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Abstract. In this paper, a network model has been proposed to control

dengue disease transmission considering host-vector dynamics in n patches.
The control of mosquitoes is performed by SIT. In SIT, the male insects are

sterilized in the laboratory and released into the environment to control the
number of offsprings. The basic reproduction number has been computed. The

existence and stability of various states have been discussed. The bifurcation

diagram has been plotted to show the existence and stability regions of disease-
free and endemic states for an isolated patch. The critical level of sterile male

mosquitoes has been obtained for the control of disease. The basic reproduc-

tion number for n patch network model has been computed. It is evident from
numerical simulations that SIT control in one patch may control the disease in

the network having two/three patches with suitable coupling among them.

1. Introduction. Dengue is a vector-borne disease spread by the female mos-
quitoes Aedes aegypti and Aedes albopictus. The mosquitoes Aedes aegypti were
originated from Africa but have now been spread in tropical, subtropical and tem-
perate regions of the world. The fast growth in human population, uncontrolled
urbanization and inadequate waste management systems have led to abundance
of mosquito breeding sites [6]. These are the main causes which bring this global
distribution of mosquitoes and consequently spread of the mosquito-borne diseases.
Before 1970, dengue was reported from only nine countries, now it has been wide-
spread in the areas of North America, South America, Africa and Southeast Asia
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[7]. It is important to control dengue disease as more than 50 million people are
affected every year [27]. Interestingly, only the female mosquitoes can transmit the
virus. The female mosquitoes bite the human as they require blood for reproduction
process. On biting the dengue infected person, these female mosquitoes become in-
fected and can transmit the dengue virus to another person [7]. One of the ways
to control dengue infection is to control mosquito population. Mosquito population
can be chemically controlled by the use of insecticides and / or biological controlled
by wolbochia [9, 18, 26]. The human awareness campaigns can also reduce the
spread of infection.

One of the efficient ways to combat the infection is the use of sterile insect tech-
nique (SIT). In SIT, sterile male mosquitoes are released near the mosquito breeding
sites. Female mosquitoes will not be able to fertilize when mating with these male
mosquitoes. In this way, the mosquito population as well as the spread of infec-
tion is controlled. The idea of SIT was first conceived by American entomologist,
Dr Edward F. Knipling and was successfully implemented to control the spread of
screwworm fly in Florida [14]. After that, the SIT technique has been used for
many flying insects by various countries [15, 16]. To eradicate dengue infection, the
government of China and Brazil have also released the sterile male mosquitoes to
combat the dengue infection [10, 11].

In literature, some mathematical models on control of vector-borne diseases are
available [1, 2, 3, 4, 9, 13, 18, 19, 20, 21, 23, 25]. Few mathematical models have
also been formulated to control dengue infection by SIT [3, 4, 25]. In particular,
Esteva and Yang proposed a mathematical model to control the mosquito density by
releasing sterile male mosquitoes [3]. Optimal control analysis to control the Aedes
aegypti female mosquitoes by SIT strategy has been performed by Thomé, Yang and
Esteva [25]. A pulsed spatial discrete time model using SIT method has also been
proposed by Evans and Bishop [4]. They concluded that increased number of sterile
will have no further benefit above a threshold. The effectiveness is highly reduced by
density dependent mortality of sterile insects. Hendron and Bonsall have developed
the n patch dengue model with two control strategies namely vaccination and vector
control by SIT method. The dynamics of two serotypes of dengue viruses with
effect of cross immunity and antibody-dependent enhancement have been considered
without explicitly incorporating the male/female vector (mosquito) dynamics [8].

In this paper, a host-vector model has been proposed to control the primary
dengue transmission using SIT strategy. In SIT, the male mosquitoes (Aedes a-
egypti) are sterilized in the laboratory and are released into the environment to
compete with wild male mosquitoes for mating with female mosquitoes. In section
2, a network model for n patches has been formulated. The model analysis of an
isolated patch is carried out in section 3. In section 4, the model analysis for n patch
network model has been carried out to explore the behavior of system. Conclusions
are given in the last section.

2. Formulation of host-vector model. Consider A be the class of mosquitoes in
aquatic stage (eggs, larvae or pupae). Let U1 and U2 be the normal male mosquitoes
and sterile male mosquitoes population respectively. Let the female mosquitoes are
divided in four compartments: F 1, F 2, F 3 and F 4. The unmated and uninfect-
ed mosquitoes are in F 1 compartment. Let F 2 be the class of fertilized female
mosquitoes and are uninfected. The female mosquitoes (F 3) mated with sterile
male mosquitoes are unfertilized and will not reproduce. The fertilized female



A NETWORK MODEL FOR CONTROL OF DENGUE EPIDEMIC 443

Figure 1. The transfer diagram representing the system (1)-(11)
dynamics. The births, deaths and migration are not included.

