Computing MC/DC Criterion for
Object-Oriented Systems

Arpita Dutta

K.% Department of Computer Science and Engineering

fmsn National Institute of Technology Rourkela

Computing MC/DC Criterion for
Object-Oriented Systems

Dissertation submitted in partial fulfillment
of the requirements of the degree of
Master of Technology
in

Computer Science and Engineering
(Specialization: Computer Science)

by
Arpita Dutta

(Roll Number: 215CS1067)

based on research carried out
under the supervision of

Prof. Durga Prasad Mohapatra

A

ROURKELA

May, 2017

Department of Computer Science and Engineering

National Institute of Technology Rourkela

% g Department of Computer Science and Engineering
National Institute of Technology Rourkela

Prof. Durga Prasad Mohapatra
Associate Professor

May 23, 2017

Supervisor’s Certificate

This is to certify that the work presented in the dissertation entitled Computing MC/DC
Criterion for Object-Oriented Systems submitted by Arpita Dutta, Roll Number 215CS1067,
isarecord of original research carried out by her under my supervision and guidance in partial
fulfillment of the requirements of the degree of Master of Technology in Computer Science
and Engineering. Neither this dissertation nor any part of it has been submitted earlier for

any degree or diploma to any institute or university in India or abroad.

Durga Prasad Mohapatra

Dedication
Dedicated to..........

My Loving Parents

Signature

Declaration of Originality

I, Arpita Dutta, Roll Number 2/15CS1067 hereby declare that this dissertation entitled
Computing MC/DC Criterion for Object-Oriented Systems presents my original work carried
out as a postgraduate student of NIT Rourkela and, to the best of my knowledge, contains
no material previously published or written by another person, nor any material presented
by me for the award of any degree or diploma of NIT Rourkela or any other institution. Any
contribution made to this research by others, with whom I have worked at NIT Rourkela or
elsewhere, 1s explicitly acknowledged in the dissertation. Works of other authors cited in this
dissertation have been duly acknowledged under the sections “Reference” or “Bibliography”.
I have also submitted my original research records to the scrutiny committee for evaluation

of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT

Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

May 23, 2017

Arpita Dutta
NIT Rourkela

Acknowledgment

I owe deep gratitude to the ones who have contributed greatly in completion of this thesis.

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Durga
Prasad Mohapatra for providing me with a platform to work in the field of Software Testing.
He has always supported and guided on challenging areas of Modified Condition/ Decision
Coverage and Concolic Testing. His profound insights and attention to details have been
true inspirations to my research.

I am very much thankful to my Ph.D. senior Mr. Sanghartana Godboley. He has the one
who suggested me to work in this area. He has always supported and guided me to the correct
path of research. My research work and thesis is really impossible without his contribution
and support.

I am very much indebted to Prof. Pabitra Mohan Khilar, Prof. Bibhudatta Sahoo, Prof.
Ashok Kumar Turuk, and Prof. Ruchira Naskar for their encouragement and insightful
comments at different stages of the thesis that were indeed thought provoking.

I express my gratitude to Prof. Rajib Mall of IIT Kharagpur for providing the necessary
inputs and guidance at different stages of my work.

Most importantly, none of this would have been possible without the love of Mr. Arup
Dutta (Baba), Mrs. Sangeeta Dutta (Maa), and Amrita Dutta (Sister). My family to whom
this dissertation is dedicated to, has been a constant source of love, concern, support and
strength all these years. I would like to express my heartfelt gratitude to them.

I also like to thank Dr. Subhrakanta Panda, and Dr. Jagannath Singh for their unique
ideas and help whenever required.

I would like to thank all my friends and lab-mates (Bhagyashree Besra, Satya Manikyam
Perabhatula,Anshu Katiyar, Jitendra Kumar, P. Shruthi, Srijan Das, Saurav Sharma and
Mohammad Ashraf Gardizy) for their encouragement and understanding. Their help can

never be penned with words.

May 23, 2017 Arpita Dutta
NIT Rourkela Roll Number: 215¢s1067

Abstract

Modified Condition / Decision Coverage (MC/DC) is the second strongest criterion in
coverage based white-box testing. According to RTCA DO-178B and DO-178C standards,
it is mandatory for the safety critical systems to satisfy MC/DC criterion in order to ensure
adequate testing. This work presents two different methodologies to calculate MC/DC% of
a system. First, we compute MC/DC% of a software only after the completion of coding
phase. There are so many techniques present to generate the test cases for a system. But,
those test cases are not powerful enough to cover all the possible conditions present in the
program. So, we propose a hybrid technique for MC/DC test data generation. We combine
feedback-directed test case generation with concolic testing to form Java-Hybrid Concolic
Testing (Java-HCT). Java-HCT generates more number of test cases since it combines the
features of both. Hence, through Java-HCT we achieve high MC/DC. Combination of two
approaches handles/ overcomes different tradeoffs of completeness and scalability. We
develop Java-HCT using RANDOOP, jCUTE (Java Concolic Unit Testing Engine), and
COPECA (COverage PErcentage CAlculator). Combination of RANDOOP and jCUTE
creates more number of test cases. COPECA is used to measure MC/DC% taking the
generated test cases as input. Our experiment with forty Java programs shows that Java-HCT
produces better MC/DC% than individual testing techniques (feedback-directed random
testing and concolic testing). We have improved MC/DC by x1.62 and by x1.26 in
comparison to feedback-directed random testing and concolic testing, respectively.

In our second work, we compute MC/DC% of the given system, using model based
approach. We have proposed a novel technique for MC/DC computation during design
phase, using UML Sequence diagram. Sequence diagram presents the interactions among a
set of collaborating objects. The sequences of synchronized and asynchronized messages in
the sequence diagrams are used to define the code coverage goals. First, we design an UML
Sequence Diagram and generate an XMI code from it. Next, JAXB converts the XMI code
into Java code. After that, we supply Java code to JCUTE to generate concolic test cases.
These test cases and the Java code are supplied to our tool COPECA to measure MC/DC%.
We experimented with five case studies and worked on twenty seven sequence diagrams and
on an average, we achieved 55.29% MC/DC.

Keywords: Feedback Directed Random Testing; Concolic Testing; UML Sequence
Diagram; MC/DC.

Contents

Supervisor’s Certificate

Dedication

Declaration of Originality

Acknowledgment

Abstract

List of Figures

List of Tables

List of Algorithms

1 Introduction

LI Motivation v vttt e e e e e e e
1.2 ODbJectiVes o v e e e e e e e e e e e e e
1.3 Thesis Organization o v v v v vt et e e e

2 Basic Concepts

2.1 Some Relevant Definitions
2.2 UMLDiagrams v i ittt e e e e e

23 SUMMATY e e e e e e e e e e e e e e

3 Literature Survey

3.1 TestData Generation v v e e e e e

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5

Random Testing
Symbolic Testing
Concolic Testing
Hybrid Concolic Testing
Other Related Works

