.022)  <0.0001 0.995 (0.006)  1.000 
Semi-automated Species 3.500 (0.496)  <0.0001 0.971 (0.014)  0.967 
Semi-automated Strain 3.464 (0.492)  <0.0001 0.970 (0.014)  0.940 
Semi-automated Test article 2.106 (0.236)  <0.0001 0.891 (0.023)  0.934 

3Assumes average study complexity scores (0.175). 

Table 8 
Comparison of predicted mean logarithm and median for total time (seconds) between manual and semi-automated modes, averaged over evaluators3.  

Extraction Mode Mean Log Time Modeled (Standard Error) P-value of Mean Log Time (Modeled) Median Time (Modeled) Arithmetic Mean Time 

Manual 6.838 (0.058)  <0.0001 933 971 
Semi-automated1 6.079 (0.059)  <0.0001 436 517 
Comparison2 − 0.760 (0.071)  <0.0001 – – 

1Dextr predictions confirmed by QA reviewer. 
2Comparison between manual and semi-automated extraction modes. 
3Assumes average study complexity scores (0.175). 
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performance was evaluated in terms of recall, precision, and extraction 
time. Although the precision rates for the manual mode and semi- 
automated modes were similar, we found an unexpected and 
intriguing statistically significant reduction in the recall rate (arithmetic 
mean recall rate 0.918 for manual and 0.834 for semi-automated). 
Recall reflects the ability of the data-extraction approach to identify 
all relevant instances of an entity, and although 84% recall is good, we 
explored potential reasons for this decrease. While the recall for “sex,” 
“species,” and “strain” were comparable, the semi-automated recall rate 
was lower for the “endpoint” and “test article” fields. We hypothesize 
that the large number of endpoints predicted by Dextr may have been 
difficult or distracting for the user to sort through compared to manual 
identification. This is supported by feedback from the reviewer-usability 
questions and is a target for refining the user interface in future versions 
of Dextr to avoid this potential distraction by adding search function
ality to provide a list of predicted endpoints to help extractors system
atically sort through potential endpoints. The differences in recall by 
field (see Table 5) are also correlated with the recall rates achieved by 
the model on the TAC SRIE dataset (Nowak and Kunstman 2018). The 
fields were chosen purposefully to observe the impact of the model 
performance on the results. While the differences reflect the relative 
difficulty of the fields, we believe that model improvements will lead to 
closing the gap between the manual and semi-automated approaches. In 
terms of time, Dextr added clear efficiencies to our workflow, providing 
an approximately 50% reduction (53% lower predicted median time and 
47% lower average time) in the time required for data extraction. This 
finding indicates that Dextr has the potential to provide similar recall 
and precision with substantial time-savings and reduced manual work
load for data extraction by integrating semi-automated extraction and 
QA in a single step and replacing the conventional 2-step data-extraction 
process (a manual extractor and a manual QC check). 

Although primarily developed as a tool to improve data-extraction 
workflow for literature-based reviews, Dextr can also be used to anno
tate published studies and produce training datasets for future model 
development. Using the tool as part of a literature review, Dextr captures 
token level annotations during the data-extraction workflow; these an
notations are part of a machine-readable export that can potentially 
support model development and refinement. This feature provides an 
alternative to the current option of a dedicated workflow (i.e., outside of 
a normal literature review) required to generate training datasets and 
offers a reduction in cost for developing them. However, the annotations 
captured on each study during a literature review may have some lim
itations as the topic of the review could direct the extractors towards 
endpoints of interest rather than capturing all exposures or endpoints in 
a study. The lack of applicable datasets is a major impediment to model 
development for literature reviews (Jonnalagadda et al. 2015), and 
Dextr provides the potential for important advances to the field. 