mosquitoes need multiple blood meals to complete the reproduction cycle. The fer-
tilized female mosquitoes who bite infected individuals become infected and transfer
to F 4 class and play crucial role in the spread of dengue infection. The remaining
female fertilized mosquitoes bite susceptible/exposed/recovered human population
before laying eggs and remain uninfected. No separate class is considered for them.
As such both female mosquitoes F 2 and F 4 contribute to aquatic stage. Let the
susceptible (S), exposed (E), infected (I) and recovered (R) be the host population
in the four compartments. Consider the SEIR dynamics in the host population in-
teracting with susceptible female mosquitoes F 2 and infected female mosquitoes F 4.
The model also incorporates the interstate transition between different classes of
male and female mosquitoes. No vertical transmission has been assumed for vector
dynamics. Let there be a network of n patches. The host-vector dynamics in each
patch is shown in the schematic diagram in Figure 1. Let the subscript i represents
the respective variable/parameter in the ith patch; i=1,...n. The human migration
is considered between patches while no interpatch migration between mosquitoes is
considered. The superscripts S, E, I and R are used to incorporate the differential
ability of migration in various compartments (e.g. mS

ij represents migration in sus-
ceptible compartment). The following n patch metapopulation model is formulated
according to the schematic diagram, Figure 1.

dSi
dt

= ωi − β1
i SiF

4
i − µiSi +

n∑
j=1,j 6=i

mS
ijSj −

n∑
j=1,j 6=i

mS
jiSi (1)

dEi
dt

= β1
i SiF

4
i − (ki + µi)Ei +

n∑
j=1,j 6=i

mE
ijEj −

n∑
j=1,j 6=i

mE
jiEi (2)
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dIi
dt

= kiEi − (αi + µi)Ii +

n∑
j=1,j 6=i

mI
ijIj −

n∑
j=1,j 6=i

mI
jiIi (3)

dRi
dt

= αiIi − µiRi +

n∑
j=1,j 6=i

mR
ijRj −

n∑
j=1,j 6=i

mR
jiRi (4)

dAi
dt

= φi(1−
Ai
Ci

)(F 2
i + F 4

i )− (γi + di)Ai (5)

dF 1
i

dt
= piγiAi −

β2
i F

1
i U

1
i

U1
i + U2

i

− β2
i F

1
i U

2
i

U1
i + U2

i

− d1iF 1
i (6)

dF 2
i

dt
=

β2
i F

1
i U

1
i

U1
i + U2

i

− β3
i IiF

2
i − d1iF 2

i (7)

dF 3
i

dt
=

β2
i F

1
i U

2
i

U1
i + U2

i

− d1iF 3
i (8)

dF 4
i

dt
= β3

i IiF
2
i − d1iF 4

i (9)

dU1
i

dt
= (1− pi)γiAi − d1iU1

i (10)

dU2
i

dt
= ω1

i − d1iU2
i (11)

All model parameters are defined in Table 1 and are assumed to be non-negative.
The initial conditions associated with the above system are:

Si(0) ≥ 0, Ei(0) ≥ 0, Ii(0) ≥ 0, Ri(0) ≥ 0, 0 ≤ Ai(0) ≤ Ci, F 1
i (0) ≥ 0, F 2

i (0) ≥
0, F 3

i (0) ≥ 0, F 4
i (0) ≥ 0, U1

i (0) ≥ 0, U2
i (0) ≥ 0

Table 1. Parameters of the Model

Parameters Description of parameters

α Human recovery rate
β1 Transmission rate of infection from female mosquitoes to human
β2 Mosquitoes mating rate
β3 Transmission rate of infection from human to female mosquito
γ Transition rate from aquatic stage to adult mosquito
µ Natural death rate of human
ω Birth rate of human
ω1 Constant recruitment rate of sterile male mosquito
φ Recruitment rate for aquatic mosquito
C Carrying capacity for aquatic/adult mosquito
d Natural death rate of mosquito at aquatic state
d1 Natural death rate of mosquito
k Rate at which exposed human become infectious
mij Migration rate from patch j to patch i
p Proportion of female mosquito

In the next section, the dynamics of the model (1)-(11) is discussed for an isolated
patch (i.e mS

ij = mE
ij = mI

ij = mR
ij = 0).
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3. Model analysis for an isolated patch. In absence of interpatch migration,
the patches are decoupled and isolated. The dynamics of each isolated patch is
given below where the subscript i is suppressed:

dS

dt
= ω − β1SF 4 − µS (12)

dE

dt
= β1SF 4 − kE − µE (13)

dI

dt
= kE − αI − µI (14)

dR

dt
= αI − µR (15)

dA

dt
= φ(1− A

C
)(F 2 + F 4)− (γ + d)A (16)

dF 1

dt
= pγA− β2F 1U1

U1 + U2
− β2F 1U2

U1 + U2
− d1F 1 (17)

dF 2

dt
=

β2F 1U1

U1 + U2
− β3IF 2 − d1F 2 (18)

dF 3

dt
=

β2F 1U2

U1 + U2
− d1F 3 (19)

dF 4

dt
= β3IF 2 − d1F 4 (20)

dU1

dt
= (1− p)γA− d1U1 (21)

dU2

dt
= ω1 − d1U2 (22)

Let X(t) = (S(t), E(t), I(t), R(t), A(t), F 1(t), F 2(t), F 3(t), F 4(t), U1(t), U2(t))ᵀ ∈
R11

+ . The system (12)-(22) with non-zero initial conditions can be written in the
following form:

dX

dt
= Q(X(t), t), X(0) = X0 ≥ 0 (23)

Q(X(t), t) = (Q1(X, t), Q2(X, t), Q3(X, t)...., Q11(X, t))ᵀ

3.1. Positivity and boundedness of the solution.

Proposition 1. The positive cone Int(R11
+ ) is invariant for the system (23).