3.2 MC/DC (Modified Condition/ Decision Coverage) Testing

Vil

ii

il

iv

vi

xii

xiii

n A B -

3.3 Testing and coverage analysis using UML diagrams 22
34 Summary ... e e e e 23

4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing 24

4.1 Overview of proposed framework 24
4.2 Descriptionindetail Lo o 26
42.1 SyntaxConverter e 26

422 RANDOOP e 27

423 JCUTE e 27

424 TCsExtractor e 27

425 TestCasesCombiner 28

42.6 COPECA e 28

427 TCsMInimizer v v v i it i e e e e 28

4.3 Algorithmic Description 29
44 Experimental Study 31
4.4.1 ExperimentalSetup 31

442 AsSumMptions e e e e e e e e e e e 32

443 Implementation 32

444 ResultAnalysis e 35

4.5 Threatstovalidity 45
4.6 Comparison withrelatedworks 45
477 Summary e e e e e e e e e e e e e e 50
5 Measuring MC/DC at Design Phase using UML Sequence Diagram 52
5.1 Overview of proposed framework 52
5.2 Descriptionindetail oL L 53
52.1 ArgoUML 53

522 JAXB . .o 54

523 JCUTE e 55

524 COPECA e 55

5.3 Algorithmic Description 56
54 Experimental Study 56
54.1 Experimental Setup, 57

542 Assumptions e e e e e e e e 57

543 Implementation 57

544 Result 58

5.5 Comparison withrelatedwork 64
5.6 Threatsto Validity 68
57 Summary . .o oL e e e e e e e e e e e e e e e e 68

viil

6 Conclusions and Future Work 69

6.1 Contributions e e 69
6.1.1 Java-HCT 69

6.1.2 MAUSD e 69

6.2 Future Work 70
Dissemination 71

X

1.1

2.1
2.2
23
2.4
2.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
52
53

List of Figures

Software testing technique classification 2

Euclid’s GCD computation program v v v v v v v v
An example “if” structure to show MC/DC testing

Sample program for Concolictesting 10
UML diagrams showing the different views ofasystem 12
UML Sequence Diagram for Book Renewal Scenario 13
Schematic representation of Java-HCT 25
Benefit of Hybrid concolic testing 25
Original Javaprogram e 34
Graphical User Interface of Syntax Converter 35
Java program in JCUTE executable format 36
Java program in RANDOOP executable format 37
Test data generation from RANDOOP framework 38
Successful execution of total testcases 38

RandoopTest.java program contains information about all the generated test

casefiles. L 39
Test Cases present in a single testdatafile 39
Test data generation from JCUTEtool 40
Different parameter computation using JCUTE 40
Test Cases generated by JCUTE 41
Graphical User Interface of Java-HCT 42
Graphical User Interface of COPECA (Coverage Percentage Calculator) . . 43
Graphical User Interface of Minimizer 43
Total number of Test Cases generated 50
Computed MC/DC percentages v v v v v v v v v e e e 51
Increase in MC/DC percentages v v v v v v v v v .. 51
Schematic representation of MAUSD 53
Fundamental workingof JAXB 55
Sequence diagram for Job searching 58

54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12
5.13

XML code generated for the Sequence diagram shown in Figure 5.3 59

Java code generated from JAXB for the XML code shown in Figure 5.4 . . 60
Compilationon JCUTE 60
One complete executionon jJCUTE 61
Results obtained by using jJCUTE 61
Test Cases generated by JCUTE 62
MC/DC analysisusing COPECA 62

Number of generated test cases vs. the number of conditions present in the
Sequence Diagrams. 63
Number of independently affected conditions vs. number of simple conditions. 63
Branch Coverage percentage vs. Modified Condition/ Decision Coverage

PETCENAZE o . e e e e e e e e e e e e 64

xi

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
53

List of Tables

Extended Truth Table for MC/DC analysis

Associativity and precedence of logicgates

Summary of concolic testers with their properties. 18
Summary of different work on concolic testing. 19
Characteristics of different approaches on concolic testing. 19
Characteristics of different target programs 46
Statistics of results on execution of RANDOOP 47
Statistics of results on execution of jJCUTE 48
Results on execution of COPECA 49
Characteristics of case studies 65
Results analysis of JCUTE 66
Result analysis of COPECA 67

Xii

1
2
3

List of Algorithms

Java-HCT o e

COPECA

Xiii

Chapter 1

Introduction

Software Development Life Cycle (SDLC) has one important and expensive activity called
software testing. It deals with the quality and reliability of the product developed. It includes
driving test cases along with a developed program and computing the response. It targets to
detects all bugs present in a software with the help of test cases vector. Test case design is the
most important phase in software testing life cycle. The software testing goals are mainly

classified into three categories:
1. Immediate goals or Short-term: It consists of Bug prevention, and Bug discovery.

2. Long-term Goals: It consists of Reliability, Customer satisfaction, Risk management,

and Quality.

3. Post-implementation Goals: It consists of Reduced maintenance cost, and Improved

testing process.

Software testing can be done in two ways- Manually and Automated. For practical
usage, manual testing is not advisable. Because manual testing leaves an ample scope
for un-catched errors. So, we have moved towards automated testing. Now-a-days a
large number of automated software testing tools are available such as Concolic testers
(CUTE, jCUTE, SCORE, CREST), random testers (RANDOOP) etc. Concolic testing is the
combination of Concrete and Symbolic execution. It is a systematic technique that performs
symbolic execution but uses randomly-generated test inputs to initialize the search and to
allow the tool to execute programs when symbolic execution fails.

Software testing is also classified as white box testing and black box testing. In white
box testing, we have the knowledge of internal structure of the software whereas in black
box testing, we know only the functionality of the software. We don’t have the knowledge
of internal structure (code). We are focusing towards white box testing. White box testing
a can be further classified as Fault based testing and Coverage based testing. Fault based
testing targets to detect certain type of faults present in the program. Mutation testing is
an example of a fault-based test strategy. Coverage based testing targets to cover certain

specific elements of a program. Following are different coverage based testing techniques.

Introduction

Testing
Black Box Testing White Box Testing
Boundary Equivalence Coverage Fault Based
Value Testing Partitioning Based Testing Testing
Testing
Statement Branch Condition Mc/DC Mcc Mutation
Coverage Coverage Coverage Testing

Figure 1.1: Software testing technique classification

» Statement Coverage: It aims to design test cases in order to execute all the statements

present in the program.

* Branch Coverage or Decision Coverage: It aims to design test cases which invokes

each decision present in the program for true and false result each, at-least for once.

» Condition Coverage: It aims to design test cases which invokes each condition of a

decision present in the program for true and false result each, at-least for once.

* Modified Condition/ Decision Coverage: It aims to design test cases which is able

to show the independent affect of each condition present in a predicate.

* Multiple Condition Coverage: Multiple Condition Coverage: This is the strongest
code coverage criterion, which finds all possible combinations of condition outputs

present in a predicate in a program. It invokes all entry and exit points at least once.

* Path Coverage: It tries to design test cases which covers all possible linear

independent paths present in the program.

Figure 1.1 shows the classification of software testing techniques. In coverage based
testing techniques, Multiple Condition Coverage (MCC) is the strongest one [1]. it subsumes
all other coverage based testing criterion. But for our research we have chosen Modified
Condition/Decision Coverage (MC/DC) criterion, which is the second strongest coverage
criterion. The reason behind the selection of second strongest criterion is completely based
upon the test case generation requirement. In order to test an n-condition predicate, in

MCC we require 2" number of test cases whereas in MC/DC it requires minimum (n+1)

Introduction

and maximum (2*n) test cases. The 2" number of test cases are redundant and it creates
an combinatorial explosion problem of test data generation. So, in the practical usage and
software application testing it is not advisable to adhere with Multiple Condition Coverage.
In MC/DC, the required (n+1) number of test cases are unique, non-redundant and capable
of invoking each and every atomic condition of a predicate.