There are several limitations in the evaluation of Dextr that should be 
noted. First, we only used a single dataset to test performance. The 
dataset used to evaluate the tool focused on identifying and extracting 
respiratory health outcomes only. In contrast, the endpoint entity al
gorithm was not trained with this specification, and the model predicted 
all potential health outcomes (or endpoints) in each reference and not 
the respiratory subset. As noted earlier, the extractors noted in responses 
to reviewer-feedback questions that non-target endpoints identified by 
Dextr were a distraction. This limitation could have contributed to the 
lower recall rate observed because all non-respiratory endpoints had to 
be reviewed to identify relevant respiratory endpoints. Second, there are 
limitations associated with the models used, even though the models 
were not evaluated for this paper. The models currently in Dextr were 
developed and trained only on the methods section of environmental 
health animal studies. For this reason, the tool automatically identified 
and used only the methods section. However, detailed data extraction 
requires the full text of a reference because entities are commonly 
identified in the abstract, methods, and results sections. Similarly, in
formation on some endpoints may be available only in tables, which 

Dextr currently does not process. Third, we evaluated the key perfor
mance features of Dextr (recall, precision, and time); however, we 
acknowledge that other aspects of the tool were beyond the scope of this 
project and were not tested. For example, the ability of users to establish 
connections was not directly tested nor a focus for user feedback. Last, 
this project was intended to develop a user interface designed to 
incorporate NLP data-extraction models. Evaluation and potential 
improvement of the models used were outside the scope of the work 
described in this paper. Therefore, it is likely that our evaluation metrics 
(e.g., recall of the endpoints field) will improve in conjunction with 
focused efforts to address model improvements. 

Dextr was developed to add automation and machine-learning 
functions to the data-extraction step in DNTP’s literature-based assess
ment workflow. Although developed to address a DNTP need, we believe 
it is important that the new tool be available to others in the research 
community and be stable (i.e., have technical support) over 2–5 years. 
We are in the process of obtaining Federal Risk and Authorization 
Management Program (FedRAMP) authorization for the cloud deploy
ment of Dextr, which will be available at (https://ntp.niehs.nih.gov 
/go/Dextr) when completed. The current version of Dextr (v1.0-beta1) 
provides a solid foundation for us to continue to refine and incorporate 
new features that improve workflow and enable faster and more effec
tive data extraction. Although this publication is paired with the initial 
release of the tool, we are already working to expand functionality of 
Dextr, with planned improvements to the user interface, use of 
controlled vocabularies, and additional data-extraction entities. Testing 
the tool for data extraction on more diverse datasets is also underway. 
We are also working to identify existing models and develop new models 
that can be integrated into Dextr to expand the data-extraction capa
bilities to other evidence streams (e.g., epidemiological and in vitro 
studies). Other potential targets include the ability to extract more 
detailed entities (e.g., results, standard error, confidence interval) and 
information from tables, figures, and captions of scientific literature. As 
new features are developed, the design requirements of usability, flex
ibility, and interoperability will be periodically re-evaluated. 

As described in the key design requirements, we considered it critical 
for Dextr to: 1) make data-extraction predictions automatically with 
user verification; 2) integrate token-level annotations in the data- 
extraction workflow; and 3) connect extracted entities to support hier
archical data extraction. This third feature, the connection of data en
tities, is helpful for efficient data collection and essential to enable 
effective synthesis in literature reviews. Controlled vocabularies and 
ontologies provide a hierarchical structure of terms to define conceptual 
classes and relations needed for knowledge representation for a given 
domain. Controlled vocabularies provide semantics and terminology to 
normalize author-reported information and support a conceptual 
framework when evaluating results (de Almeida Biolchini et al. 2007). 
Efforts are ongoing to develop field structures in Dextr compatible with 
integrating ontologies and controlled vocabularies. These efforts include 
the capability of selecting an ontology or vocabulary at the entity level 
with the ability to select multiple vocabularies when setting up the data- 
extraction form in Dextr. We are also exploring the ability of an ontology 
to support data extraction for specific domains or questions based on the 
sorting, aggregating, and association context of terms in the ontology (i. 
e., identifying only cardiovascular endpoints from a search of environ
mental exposure references). 

5. Conclusions 

Dextr is a semi-automated data extraction tool that has been trans
parently evaluated and shown to improve data extraction by substan
tially reducing the time required to conduct this step in supporting 
environmental health sciences literature-based assessments. Unlike 
other data extraction tools, Dextr provides the ability to extract complex 
concepts (e.g., multiple experiments with various exposures and doses 
within a single study) and properly connect or group the extracted 
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elements within a study. Furthermore, Dextr limits the work required by 
researchers to generate training data by incorporating machine-readable 
annotation exports that are collected as part of the data-extraction 
workflow within the tool. Dextr was designed to address challenges 
associated with environmental health sciences literature; however, we 
are confident that the features and capabilities within the tool are 
applicable to other fields and would improve the data-extraction process 
for other domains as well. 
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