Proof. Observe that the boundaries of non-negative cone R11
+ are invariant for the

system (23) and Q(X(t), t) is smooth enough. Applying the existence and unique-
ness theorem [22] for differential equations, the system (23) will possess the positive
solution.

Proposition 2. Solutions of system (12)-(22) are bounded in the domain

Ω= {(S,E, I,R,A, F 1, F 2, F 3, F 4, U1, U2) ∈ R11
+ | S + E + I +R ≤ ω

µ
,

A(t) ≤ C,F 1 + F 2 + F 3 + F 4 + U1 + U2 ≤ ω1 + γC

d1
}.
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Proof. Let N(t) = S(t) +E(t) + I(t) +R(t) be the total host population at time t.
Adding corresponding equations for host dynamics gives

dN

dt
= ω − µN =⇒ lim sup

t→∞
N(t) ≤ ω

µ
.

For vector dynamics, it is clear that A(t) ≤ C ∀ t. Let us prove it by contradiction.
Let t0 be the smallest value of t such that A(t0) = C. Assume A(t) ≤ C for

t ∈ [0, t0) and A(t) > C, for t ∈ (t0, T ) where, T < ∞. Accordingly, ˙A(t) > 0 for

t ∈ (0, t0) and ˙A(t) < 0 for t ∈ [t0, T ) from (16). By mean value theorem ˙A(t) > 0
for t ∈ [t0, T ) which is contradiction.

Let M(t)=F 1 + F 2 + F 3 + F 4 + U1 + U2, now adding equations from (17)-(22)
gives

dM

dt
= ω1 + γA(t)− d1(F 1(t) + F 2(t) + F 3(t) + F 4(t) + U1(t) + U2(t))

dM

dt
≤ ω1 + γC − d1M(t)

=⇒ lim supt→∞M(t) ≤ ω1 + γC

d1
.

Therefore, the system (23) is bounded.

3.2. Equilibrium states. The equilibrium states for the system (12)-(22) are ob-
tained by solving

Q(X(t), t) = 0.

The trivial disease-free state P̆1 always exists and it is given as

S̆ =
ω

µ
, Ŭ2 =

ω1

d1
, Ĕ = 0, Ĭ = 0, R̆ = 0,

Ă = 0, F̆ 1 = 0, F̆ 2 = 0, F̆ 3 = 0, F̆ 4 = 0, Ŭ1 = 0.

Note that, this state is without native mosquitoes. Only the susceptible human and
sterile male mosquitoes survive.

Let us define the non-dimensional number T , the basic offspring number, as

T =
β2φpγ

(β2 + d1)d1(γ + d)
. (24)

It represents the average number of secondary female mosquitoes produced by single
female mosquito, Esteva and Yang [3]. To maintain the mosquito population in
environment, T should be greater than 1. The existence of another non-trivial
disease-free equilibrium state is established for T > 1.

Proposition 3. The system admits two non-trivial disease-free states P+
2 and P−2

when

T > 1 and ω1 < W (=
(T − 1)2Cγ(1− p)

4T
). (25)

Proof. Let us denote P±2 =(S̄, Ē, Ī, R̄, Ā, F̄ 1, F̄ 2, F̄ 3, F̄ 4, Ū1, Ū2). For the disease-
free state of the system (12)-(22), substituting I = 0 gives

S̄ =
ω

µ
, Ē = 0, R̄ = 0, F̄ 4 = 0 and Ū2 =

ω1

d1
. (26)
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The other state variables F̄ 1, F̄ 2, F̄ 3 and Ū1 at equilibrium level are obtained in
terms of Ā:

F̄ 1 =
pĀγ

(β2 + d1)
, F̄ 2 =

β2pĀγŪ1

(Ū1 + Ū2)(β2 + d1)d1
, (27)

F̄ 3 =
β2pĀγŪ2

d1(β2 + d1)(Ū1 + Ū2)
, Ū1 =

Āγ(1− p)
d1

Ā is the root of following quadratic polynomial:

s(Ā) = B1Ā
2 +B2Ā+B3 = 0

B1 =
β2pφγ

(β2 + d1)(γ + d)d1C
,B2 = − β2φpγ

(β2 + d1)d1(γ + d)
+ 1, B3 =

ω1

γ(1− p)

By writing the quadratic s(Ā) in terms of T gives

s(Ā) =
T

C
Ā2 − (T − 1)Ā+

ω1

γ(1− p)
= 0. (28)

Since p < 1, no positive root of equation (28) is admissible for T ≤ 1. Clearly, the
quadratic has real positive roots when the condition (25) is satisfied. The roots are
given as

Ā± =
(T − 1)C

2T
(1±

√
1− ω1

W
); W =

(T − 1)2Cγ(1− p)
4T

. (29)

Accordingly, there exists two non-trivial disease-free equilibrium states P−2 and P+
2

corresponding to Ā− and Ā+ respectively under condition (25).

These two roots Ā− and Ā+ collapse at ω1 = W . This gives a critical value
T = T ∗ where the quadratic has the unique solution:

(Ā =)Ā∗ =
(T ∗ − 1)C

2T ∗
(30)

T ∗ = (1 +
2ω1

Cγ(1− p)
)[1 +

√√√√√(1− 1

(1 +
2ω1

Cγ(1− p)
)2

)] > 1 (31)

Therefore, the unique non-trivial disease-free equilibrium point P ∗2 exists at T = T ∗.