According to guidelines provided by RTCA!/DO*-178B [60] and DO-178C [25]
standards, it is mandatory to achieve MC/DC for Level A safety critical software
applications. Effective test data generation for MC/DC coverage is a critical issue. The
short circuit evaluation done by the compiler on logical operators makes it difficult to reach
each and every atomic condition present in a predicate. Compiler simplifies a predicate and
generates the equivalent code using only the basic “if” structure which is free from AND
and OR operators. Further it uses code optimization techniques to simply the code. In this
phase, based upon the short-circuit evaluation, it eliminates many simple condition which
are very much essential for the MC/DC evaluation. There are many test data generation
techniques available. But alone these techniques are not sufficient to achieve high MC/DC
coverage because they are not capable of generating all possible useful test data for Modified
Condition/Decision Coverage. To overcome the problem of less coverage attainment, we
have proposed a hybridized method for test data generation. This technique combines the
test cases generated by feedback directed random testing and concolic testing and tries to
discover more number of independently affecting conditions. We have develop a tool called
Java-HCT (Java-Hybrid Concolic Tester) using RANDOOP *, jCUTE * and COPECA.

Test cases are usually designed to satisfy the requirements which are actually coded
and presented through a software or program. It makes test case generation process very
complex for cluster levels. Further this approach may be inefficient at component-based
software development, where testers may not have actual source code. Hence, it is useful
to generate test cases at the software design level instead from the source code. Testing at
design phase is very advantageous for SDLC. Using this testing at design phase deals with
the compliance of the implementation with the design documentation, which is missing is
source code based testing. Also, in this case the generated test data is independent of any
specific implementation of the design. So, we have proposed an automated technique of test
data generation from UML Sequence Digram. The process of generating test cases from
design documents is known as Grey box testing because it is combination of both black box
and white box testing strategy. We have developed and implemented a tool called MAUSD
(MC/DC Analyser for UML Sequence Diagram) for measuring MC/DC percentage using

'Radio Technical Commission for Aeronautics.
2Document
3https:/github.com/randoop/randoop-eclipse-plugin
“http://osl.cs.illinois.edu/software/jcute/

Chapter 1 Introduction

ArgoUML °, JAXB ©, jCUTE 7, and COPECA.

1.1 Motivation

This section presents the motivation behind the developing the techniques basically related

with the Modified Condition/Decision Coverage.

* Limited work is done in the area of automated testing methods that support MC/DC

using concolic testing.
» Automated tool for MC/DC test case generation

— Improves software quality
— Performs exhaustive testing of a software.

— Reduces software testing time.

*« RTCA/ DO-178B and DO-178C standardization: Safety critical systems strictly
require the satisfaction of MC/DC for Level A certification of a software systems.
So, it is desirable to develop an automated tool to compute the MC/DC percentage of

given system.

While computing coverage, we have been motivated towards model based testing. In
model based testing, we can start testing from design phase onwards. We don’t have to wait
for the completion of coding phase. UML diagrams represent various perspectives of the
project under development. UML sequence diagram contains complex interactions among
sets of collaborating objects from different classes. It shows the behavioral aspects of the
system. so, we want to develop an approach to compute the MC/DC percentage of a project

at design phase using UML sequence diagram.

1.2 Objectives

We set the following objectives for our research work based on the motivations outlined in

the previous section.

* To develop a hybridized technique (combination of Feedback Directed Random
Testing and Concolic Testing) for MC/DC test data generation in order to achieve

high MC/DC coverage for Java programs.

* To compute MC/DC% of object-oriented systems using UML Sequence Diagram.

Shttp://argouml.tigris.org/
®https://jaxb.java.net/
"http://osl.cs.illinois.edu/software/jcute/

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents the background knowledge required to understand the whole
thesis. It contains the definition of Condition, Predicate, Branch Coverage, Modified
Condition/ Decision Coverage Primary Gates, Concolic testing, Feedback-Directed
Random TestingUML diagrams and specifically UML sequence diagram etc. We explain

all the concepts with help of examples.

Chapter 3 provides an overview of the related work done in field of various test
data generation strategies, MC/DC testing criterion and test and coverage analysis of UML
diagrams. We have mainly focused on random testing, symbolic testing, concolic testing
and hybrid concolic testing strategies of test data generation. In this chapter, we also

discussed the work on testing of object-oriented software using UML sequence diagrams.

Chapter 4 presents a hybrid concolic testing (HCT) technique to improve the Modified
Condition/ Decision Coverage for input Java programs. We present the schematic
representation of proposed approach followed by detail description and algorithmic
description. Also, we explain the proposed technique with the help of an example Java
program. Subsequently, we present the experimental results and threats to validity of

proposed approach. We also present comparison with related work.

Chapter 5 presents a technique for Modified Condition/ Decision Coverage measurement
using UML sequence diagram. We present the description of each module used in
framework followed by the Schematic representation of proposed technique. We present
the algorithm used and a example to discuss the complete flow of approach. Subsequently,
we present the result analysis of proposed technique and threats to validity of our approach.

We have also compared our proposed technique with existing one.

Chapter 6 concludes the thesis with a summary of our contributions. We also give a

brief idea towards the possible future extension of our work.

Chapter 2

Basic Concepts

In this chapter we discuss some important background concepts which will help to

understand the further chapters.

2.1 Some Relevant Definitions

Definition 2.1 Condition: Booleans expression without and logical operator such as AND
(&&) and OR (||) operator. Conditions are also known as clauses.
For example, (varl<var2) is a condition, where varl and var2 are variables. Conditions

consists of relational operators such as <, >, >= =< etc. Conditions are known as clauses.

Definition 2.2 Predicate: It is a group of one or more conditions connected with
logical operators such as AND (&&) and OR (||) operator.
For example, (varl<var2) && (var3>=80) is a predicate, (varl<var2) and (var3>=80)

are two conditions connected with the help of AND operator.

Definition 2.3 Branch Coverage: Branch coverage is a method of testing which
aims to ensure that all possible outcomes of a decision point has to be executed at least
once. With the help of above statement, it ensures that all reachable code is executed at
least once [14].

The possible outcome for a branch coverage statement is either true or false. The branch
coverage criterion tries to make sure that none of the branch statement present in the program
leads to an abnormal behavior of the application. The branch coverage percentage of a

program is computed with help of formula given in Equation 2.1.

No. of decision outcomes tested

(2.1)

Branch Coverage Percentage =
g g Total number of decisions present

Let us explain the working of branch coverage using an example program. Figure
2.1 shows a sample program to evaluate Greatest Common Divisor (GCD) between two

numbers. To achieve 100% branch coverage, a suitable test suite is presented below:

Chapter 2 Basic Concepts

1. int GreatestCommonDivisor(int varlx, int var2y){
2 while(varlx!=var2y){
3 if (varix>var2y){

4. varlx=varlx-var2y;
5. }

6 else{

7 var2y=var2y-varlx;
8 }

9. }

10. return varlx;

1.

Figure 2.1: Euclid’s GCD computation program

Test Suite {(varlx=3, var2y=3), (varlx=3, var2y=2), (varlx=4, var2y=3), (varlx=3,
var2y=4)}.

Definition 2.4 Modified Condition / Decision Coverage: According to DO178C
standard, the essential requirements of MC/DC are follows [6, 7]:

 All statement in the program has been invoked at least once.
 All point of entry and exit in the program has been invoked at least once.