Let us denote the endemic states by P±3 (Ŝ, Ê, Î, R̂, Â, F̂ 1, F̂ 2, F̂ 3, F̂ 4, Û1, Û2).
Now, the conditions for the existence of the endemic states P±3 are explored. The
equilibrium level of state variables are obtained as

Ŝ =
ω

(β1F̂ 4 + µ)
, Ê =

β1ŜF̂ 4

(k + µ)
, Î =

β1kŜF̂ 4

(k + µ)(α+ µ)
, R̂ =

αÎ

µ
, F̂ 1 =

pγÂ

(β2 + d1)
,

F̂ 2 =
((γ + d)ÂCβ1 + µφ(C − Â))d1(k + µ)(α+ µ)

φ(C − Â)(β1β3kω + β1d1(k + µ)(α+ µ))
, F̂ 3 =

β2pγÂω1

d1(β2 + d1)(Û1 + Û2)
,

F̂ 4 =
β1β3kωF̂ 2 − µd1(α+ µ)(k + µ)

β1d1(α+ µ)(k + µ)
, Û1 =

(1− p)γÂ
d1

, Û2 =
ω1

d1
.

Here, Â is the root of same quadratic polynomial s(Â) = 0 as given in (28). Ac-
cordingly, the condition (25) is necessary for the existence of both the non-trivial

disease-free states P±2 as well as the endemic states P±3 . Another condition F̂ 4 > 0
is required for existence of P±3 states.



448 A. MISHRA, B. AMBROSIO, S. GAKKHAR AND M. A. AZIZ-ALAOUI

Remark 1. It is to be noted that for the non-trivial disease-free states P±2 and
endemic states P±3 , the equilibrium densities of following variables are found to be
the same:

Ā = Â, F̄ 1 = F̂ 1, Ū1 = Û1, Ū2 = Û2

Remark 2. Simplifying the expression for F̂ 2 gives

F̂2 =
β2γpÂÛ1

(Û1 + Û2)(β2 + d1)(β3Î + d1)
.

Comparing it with F̄2 yields,

F̄ 2 > F̂ 2 (32)

Let us define

R+
0 =

β1β3kωF̄ 2+

µd1(α+ µ)(k + µ)
and R−0 =

β1β3kωF̄ 2−

µd1(α+ µ)(k + µ)
. (33)

Further, for positive F̂ 4
+

and F̂ 4
−

, the following conditions should be satisfied:

β1β3kωF̂ 2+

µd1(α+ µ)(k + µ)
> 1 and

β1β3kωF̂ 2−

µd1(α+ µ)(k + µ)
> 1 (34)

Using (32) gives the conditions for the existence of the endemic states P±3 .

R+
0 > 1 and R−0 > 1 (35)

Remark 3. It can be seen from (29) that Ā+ > Ā−. Similarly, it can be easily
proved that F̄ 2+ > F̄ 2−. Accordingly, it can be concluded that:

R+
0 > R−0

Let us define R0 as

R0 = max(R+
0 , R

−
0 )(> 1). (36)

Accordingly, the following proposition is established for the existence of endemic
states P±3 :

Proposition 4. When condition (25) is satisfied, the two positive endemic equilib-
rium states P−3 and P+

3 will exist provided the equation (36) is satisfied.

Consider the following choice of parameters [3]:

d = 0.05, d1 = 0.0714, p = 0.5, γ = 0.075

The existence of P±2 and P±3 states depend on the T and W . The parameters β2

and φ are considered to be critical for their existence. The curve T = 1 in Figure 2
divides the β2 − φ plane into two regions. On the right of this curve (T > 1) both
the equilibrium states P±2 and P±3 may exist depending on the other conditions.
In particular, the states P±2 and P±3 will not exist on the left of the curve T = 1
(T < 1).

3.3. The basic reproduction number. The basic reproduction number has been
computed by next generation approach [12]. It is defined as the average number of
secondary infections produced by single infected individual in susceptible popula-
tion. Using the Remark 3, it is given as

R0 =
β1β3kωF̄ 2+

(α+ µ)d1µ(µ+ k)
. (37)
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Figure 2. The existence of the state P2 with respect to parameters
β2 and φ.

3.4. Stability of trivial disease-free state (P1). For local stability, the Jacobian
matrix J [P ] of the system (12)-(22) about a state P is given as:

−β1F4 − µ 0 0 0 0 0 0 0 −β1S 0 0

β1F4 −k − µ 0 0 0 0 0 0 β1S 0 0
0 k −α− µ 0 0 0 0 0 0 0 0
0 0 α −µ 0 0 0 0 0 0 0
0 0 0 0 j5,5 0 j5,7 0 j5,9 0 0

0 0 0 0 pγ −β2 − d1 0 0 0 0 0

0 0 −β3F2 0 0 j7,6 −d1 − β3I 0 0 j7,10 j7,11
0 0 0 0 0 j8,6 0 −d1 0 j8,10 j8,11
0 0 β3F2 0 0 0 β3I 0 −d1 0 0

0 0 0 0 (1 − p)γ 0 0 0 0 −d1 0

0 0 0 0 0 0 0 0 0 0 −d1


j5,5 = −γ − d+ −φ

C (F 2 + F 4), j7,6 = β2U1

U1+U2 , j7,10 = β2F 1U2

(U1+U2)2 ,

j7,11 = −β2F 1U1

(U1+U2)2 , j8,6 = β2U2

(U1+U2) , j8,10 = −j7,10, j8,11 = −j7,11
j5,7 = φ(1− A

C ) = j5,9

The eleven eigenvalues of the Jacobian matrix about the trivial disease-free state
P1 are obtained as

−α− µ, −µ(multiplicity 2), −β2 − d1, −d1(multiplicity 5), −µ− k, −γ − d1.

Since all the eigenvalues have negative real part, the state P1 will always be locally
asymptotically stable.

Proposition 5. The locally asymptotically stable trivial disease-free state P1 is also
globally stable for

T < 1. (38)

Proof. Consider the positive definite function L(A,F 1, F 2, F 4) for arbitrarily chosen
positive constants C1, C2, C3 and C4:

L(A,F 1, F 2, F 3, F 4) = C1A+ C2F
1 + C3F

2 + C4F
4
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Computing its time derivative L̇(A,F 1, F 2, F 4) along the trajectories of system
(12)-(22),

L̇(A,F 1, F 2, F 4) =C1Ȧ+ C2Ḟ
1 + C3Ḟ

2 + C4Ḟ
4

L̇(A,F 1, F 2, F 4) =C1(φ(1− A

C
)(F 2 + F 4)− (γ + d)A) + C2(pγA− β2F 1 − d1F 1)

+C3(
β2F 1U1

(U1 + U2)
− β3IF 2 − d1F 2) + C4(β3IF 2 − d1F 4)

L̇(A,F 1, F 2, F 4) ≤− F 2(C3d
1 − C1φ)− F 4(C4d

1 − C1φ)−A(C1(γ + d)− C2pγ)

− F 1(C2(β2 + d1)− C3β
2)

For the derivative of the function L(A,F 1, F 2, F 4) to be negative definite

d1C3 > φC1; d1C4 > φC1; (γ + d)C1 > pγC2; (β2 + d1)C2 > β2C3

or

C3

C1
>

φ

d1
,
C4

C1
>

φ

d1
,
C1

C2
>

pγ

(γ + d)
,
C2

C3
>

β2
(β2 + d1)

Now, choosing C3=C4=1 and using above inequalities give

β2φpγ

(β2 + d1)d1(γ + d)
(= T ) < 1.

Accordingly, the function L(A,F 1, F 2, F 4) is a Lyapunov function for the condition

(38). Since {P1} is the largest invariant set that contains the subset in which L̇ = 0
for A = 0, F 1 = 0, F 2 = 0, F 4 = 0. By applying LaSalle’s invariance principle [17],
locally asymptotically stable disease-free state P1 is also globally asymptotically
stable under (38).

3.5. Local stability of non-trivial disease-free states (P±2 ).

Proposition 6. For the local stability of non-trivial disease-free states P±2 , the
following conditions should be satisfied:

R0(=
β1β3F̄2

+
kω

(α+ µ)µd1(µ+ k)
) < 1 (39)

and

k(Ā)(= D4) =
TĀ2

C
− ω1

γ(1− p)
> 0 (40)

Proof. For the local stability of P±2 states, the 11 eigenvalues of Jacobian matrix
of the system (12)-(22) about the states P±2 are given as:−µ (multiplicity 2), -d1

(multiplicity 2) and the remaining eigenvalues are the roots of cubic polynomial
(q3(λ)) and fourth degree polynomial (q4(λ)), given as

q3(λ)=λ3 +B1λ
2 +B2λ+B3 = 0

B1 =α+ 2µ+ d1 + k

B2 =µ(µ+ 2d1) + (µ+ d1)k + α(µ+ d1 + k)

B3 =(α+ µ)d1(µ+ k)− β1β3F̄2kS̄

The fourth degree polynomial is given as
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q4(λ)=λ4 +D1λ
3 +D2λ

2 +D3λ+D4 = 0.

D1 =β2 + d+ 3d1 +
F̄ 2φ

C
+ γ > 0

D2 =
(F̄2φ+ C(d+ d1 + γ))(β2 + 3d1)

C
+ β2d1 > 0

D3 =d1
(

(γ + d)(β2 + 2d1) + d1(β2 + d1)

+
(γ + d)(2β2 + 3d1)

d1(Ū1 + Ū2)

(TĀ2

C
− ω1d1

γ(1− p)(2β2 + 3d1)

))
D4 =

TĀ2

C
− ω1

γ(1− p)
By Routh-Hurwitz criteria, all the roots of q3(λ) will be negative provided

R0(=
β1β3F̄ 2+kω

(α+ µ)µd1(µ+ k)
) < 1.

Further, all the roots of fourth degree polynomial q4(λ) will have negative real part
iff

Di > 0, i = 1...4 (41)

D1D2D3 > D2
3 +D2

1D4. (42)

Note that D1 and D2 are positive and also D4 is positive provided the condition
(40) is satisfied. This condition also ensures the positivity of D3. The condition
(42) is simplified and found to be satisfied for D4 > 0.

All eigenvalues have negative real part provided the conditions (39) and (40) are
satisfied simultaneously and this completes the proof.

Corollary 1. The non-trivial disease-free state P−2 remains unstable always while
the state P+

2 is found to be locally asymptotically stable under the condition (39).