* All control statement (i.e., branch point) in the program has taken all possible outcomes

(i.e., branches) at least once.

* All non-constant Boolean expression in the program has evaluated to both a true and

a false result.

* All non-constant condition in a Boolean expression in the program has evaluated to
both a true and a false result.

 All non-constant condition in a Boolean expression in the program has been shown to
independently affect that expression’s outcome. Two different approaches to confirm
that the minimum tests are achieved are the unique-cause approach and the masking

approach.

— For unique-cause MC/DC, a condition is shown to independently affect a
decision’s outcome by varying just that condition while holding fixed all other

possible conditions.

— For masking MC/DC, a condition is shown to independently affect a decision’s
outcome by applying principles of Boolean logic to assure that no other condition
influences the outcome (even though more than one condition in the decision may

change the value).

Chapter 2 Basic Concepts

1. if(AlIB){
2. // Do-Something
3. }

Figure 2.2: An example “if” structure to show MC/DC testing

Table 2.1: Extended Truth Table for MC/DC analysis
TCs No. M N result [M [N
True | True | True | 3 | 2
True | False | False I
False | True | False | 1
False | False | False

B0 DI =i

The concept of independence of a clause is mathematically explained below:

Let P = (c1,co,...... 3 Ciy eeeennns Cn-1,Cn) be a predicate consisting of n clauses and
Bool Res(P) be a user defined mathematical function returns the boolean decision of
predicate P. Independence of clause c; is denoted as %,(C). Mathematically,

1

¢P(c)

G

= Bool_Res(ci,¢a, .., iy ..Cn1,Cn) @ Bool _Res(cy, ca, .., iy .Cro1,¢,) (2.2)

where, & is an exclusive-or operation.
If ‘NZ—_(C) = 1, then ¢; is an independent clause, otherwise not.
Let’s take the example “if” structure in Figure 2.2. The MC/DC test cases are generated

using the steps given below:
* Prepare a truth table for the predicate.

* Now, develop an Extended Truth Table (ETT) so that it indicates an atomic condition

as independently influenced atomic conditions.

* Please, show the pairing of test cases. Here, independence of M shows to take 1+3,

and independence of N shows to take 1+2.

* Atlast, maintain the test cases as 1+2+3, vizi.e.(True, True)+(True,False)+(False, True)

MC/DC subsumes the criteria of decision, condition and condition/decision coverage
(C/DC). If MC/DC coverage is 100%, then all these structural coverages will be 100%.
Equation 2.3 shows the subsumption relationship of all the coverages. Leftmost coverage

criterion is the strongest one.

MC/DC = CDC = CC = DC (2.3)

Chapter 2 Basic Concepts

Where, MC/DC stands for Modified condition/ decision coverage.
CDC stands for Condition Decision Coverage.
CC stands for Condition Coverage.

DC stands for Decision Coverage.

Definition 2.5 Primary logic gates/elements:
viz.. AND (&&), OR (||) and NOT (!). Remaining all gates are derived by using these

primary gates. These are used to join clauses present in the predicates. The associativity

There are three primary logic gates

and precedence of these gates are shown in Table 2.2.

Table 2.2: Associativity and precedence of logic gates

Logic Gate | Associativity | Precedence

AND(&&) | left to right 2
OR(|]) left to right 3
NOT(!) right to left 1

AND (&&) Gate: In a predicate, if all clauses are joined by using “&&”, then MC/DC

must satisfy the following criteria:

» There must be at least one test case that makes all clauses true in the same time. i.e.
Bool Res(P)=1.

» Secondly, there must be at least n test cases (n is the number of clauses present in the
predicate), that set each clause as false one by one by keeping all other clauses true.
i.e. Bool Res(P)=0.

OR (||) Gate: In a predicate, if all clauses are joined by using “||”, then MC/DC must

satisfy the following criteria:

» There must be at least one test case that makes all clauses false in the same time. i.e.
Bool Res(P)=0.

» Secondly, there must be at least n test cases (n is the number of clauses present in the
predicate), that set each clause as true one by one by keeping all other clauses as false.
i.e. Bool Res(P)=1.

In conclusion, we can say that for conjunctive and disjunctive expressions we can easily
find (n+1) test cases and using these two basic gates idea, we get (n+1) test cases required

for any other predicate.

Definition 2.6 Concolic testing: Concolic testing explores all the execution paths

and ensures that all the reachable paths are executed[3, 10]. Unit testing is of two types. 1)

9

Chapter 2 Basic Concepts

Concrete Execution, where the potential inputs are chosen randomly, so that the probability
of reaching errors present in the program is astronomically less. 2) Symbolic Execution: It
takes symbolic values for the variables present in the program and symbolically runs the
program. It collects the symbolic path constraints with the help of theorem prover. It detects
whether the branch will be taken or not. It is not scalable for large programs. Concolic
testing is the combination of both concrete and symbolic execution for unit testing.

CONCerete + SymbOLIC= CONCOLIC testing uses concrete execution over a concrete
input to guide symbolic execution[40]. In the first run, it takes the random value and covers
a path, afterward with negating the conditions in the path covered and simplifying complex
and unmanageable symbolic expressions with the help of constraint solvers like Z3 solver,
Ip-Solver, etc, it traces a new unexplored path. In this way, it reaches to all the possible paths
present in the binary program computation tree. It achieves high scalability and branch
coverage than symbolic or concrete execution.

Let us understand concolic testing with an example program shown in Figure 2.3.

1. struct nodeq

2. int data;

3. struct node *link;

4. };

5. int doubly(int a)

6. { return(2*a+1);}

7. int concolic_test(node *head,int val){
8. if (val>0){

9. if (head != NULL){

10. if (doubly(val)==node->data){
11. abort();

12. }

13. }

14. }

15. return O;

16. }

Figure 2.3: Sample program for Concolic testing

Initially the random test driver generates values (head=NULL, val=236). But, by using
these values the probability of reaching to the abort statement is very less. But, as per the
first time execution rule, concolic tester takes these random concrete values and set the
concrete state as (head=NULL; val=236), symbolic state as (head = heady;val = valy)
with “NULL” constraints. When, the control reaches to the statement 8, it gets a constraint
(val > 0) and this constraint get resolved because (val=236) and then the control reaches to
statement 9. The constraint at this point is not resolved because (head=NULL). Therefore
the concolic tester will take such new values that can resolve both the constraints (val
> 0) && (head !=NULL). So, in the next run it takes concrete state as (val=236; head
—data=634; head —1link=NULL) and symbolic state as (head = heady; val = valy; head

10

Chapter 2 Basic Concepts

—data = datag; head —link = ng). By, these values the control successfully reaches up
to statement 9, but at the statement 10, it gets a new constraint ((2 * val + 1)=head —data)
which is not solved by the taken values. So, concolic tester take such values that satisfies
all the constraints that are (val > 0) && (head! = NULL) && (2*val+1=head —data).
The concolic tester takes concrete value as (val=1; head —data=3; head —link=NULL)
and symbolic state as head = heady; val = valy; head —data = datay; head —link = ny
by using these values the control reaches to the statement 11 and detects the error. This
concolic testers are saving concrete and symbolic values to reaches all the possible paths of
the program.

Definition 2.7 Feedback-Directed Random Testing: “It is a combination of random
and systematic approach that results a test suite consisting of unit tests for the classes
under test. Systematic approach deals with Feedback-Directed, i.e as soon as an input
value is built, it is executed and checked against a set of contacts and filters. The result of
the execution determines whether the input is redundant, illegal or useful for generation of
more input [38].”