Proof. For the stability of the two non-trivial disease-free states P±2 explicitly name-
ly P−2 and P+

2 , the sign of k(A−) and k(A+) are critical. The k(Ā) is defined in
(40). For the point A∗ where A+ and A− collapse, we have A− ≤ A∗ ≤ A+. Using
the expression for A∗ as given in (30), k(A∗) is found to be zero. Accordingly,
k(A−) will be of negative sign giving instability of P−2 and k(A+) will be of positive
sign. Hence, P−2 is always unstable while P+

2 will be locally asymptotically stable
for (39) to be satisfied.

Remark 4. The condition (40) is always satisfied for P+
2 . Therefore its stability

depends on the condition (39).

Remark 5. When condition (39) is not satisfied, the non-trivial disease-free state
P+
2 will also become unstable. Consequently, the endemic states P+

3 and P−3 will
start to exist by (36).

The Figure 3 is two parameter bifurcation diagram with respect to β1 and β3

showing the region of stability of the states P±2 as well as the existence of the P±3
states. Consider the following choice of parameters with varying transmission rates
β1 and β3:
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ω = 0.039, β2 = 0.5, k = 0.1667, φ = 0.5, µ = 0.00004, d = 0.1096, d1 = 0.0714, α =
0.7, p = 0.5, ω1 = 0.97, γ = 0.7, C = 500

In Figure 3, the curve R0 = 1 bifurcates the parameter plane β1 − β3 into two
regions. The non-trivial disease-free state P+

2 is locally stable in the region R0 < 1.
The existence of endemic states P+

3 and P−3 is possible in the region R0 > 1.

Figure 3. Bifurcation diagram for the stability of the state P2

3.6. Numerical simulations. The local stability of P±3 states could not be
achieved analytically due to large and complex expressions. To discuss the local
stability of P±3 states, the numerical simulations have been performed for the data
given in Table 2.

Table 2. [24, 3, 5]

Parameters Parameters values
α 0.3
β1 0.02
β2 0.7
β3 0.03
γ 0.075
ω 0.002
φ 5
µ 0.0000456
C 450
d 0.05
d1 0.0714
k 0.1667
p 0.5

Table 3. [24, 3, 5]

Parameters Parameters values
αi 0.5
β1
i 0.001
β2
i 0.7
β3
i 0.001
γi 0.075
ωi 0.029
φi 5
µi 0.0000456
Ci 450
di 0.05
d1i 0.0714
ki 0.1667
pi 0.5
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(a) (b)

Figure 4. (a) A 3D phase plot showing the unstable behavior for
the state P−3 for the four initial conditions
Y1=(14, 0.007, 0.001, 34, 75, 3.5, 2.5, 32, 0.004, 39, 600),
Y2=(19, 0.009, 0.003, 32, 70, 3.0, 3.0, 36, 0.009, 35, 615),
Y3=(20, 0.009, 0.08, 30, 78, 3.9, 2.0, 38, 0.09, 42, 620)
and Y4=(15, 0.006, 0.05, 37, 72, 3.2, 1.5, 30, 0.02, 45, 630).
(b) A 3D phase plot showing the stable behavior for the state P+

3

for the four initial conditions
Z1=(0.4, 0.013, 0.005, 40, 400, 18, 50, 140, 0.15, 200, 600),
Z2=(1.8, 0.025, 0.009, 51, 410, 21, 43, 145, 0.09, 210, 630),
Z3=(1.5, 0.022, 0.008, 48, 398, 14, 45, 132, 0.11, 194, 615)
and Z4=(0.8, 0.018, 0.007, 45, 390, 17, 48, 138, 0.18, 198, 610).

Further, the ratio between the carrying capacity to the net sterile male mosquitoes
i.e. ( C

ω1/d1 ) is assumed to be 0.8 [3]. It is found that for the data set given

in Table 2, the basic offspring number T (= 19.06388689) > 1 and the thresh-
old R0 =8.179178686(> 1). Accordingly, the states P3

+(0.76383733, 0.01181548,
0.00656461, 50.31770846, 394.752323, 19.19005978, 46.75477253, 141.25412,
0.128961, 207.32790, 624.64985) and P3

−(15.250814, 0.008414931, 0.00467529,
35.836020, 79.020, 3.8413960, 2.3417136, 35.314431, 0.00460008, 41.502141,
624.64985) exist by condition (36). For the stability of P−3 state, numerical simula-
tions have been performed for the four initial conditions Y1, Y2, Y3 and Y4 (defined
in caption) in the neighborhood of the state P−3 .