We have an open source avalibale tool for Feedback-Directed Random Testing, it’s called
as Random Tester for object-Oriented Programs (RANDOOP)'. It is 100% automated testing
tool and may not expect any input from the user, also scaled to realize the application with

huge number of classes such as almost more than 100 classes

2.2 UML Diagrams

UML stands for Unified Modeling Language. It is basically used in the designing phase
of object-oriented software systems. It models the software application in many different
perspectives. There are nine different types of UML diagrams which present five different
views of a system [4, 14].

The UML diagrams can capture the following five views of a system as shown in Figure
2.4,

o User’s view

* Structural view

» Behavioral view

* Implementation view

e Environmental view

'https:/github.com/randoop/randoop-eclipse-plugin

11

Behavioral View
. -Sequence Diagram
Structural View -Activity Diagram

~Class Diagram -StateChart Diagram
-Object Diagram

-Communication Diagram

Implementation View

~Component Diagram Environmental View

-Deployment Diagram

Figure 2.4: UML diagrams showing the different views of a system

UML Sequence diagram

UML Sequence digram represents the behavioral view of the system. It shows the
interaction between different objects of a system in two dimensional chart format. The two
dimensional chart is read from top to bottom. The objects involved in the scenario are present
at the top of the chart as boxes attached to a vertical dashed line. Sequence digram also
presents the timing sequence of the different activities involved for that particular scenario

[11, 14]. An example sequence diagram for book renewal scenario is shown in Figure 2.5.

2.3 Summary

We have discussed all the basic definitions used in our proposed approach. We have
explained Condition, Predicate, Branch Coverage, Modified Condition/ Decision Coverage
Primary Gates, Concolic testing, Feedback-Directed Random Testing, UML diagrams and
specifically UML sequence diagram etc. with help of example.

Chapter 2 Basic Concepts

| Interactionl

iLibrary Boundany: iLibrary Book Renewal Controller; iLibrary Boak Registar: Book:

iLibrary Member:

L renewBook

L1 displayBorrowing i fi|'|dr'-f1e.|'nbE|'Bm'rc'wing

11.2: selectBooks 1.2: bookSelected

1.2.1: find

12.LY: [reserved] apology

1212 update

1.3: confirm

1.4 updateMemberBorrowing

2: Confirm

Figure 2.5: UML Sequence Diagram for Book Renewal Scenario

13

Chapter 3

Literature Survey

3.1 Test Data Generation

In this chapter, first we discuss some available related work carried out by different
researchers in the area of random testing, symbolic testing, and concolic testing. Then, we
discuss the available work on MC/DC testing. Finally, we describe some of the existing

work related with testing of coverage analysis of UML diagrams.

3.1.1 Random Testing

Lei et al. [47] described a novel framework for randomized unit testing. They have proved
the empirical importance of the randomly generated unit test data. They have minimized
the test data failures, which increases significant benefits. Randomized test case generation
techniques allows high coverage in less amount of time[8]. Sometimes, test cases are failed
because of very long sequence of method calls. Lei et al. [47] has used the Zeller and
Hildebrandt’s test case minimization algorithm in order to reduce the long method call
sequences. They had tested their proposed framework on lab-built data structures and open
source data structures.

Bird et al. [61] proposed a random test generation technique for software systems. The
nature of the test cases in such systems are designed to explore all possible branches of the
execution tree. They have also predicated the total case generation time. The test cases
are processing a self-checking property. The implementation of this technique is tested on
various IBM programs such as sort/merge programs, /I language processors, and graphics
support and Graphical Data Display Manager alphanumeric.

Quick Check is a random testing tool. It is developed for the Haskell programs. It is
used for testing the properties of the program [24]. Haskell functions are used to describe
the properties of the program. They are automatically tested with the help of random
inputs. Random testing techniques are highly suitable for the function programs because,
the properties of a program are stated in a very fine grain. When the function is developed

from different tested components, th random testing provides good coverage of the definition

14

Chapter 3 Literature Survey

under test.

3.1.2 Symbolic Testing

In order to remove the limitations and inadequacy of concrete testing symbolic testing
approaches are developed, In symbolic testing, we execute a program using symbolic
variables instead of concrete one.

King [63] describes the symbolic execution of the programs. In symbolic execution,
instead of supplying normal inputs (e.g. numbers) into the programs, symbolic variables
are substituted. The flow of execution proceeds in the same way as it in concrete execution
except the values that present in the form of symbolic formulas. The problem arise when
the control flow reaches to a branch statement. They have also described a system called
EFFIGY. EFFIGY provides a symbolic execution platform for program debugging and
testing.

Clarke [62] describes a system which generates symbolic test cases for ANSI Fortran
programs. For a given path, system creates a set of constraints on its symbolic execution
by using the program’s input values. If the constraint is linear, then linear programming
techniques are used to generate the solutions. The solution consists of test data which
will helps to drive the execution down to the given path. If the constraint is non-linear
and inconsistent, then the given path is display as non-executable. In order to increase the
detection rate of program errors artificial constraints are developed. Artificial constraints
are used to simulate the error conditions and also try to solve the each set of augmented
constraints. The system also provides the facility to represent the output variables in terms
of the program input variables. The variables helps in the error detection and also in the
automatic program documentation and assertion generation.

Visser et al. [39] shows how the model checking and symbolic execution is used to
generate the test data in order to achieve the structural code coverage that manipulates a
complex data structure. They have mainly focused branch coverage. They worked on
the red-black tree of the Java TreeMap library with the help of JavaPathFinder as a Model
Checker. They have introduced and compared three types test case generation techniques.
The techniques are Black-Box model checking, Straight model checking and White-Box
model checking. The main contribution of Visser et al. [39] is to show how efficient
white-box test input generation can be done for code manipulating complex data, taking

into account complex method preconditions.

3.1.3 Concolic Testing

Godfroid et al. [44] developed a tool and named it as DART (Directed Automated Random
Testing) for automated software testing. It combines three main techniques: (i) automatic

extraction of program interface with the external environment by using a static-code parsing

15

Chapter 3 Literature Survey

technique. (i1) Automated generation of a program test driver for the derived interface which
will perform random testing in order to simulate the regular environment on which the
program operate. (iii) Program analysis under the random input and automatic generation of
new input values to explore the other possible paths present in program. The main strength
of DART is that, it made the testing activity fully automated. Now there is zero requirement
of writing any harness code or test driver. During execution, DART detect many standard
errors. For example assertion violation, program crashes, and non-termination etc. DART
is pioneer of concolic testing technique.

Sen at al. [45] proposed and developed a tool called CUTE (Concolic Unit Test Engine)
for C program. This tool address the problem of automated unit testing with memory graphs
as input. The approach used for memory graph is based on combination of Concolic and
symbolic testing techniques. They have used an efficient constraint solver i.e. Ip Solver.
Ip_Solver has the following important properties which improves the strength of CUTE. It
will do fast unsatisfiability check, common sub-constraint elimination, and also incremental
checking. CUTE tries to cover all feasible paths present in the program in a similar way to
systematic testing.