It is observed that the trajectories starting from the initial conditions Y1 and Y2
converge to the point Y which is the projection of the state P+

3 on the hyperplane.
Moreover, it is checked that all other state variables also tend to corresponding
values of P+

3 . Thus, the solution trajectories converge to P+
3 . Similarly, the tra-

jectories starting from the initial conditions Y3 and Y4 converge to the state P1.
It shows the unstable behavior of P−3 state. The phase plot in 3D hyperplane
S − I − F 4 has been drawn in Figure 4a. Further, for the stability of P+

3 state,
numerical simulations have been carried out for the four initial conditions (defined
in caption) in the neighborhood of the state P+

3 .
It is found that starting with the initial conditions Z1, Z2, Z3 and Z4, the solution

converges to the P+
3 state. The phase plot in 3D hyperplane S − I − F 4 has been

drawn in Figure 4b.
A bifurcation diagram has been drawn for the system (12)-(22) with respect to

sterile male mosquitoes rate ω1 in Figure 5. The transmission rates from vector to
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Figure 5. Bifurcation plot of system (12)-(22) with respect to ω1.

host(β1) and host to vector (β3) are considered to be 0.002 nd 0.003 and rest of
the parameter values are taken from Table 2. It is observed that the non-trivial
disease-free states P+

2 and P−2 exist from ω1=0 to W=80.0699 and collapse in P ∗2
at ω1=W (=80.0699). The expression for W is given in (29). For W > 80.0699,
only the state P1 exists and stable. Further, it is found that at ω1 = ω∗∗1 =30,
R0= 1.002868566. The value of ω∗∗1 can be obtained using the condition (37).
Therefore, for ω1 > 30, the non-trivial disease-free state P+

2 is found to be stable.
However, for ω1 < 30, the endemic states P+

3 and P−3 start to exist while the
disease-free state P+

2 becomes unstable. Thus, for ω1 < W , the control on natural
mosquitoes will depend on the initial conditions and beyond this W , the control
will work successfully irrespective of any initial condition.

3.7. Discussion. In this paper, a host-vector model has been formulated to analyze
the effect of SIT control. It is observed from the analysis that when basic offspring
number (T ) is less than one then all the natural mosquitoes will be eliminated and
only the sterile mosquitoes will survive in the long run. On the other hand if T is
greater than T ∗ (given in (31)), the two non-trivial disease-free states start to exist
in which bigger one is found to be stable for R0 < 1 while the lower one is unstable
always. At T = T ∗, the non-trivial disease-free states collapse. However, for R0 > 1,
two endemic states exist. Numerical simulations have been carried out to analyze
the stability of endemic states. It is found that one state gets stable while other
remains unstable for choice of relevant data from literature. To control the disease,
a threshold has been computed for the rate ω1 at which the sterile mosquitoes be
introduced. If the initial population size is in neighborhood of disease-free state
then SIT control will work effectively and disease will die out for ω∗∗1 < ω1 < W .
However, when ω1 < ω∗∗1, the disease will persist, as after this value endemic states
start to exist (shown in Figure 5).

To study the effect of human migration in disease transmission, the model (1)-
(11) has been analyzed in next section.
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4. n patch network model analysis.

4.1. Basic reproduction number for n patch model. When no movement of
human is considered, R0 is given as

R0= max (R0i); i=1, 2, 3...n

where, R0i=
kiβ

1
i β

3
i ωiF

20
i

(µi + αi)(ki + µi)µid1i
When the patches are coupled due to movement of human population, the basic
reproduction number for the network model (1)-(11) is computed below:

Let us denote the susceptible human population and fertilized female population
at disease free state for the ith node be S0

i and F 20
i and define

qi = β1
i S

0
i and li = β3

i F
20
i

Further, define n× n diagonal matrices Dq, Dl, Dk and D1
d as

Dq= diag(q1, q2, ....qn), Dl= diag(l1, l2, ....ln), Dk= diag(k1, k2, ....kn) and D1
d=

diag(d11, d
1
2, ....d

1
n)

The matrices QE and QI are also defined as

QE =


µ1 + k1 +

∑1=n
j=1 m

E
j1 −mE

12 ... −mE
1n

−mE
21 µ2 + k2 +

∑1=n
j=1 m

E
j2 ... −mE

2n

... ...... .... ....

−mE
n1 ..... .. µn + kn +

∑1=n
j=1 m

E
jn


and

QI =


µ1 + α1 +

∑1=n
j=1 m

I
j1 −mI

12 ... −mI
1n

−mI
21 µ2 + α2 +

∑1=n
j=1 m

I
j2 ... −mI

2n

... ...... ..... .....

−mI
n1 ... ... µn + αn +

∑1=n
j=1 m

I
jn


The basic reproduction number is computed by next generation approach [12]. The
Jacobian matrices of the system (1)-(11) for the new infections (F ) and transfer
from one compartment to another (Y ) are given below:

F =

0 0 Dq

0 0 0
0 Dl 0


and

Y =

 QE 0 0
−Dk QI 0

0 0 Dd1


FY −1 =

 0 0 DqD
−1
d1

0 0 0
Q−1E Q−1I DkDl DlQ

−1
E 0


The dominant eigenvalue of the next generation matrix FY −1 is the basic repro-
duction number for n patch model, Rn0 (say)

Rn0 = ρ(Q−1E Q−1I DkDlDqD
−1
d1 ). (43)

Particularly, for single node (n = 1), R0 is obtained as

R0=
k1β

1
1β

3
1S

0
1F

20
1

(µ+ α1)(k1 + µ)d1
.
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4.2. Numerical examples. Let us perform the numerical experiments to control
the disease in a network using SIT. For n = 2 and n = 3, the network topologies
are given in Figure 6 and Figure 7 respectively. Let us assume that mS

ij = mE
ij =

Figure 6. The network topology for n=2.