Sen et al. [40] developed another tool i.e JCUTE (Java Concolic Unit Test Engine) which
is a concolic test generator for Java programs. It is an open source tool available on Internet '.
It generates test cases for both simple and multi-threaded Java programs. It also supports the
concurrent programs. Concolic testing combines the concrete and symbolic testing technique
with using a powerful constraint solver. It discovers the deadlock and race conditions using
schematic schedule explorations. JCUTE is using vectorized clock to generate large number
of'test cases and to support the concurrent programs. It creates execution tree for the program
and tries to reach all the leaf nodes of the tree. JCUTE supports three different types of search
strategies i.e. Random Search strategy, Depth First Search strategy and iii) Quick Search
strategy. In the Depth First Search strategy we have to mention the maximum depth and in
Quick Search strategy we have to mention the threshold value. The first value chosen JCUTE
is a Random Number. Mostly the value is taken from one the largest number supported by
the variable data type for JCUTE. It maintains log files and maintain traces for each run. The
search optimality is based upon the path coverage and branch coverage. For our experimental
study, we have used JCUTE as a concolic tester.

Kohkonen et al. [26] developed another concolic tester i.e. LCT ? (Lime Concolic
Tester) for sequential Java programs. Lime Concolic Tester instruments the byte-code of
the Java program under test in order to enable the symbolic execution and then it collects
the constraints generated on the input values which is further used to guide the tester to
find the unexplored paths. LCT supports the distributed architecture. In the distributed
environment, clients are generating the test input values for the program under test. On the

Thttp://osl.cs.illinois.edu/software/jcute/
http://www.tcs.hut.fi/Software/lime/userguide.pdf

16

Chapter 3 Literature Survey

other side, Server node is is monitoring and collecting the generated test cases. LCT used
bit vector SMT solver Boolector. Boolector helps to generate more precise integer values.
It also allows to generate test data values for a given rang of integer data.

Cadar et al. [33] developed another family of concolic testing tools consists of EXE
[33] (Execution generated executions), KLEE [51] and Rwset [34](Read Write Set). KLEE
is the extended version of EXE. EXE is a bug finding tool for real time code based on
concrete and symbolic execution. KLEE is also a bug finding tool, along with it also
generates high line coverage on complex and environment intensive programs. Rwset
uses an efficient technique to prune the redundant program paths by tracking the memory
access (Read/Write) of program variables and based upon this information they limited the
redundant, unimportant paths. We have used JCUTE as a concolic tester, and it supports
most of the frequently used data types.

Jayraman et al. [30] developed a tool jJFUZZ. It is a Concolic white box fuzzer for Java
programs that built on the top of NASA tool Java Path Finder (JPF). It took a set of values
from user and derived a fuzzy set of values base upon them. It helps to exercise new control
path in the program. Tillman et al. [20] developed a tool Pex which is used for the test
case generation of .NET based framework. It extended the concept of dynamic symbolic
execution. We have developed the tool for Java programs. It takes Java program as an input
and generates test cases as an output. We have developed a code transformation technique
to increase the generation of test cases by JCUTE.

In Table 3.1, we have compared concolic testing tools. In Table 3.1, Column 2 shows the
programing language supported by the tool. Column 3 and Column 4 represents the platform
supported and Constraint solver used respectively. Column 5 shows the support for Float and
Double data types are available or not. Column 6 presents the support for pointer variables
is available or not. Similarly, Column 7 presents the support for native call. Column 8 and
9 shows the support for non-linear arithmetic expression and bitwise operator respectively.
Column 10 and 11 tells about array offsets and function pointers. The abbreviations used in

Table 3.1 are the following:

* “Y”means the tool supports the feature.
* “N”means the tool does not support the feature.
* “P”means the tool can partially support the feature.

* “NA”means unknown.

Table 3.2 shows different techniques developed using concolic testing. Column 3 and
Column 4 presents the testing type and framework developed. Column 5 and Column
6 represents the input and output for the proposed approach. Similarly Table 3.3 shows
characteristics of different techniques terms of test case generation, coverage percentage

measurement, determination of time constraints and speed computation.

17

Literature Survey

Chapter 3

VN VN N A N N A 19A10S LINS €Z XINIT o) HI0DS
VN VN N VN N VN VN ODOHD SMOANIM dHd 071104V
VN VN VN VN A N VN YHATOSIA SMOANIM HAO0D ANIHOVIN dOVS
VN VN VN VN N VN N £z SMOANIM LAN XHdd
VN VN VN VN N V VN VN VN VN D I TMVID HIVd
VN VN N N N VN N 4df NO I'TINd XONIT VAVI zznAl
VN A A A N A N d1S XNNIT D Lasmyd
VN A A A d A N dlLS XONIT o) HIT
N A A A N A N d1S XNNIT o) axd
N N d d N N N SHOIA XNNIT D LSTID
N N VN VN N - N VN SMOANIM/XANIT VAV(ALND!
N N VN VN N A N YAATOS d1 XNONIT o) HLND
N N VN VN N N N YAATOS d1 XNNIT o) LIVINS
N N VN VN N N N YAATOS d1 VN D ava
Jyurod uonduny 13syj0 do asimy1q | *do aedurj-uou | [[ed dApeU J1yurod J[qNOpP/Jeoy) | JIA[0S SHUIBIISUOD) uriopyelq Jgengue] JureN
10y 310ddng 10y 3a0ddng | a0y 3aroddng | aoy3yioddng | a0y jaoddng | a0y jioddng | a0y 3roddng j10ddng Sunaoddng Sunaoddng 1001,

‘sonzadold 1oy} YIm S193S33 O1[0oU09 JO Arewrwung :[°¢ 9[qeL,

18

Chapter 3

Literature Survey

Table 3.2: Summary of different work on concolic testing.

S.No Authors Testing FrameWork Input Output
Type Type Type Type
1 Das Concolic Testing, BCT,CREST, C-Program MC/DC%
etal. [15,22] MC/DC CA
2 Bokil SC, DC, AutoGen C-Program Test data,
etal. [29] BC,MC/DC Time
3 Majumdar HCT, BC CUTE Editor in Test Cases
etal. [37] C-Language
4 Burnim Heuristics Concolic CREST Software Branch
etal. [35] Testing, BC Application in C Covered
5 Kim Distributed Concolic SCORE Embedded C BC%,
etal. [21] Testing Program Effectiveness
6 Sen Concolic Testing, CUTE, C and Java Test Cases,
et al. [40] BC JCUTE Programs BC%, Time
Table 3.3: Characteristics of different approaches on concolic testing.
SL.No Authors Generated Test | Measuring Determined Computed
Cases Coverage% | Time Constraints Speed
1 Dasetal. [15,22] v v X X
2 Bokil et al. [29] v X v X
3 Majumdar et al. [37] v X X X
4 Burnim et al. [35] v X X X
5 Kim et al. [21] v v X v
6 Sen et al. [40] v v v X

3.1.4 Hybrid Concolic Testing

Majumdar et al. [37] presented a hybrid concolic testing for C programs. They have proposed

an algorithm that interleaves random testing with concolic testing to achieve both a deep

and a wide exploration of program state space. They have implemented their algorithm on

top of CUTE tool and applied it to achieve better branch coverage for two large C based

applications. For the same testing budget, almost they obtain 4 x branch coverage and 2 x

branch coverage of random testing and concolic testing respectively. We are inspired from

Majumdar et al.’s [37] core idea and proposed a new technique called Java-Hybrid Concolic

Testing, which is implemented in Java language.

19

Chapter 3 Literature Survey

3.1.5 Other Related Works

Ganai et al. [58] and Ho et al. [54] proposed a techniques of VLSI design validation where
a combination of formal (symbolic execution or BDD based reachability) and random
simulation engines are combined to improve design coverage for big scale designs. Our
proposed approach combines the Feedback-Directed Random Testing and Java Concolic
Testing for Java programs to obtain better MC/DC.

Pacheco et al. [38, 41, 43] presented a technique that improves random test generation
by incorporating feedback obtained from executing test cases as they are created. Their
proposed approach results a test suite consisting of Java unit tests for the classes to be tested.
Their experimental study shows that, use of feedback-directed random test generation is far
better than systematic and undirected random test generation in term of coverage and error
detection. In our approach, we used this improved random testing with the combination of
Java concolic testing to obtain high MC/DC.

Ferguson et al. [59] proposed an input generation technique that is initiated by executing
the program with a random input, and systematically creates the input values so that it follows
the different path. In our proposed approach, we combine the generated test cases through
two different testing methods to achieve high MC/DC.

Csallner et al. [36, 48] developed a tool called JCrasher. JCrasher is an independent
implementation of undirected random test generation whose goal is to uncover exceptional
behavior that points to a bug. It generates test data randomly, and then removes tests that
throw exceptions not considered by JCrasher to potentially reveal the faults. JCrasher takes
a list of classes to be tested and a ‘depth’ parameter that limits the number of method callers
it chains together as input. JCrasher created much redundant and illegal input that could be
detected using feedback-directed heuristic. Our proposed approach is based on Java Hybrid
concolic testing and target to measure MC/DC percentage.

Bush et al. [56] developed a testing tool called PREfix. PREfix typically finds more
defects than the software engineer. PREfix defects are not necessarily directly comparable
to defect counts, because PREfix sometimes reports several defects for a single underlying
cause. Bush et al. [56] reported the results for statement coverage, predicate coverage,
branch coverage, and path coverage.

Lietal. [12] implemented a prototype tool named as XPTester(Xacml Policy Tester) and
conducted extensive experiments upon real world policies to demonstrate the scalability,
efficiency, and effectiveness. Li et al. [12] proposed an automatic XACML requests
generation for testing access control policies by employing symbolic execution techniques.

Saito et al. [13] proposed an approach to generate test data for knowledge based approach
to generate test scenarios for Web Applications. Their approach can generate two types of
test data: Constraints-based test data and database-based test data. In our approach is based

on Java language and able to process Java programs. Our tool generate test cases to compute

20

Chapter 3 Literature Survey

MC/DC%.

Godboley et al. [9, 16—18] proposed a number of code transformation technique in order
to automate concolic testing for modified condition/ decision coverage test data generation.
Their pre-processing techniques are helpful in solving the short-circuiting effect of logical
expression which leads to a less number of test data generation. By using this code
transformation technique complier will generate more number of test data by traversing all

possible paths present in the execution tree.

3.2 MC/DC (Modified Condition/ Decision Coverage)
Testing

Awedikian et al. [31] have proposed a new approach of automatic test cases generation for
achieving MC/DC coverage. They have developed a new fitness function for the genetic
algorithm. The limitation of their work is that most of the time their hill climbing strategy
is used to get stuck in local minima instead of reaching to the global minima. We have
developed a code transformation technique to explore some uncovered paths present in the
program. The transformed program generates a number of test cases, with the help of which
we can achieve higher MC/DC.

Hayhurst et al. [53] have explained the building blocks of MC/DC and interpreted this
testing as a logic gate testing. They have used some boolean logic gate simplification to
reduce the number of gates required to get a boolean expression. We have used pattern based
short circuit methodology to generate the minimal (rn+1) test cases required for MC/DC of
n-conditional predicate.

Kuhn [57] has proposed the boolean difference approach to generate MC/DC specific
test cases. He has also defined about the faults that may come while MC/DC test case
generation. In our proposed approach, we have also tried to give a reflection of required
test cases according to the MC/DC code coverage. This will help the concolic testers to
generate a number of useful test cases.

Bokil et al. [29] have proposed and developed a tool called as Autogen, which generates
non-redundant MC/DC test cases. This tool works only for C-programs. They have used the
assert insertion methodology to create the test cases. They have found that there technique of
MC/DC test case generation takes 1/3 of time than manual test case generation. Our proposed
and developed tool is working for Java programs. We have used code transformation
technique to increase the number of test case generate to achieve higher MC/DC.

Godboley et al. [5] have developed a new approach to distributed concolic testing (DCT)
to enhance the MC/DC coverage. They have named their tool as SMDCT (Scaling MC/DC
percentage using DCT). In this technique, they have used EX-NOR code transformation[32,
50] and SCORE tool for reliable and scalable concolic testing. We have used JCUTE as a

21

Chapter 3 Literature Survey

concolic test case generating tool. We have not applied any distributed environment for our

proposed technique.

3.3 Testing and coverage analysis using UML diagrams

Swain et al. [28] developed a test case generation technique using UML use case and
sequence diagram. Their proposed technique is used for system and integration testing.
They have generated Use case dependency graph (UDQG) using use-case diagram and using
sequence diagram. They generated concurrent control flow graph (CCFG). By using these
two graphs they have generated test cases. Their testing strategy was based upon predicate
coverage.

Fraikin et al. [52] developed the concept for automated testing of OO (object
oriented)-programs and also developed a tool called SeDiTeC. It uses sequence diagrams,
which are complemented by test case data sets consisting of various parameters and return
values for the method calls. It supports specification of various test case data sets for each
and every sequence diagram. They have also introduced the concept of combined sequence
diagram to reduce the number of sequence diagrams.

Rountev et al. [46] defined various coverage criteria based on control flow. This testing
was for interactions among a set of collaborating objects. They proposed their technique for
UML Sequence Diagrams. The coverage criteria were based on Sequence Diagram that were
reverse-engineered from the program code. Their results compared different techniques for
testing of object interactions and provided insights for testers and for builders of test coverage
tools.

Nayak et al. [27] proposed a technique for synthesizing test data from the information
embedded in model elements such as class diagrams, sequence diagrams, and OCL
constraints. The test effectiveness of the system was dependent on the selection of different
tests. In this regard, selecting the test cases and identifying test cases boundary was an
important task. The final result of test data synthesis denoted a feasible domain which was
a sub-domain of the initial domain for the selected scenarios.

Abdurazik et al. [49] proposed an approach on the fault revealing capabilities of test
sets. The test cases were generated from UML statecharts and sequence diagrams. Their
experimental analysis concluded that the UML diagram can be use to produce test cases.
Also, they concluded that different UML diagrams play different roles in testing. Abdurazik
et al. [49] considered both State chart and sequence diagrams which is a merit to their
proposed work.

Chartchai et al. [23] proposed a technique which generated test data during the design
phase of a software under development. They proposed a genetic algorithm (GA) technique
for searching quality test data. Finally, they used these generated test data along with classes

created to generate JUnit test cases.

22

Vadakkumacheril et al. [19] proposed a technique for implementation of sequence
diagram to generate Java code with the help of XMI representation. They mainly focused
on Sequence Diagrams as the model. The transformation of UML to XMI was done with
help of BOUML? tool. They produced Java files according to the sequence diagram. They
had not proposed any technique to generate test cases, they have not computed any code

coverages.

3.4 Summary

In this chapter, we have thoroughly discussed the related work done in the area of test data
generation. We mainly focused on random, symbolic, concolic and hybrid concolic test data
generation techniques. We also presented few other related work on test data generation. We
discussed about the work related to modified condition/ decision coverage testing technique.
Subsequently, we have explained various works related to test data generation using UML

diagrams. Out of the nine important UML diagrams, we have focused on sequence diagram.