Figure 7. The network topology for n=3.

mI
ij = mR

ij = mij and ω1
i and mij are varying in different patches. For simplicity,

rest of the data is considered to be the same in all patches given in Table 3.
Network with n=2

Observe that R0 = 3.6819(> 1) in all the isolated patches for the data set given in
Table 3. Accordingly, the disease is endemic in patches. Let us apply SIT in patch-1
so that the disease is controlled in it. The role of network coupling in controlling the
disease in the network is explored for different combinations of migration parameters
mij in Table 4. Further, if SIT control is reduced in patch-1 i.e. ω1

1 = 60 and no

Table 4. When SIT is applied only in the patch-1 i.e.(ω1
1 = 70, ω1

2 = 0)

Cases
Migration
in patch-1

Migration
in patch-2

Conclusions

(a) m12=0 m21=0
Isolated patches with R0 of patch-1

is 0.2515 < 1 (37). Disease is
controlled in patch-1 only.

(b) m12=0.005 m21=0.0006

R2
0 for two patch network

model is 0.7678 < 1 (43). Two patch
network model may be disease-free.

The time-series confirms that
the infection level tends to zero in both

the patches Figure 8a.

(c) m12=0.009 m21=0.0025

R2
0 for two-patch network model

is 1.4763 > 1 (43). SIT method
will not be able to control disease

with this migration combination Figure 8b.

control is applied in patch-2 then for different combinations of migration parameters,
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Table 5. When SIT is applied only in the patch-1 i.e.(ω1
1 = 60, ω1

2 = 0)

Cases
Migration
in patch-1

Migration
in patch-2

Conclusions

(d) m12=0 m21=0
Isolated patches with R0 of patch-1 is

0.2515< 1. Disease is controlled
in patch-1 only.

(e) m12=0.005 m21=0.001

R2
0 for two-patch network model

is 1.1778 > 1. SIT method will not
be able to control disease with this

migration combination. Disease may
persist in the network Figure 8c.

(f) m12=0.009 m21=0.001
R2

0 for two-patch network model
is 0.7273 < 1. The network may now be

disease free Figure 8d.

the cases have been discussed in Table 5. It may be noted from Table 4, case (a)
that the disease is controlled in the first patch where SIT is applied. The migration
from second patch may bring infection in first patch. If the adequate number of
sterile mosquitoes are present in the first patch, this additional infection will be
eliminated. Consequently, the network is disease-free and SIT is successful. When
ω1
1 is reduced (Table 5), the number of sterile mosquitoes present in the first patch

are not sufficient enough to control the disease. Accordingly, the disease persists in
the network (case (e)). However, changing the coupling (migration) suitably may
again control the disease in the network (case (f)).

Network with n=3
In this case, the following two cases have been considered in Table 6: From the Table

Table 6. When SIT is applied only in the patch-1 i.e.(ω1
1 = 70,

ω1
2 = 0 and ω1

3 = 0 )

Cases
Migration
in patch-1

Migration
in patch-2

Migration
in patch-3

Rn0 for network
model

(g) m12=0.0001, m13=0.002 m21=0.0001 m31=0.0001 0.6762(< 1)
(h) m12=0.0002, m13=0.0002 m21=0.001 m31=0.001 2.6813(> 1)

6, it is observed that the basic reproduction number for case (g) is less than one. The
disease may be controlled in 3 node network model for this case. By numerically
solving the network model (1)-(11) for n=3, it is found that the infection level
converges to zero as shown in Figure 8e. Further, for case (h), (Rn0 ) > 1. The time
series for infective population (I1, I2 and I3) have been drawn in Figure 8f. It is
evident that the infection persists. Thus, disease is controlled in case(g), but there
is a failure of SIT in case (h).

Keeping the results of above numerical experiments, the following conclusions
can be drawn:

It is not necessary to apply SIT in the whole network. The disease can be con-
trolled in network by applying SIT in one patch only. This is possible with suitable
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coupling of patches. Further, this selective way of applying SIT is more econom-
ical (cost effective). The success of SIT depends on the coupling strength of the
network (migration parameters mij) and the recruitment rate of sterile mosquitoes
ω1
1 . Accordingly, they are suggested to be critical parameters.

5. Conclusion. In this paper, n patch network model has been formulated to con-
trol disease transmission by using SIT. First, the dynamics of an isolated patch
has been analyzed. The basic reproduction number has been computed. For the
existence and stability of disease-free and endemic states, the two critical parame-
ters namely basic offspring number (T ) and basic reproduction number (R0) have
been identified. The bifurcation diagram has been plotted to show the existence
and stability regions of disease-free and endemic states for an isolated patch. The
critical level of sterile male mosquitoes has been obtained to control the disease. For
n patch model, the basic reproduction number has been computed. The numerical
simulations have been performed by considering two and three nodes with different
combinations of migration and SIT recruitment to study the effects in disease elim-
ination and persistence. It is concluded that the cost effective way to control the
disease in suitably coupled network is to apply SIT in one patch only.
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(a) (b)

(c) (d)
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Figure 8. (a) Time series for I1 (black colour) and I2 (grey colour)
converge to zero.
(b) Time series for I1 and I2 converge to endemic state.
(c) Time series for I1 and I2 converge to endemic state.
(d) Time series for I1 and I2 converge to disease-free state.
(e)Time series for I1 (black colour), I2 (dotted line) and I3 (grey
colour) for different patches converge to disease-free state.
(f)Time series for I1 , I2 and I3 converge to endemic state.
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