3http://www.bouml.fr/index.html

Chapter 4

Java-HCT: An approach to increase
MC/DC using Hybrid Concolic Testing

In this chapter we discuss a hybridized technique of MC/DC test data generation. We present
the algorithmic description of proposed approach followed by detail description. We also
discuss the assumptions taken and experimental analysis of the proposed technique.

Java-Hybrid Concolic Testing is the best combination of Feedback-Directed Random
testing and Java Concolic Testing to achieve better MC/DC. We have inspired from the
core-idea proposed by Majumdar et al.[37]. They proposed a Hybrid Concolic Testing
algorithm, that interleaves random testing with concolic execution to obtain both a deep
and a wide exploration of program state space. They have implemented their algorithm on
top of concolic tester (CUTE) and experimented to obtain high branch coverage for two large
programs; VIM 5.7 and Red black tree. Their results show that hybrid concolic testing obtains
almost 4 X than random testing and almost 2 X than concolic testing. We extend Majumdar et
al.’s [37] work for measuring MC/DC and that too for Java programs. Majumdar et al. [37]
implemented their algorithm using undirected random testing and concolic testing, whereas
we proposed an efficient technique i.e. Feedback-Directed Random testing with concolic
testing to obtain high MC/DC.

4.1 Overview of proposed framework

Our proposed technique Java-HCT consists of seven modules. These are 1)
Syntax_Converter, ii) RANDOOP, iii) jCUTE, iv) TCs Extractor, v) TCs Combiner,
vi) TCs Minimizer, and vii) COPECA. These modules are shown in Figure 4.1. Java-HCT
accepts a Java program and produces MC/DC%. Basically Java-HCT is the combination of
RANDOOP and jCUTE that produces test cases which are plugged into our developed tool
COPECA (Coverage Percentage Calculator) so that, the hybrid tool is capable of computing
MC/DC%. Java-HCT deals with hybrid concolic testing of Java programs by combining
Feedback-Directed Random Testing and concolic testing. Our proposed technique provides

deep as well as wide exploration of concolic execution, which is represented in Figure 4.2.

24

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Java-HCT

-
I RANDOOP TCs Extractor
Jawva Program in
™ FANDOOP syntax

v
TCs Extractor \\\ﬁq ?
) G\

Jawa Program
in JCUTE
syntax

. I Test Cases Combiner
Syntax_Converter JCUTE !
A
Java Program Total Tests
Cases
W W
COPECA Minimized

TCs Minimizer
Tests Cases

MC/DC %

Figure 4.1: Schematic representation of Java-HCT

Concolic: Broad, shallow

Random: Narrow, deep HCT: Deep, broad search Hybrid Search

Figure 4.2: Benefit of Hybrid concolic testing

25

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2 Description in detail

Figure 4.1 shows the tool for Java-Hybrid Concolic Testing (Java-HCT). Java-HCT 1is
developed by integrating seven modules. The process starts by supplying a Java program.
From Figure 4.1 we can observe that, this Java program is converted into two different
syntaxes using Syntax_converter. Since, we supply this Java program into both RANDOOP
and jCUTE, it is essential to convert the original Java program into respective tool
syntaxes. Now, the Java program in RANDOQOP syntax is supplied to Random tester for
Object-Oriented Programs (RANDOOP) to generate 7Cs_R automatically. Similarly Java
program in JCUTE syntax is supplied into Java Concolic Unit Testing Engine (JCUTE) to
generate 7Cs J automatically. Unfortunately, TCs R and TCs J are not in same syntax.
Therefore, TCs Extractor module is used for both test suites to extract the input values those
are present in TCs_R and TCs_J as described in Figure 4.1. Then all the extracted input
values are supplied into 7Cs Combiner to produce Total test cases. Since, these test cases
may be redundant and useless for MC/DC, therefore we have developed a module named
TCs Minimizer that accepts all the input values and checks which are essential to compute
MC/DC percentage and removes rest of those non-essential test cases. Now, the minimized
test cases are supplied into COverage PErcenatge CAlculator (COPECA). Since, we focus
on increasing MC/DC percentage, so we have developed this COPECA to measaure MC/DC
percentage. COPECA accepts the minimized test cases along with the original Java program
as input and produces MC/DCY%, as output.

Below, we discuss in detail about each module used in Java-Hybrid Concolic testing.

4.2.1 Syntax Converter

Syntax Converter is developed by us. The original Java program is not executable in both
JCUTE and RANDOOP tester. So, syntax convertor converts the Java program into an
appropriate formate of JCUTE and RANDOOP. In RANDOOP, we have add a new user
defined function e.g. function which takes the input data values from the RANDOOQOP tester
instead of the user. For RANDOOP, Syntax converter replaces all the statements inside the
main function body to an another function and passed the variables as function parameter
for which the RANDOQOP drive test values. In RANDOOP, there is no need to add any
external import package in the Java program. RANDOOP supports all the Java library files.
Whereas, for JCUTE, syntax converter has to add a new package i.e. “import cute.Cute;”.
Also, wherever the variables are scanning values from user r any pre-specifiewd file we have

to replace it with a particular syntax of JCUTE according to the datatype of the variable.

26

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2.2 RANDOOP

RANDOQP is an open source tool which generates feedback-directed random test cases for
unit testing. It is a plugin for Eclipse or NetBeans IDE. We have used it with Eclipse. Radoop
generates test cases randomly, but smartly. It generates sequences of constructor invocations
or method invocations for the classes under test. It executes the created test sequences, and
using the result generated from the execution it creates assertions, which helps to capture
the behavior of the program. It generates the test cases from assertions and code sequences.
RANDOOP is mainly used for two purposes: i) To detect the bugs present in the program.
i1) To create test cases for regression testing. It is very powerful tool. It detects mainly
previously undetected errors in IBM’s JDKs, SUN’s JDKs and Core.Net etc.

423 jCUTE

It stands for Java Concolic Unit Test Engine. It is an open source tool available on Internet
I It is an automated concolic testing tool which generates test cases for both simple and
multi-threaded Java programs. It also supports the concurrent programs. Concolic testing
combines the concrete and symbolic testing technique with using a powerful constraint
solver. It discovers the deadlock and race conditions using schematic schedule explorations.
JCUTE is using vectorized clock to generate large number of test cases and to support the
concurrent programs. It creates execution tree for the program and tries to reach all the
leaf nodes of the tree. JCUTE supports three different types of search strategies i.e. Random
Search strategy, Depth First Search strategy and iii) Quick Search strategy. In the Depth First
Search strategy we have to mention the maximum depth and in Quick Search strategy we
have to mention the threshold value. The first value chosen jJCUTE is a Random Number.
Mostly the value is taken from one the largest number supported by the variable data type
for jCUTE. It maintains log files and maintain traces for each run. The search optimality is

based upon the path coverage and branch coverage.

4.2.4 TCs Extractor

It is developed by us. TCs Extractor is used for the test cases generated by RANDOOP.
Actually, RANDOOP generates ‘n’ number of test data files along with one extra file which
contains the information about the total number of generated files. In each generates test data
file there are ‘m’ number of test cases are present. So, TCs Extractor extracts all the ‘m’ test
cases from each ‘n’ number of test data files and keep it in a single file which contains total

‘n*m’ test cases. This module is developed in Java language.

Thttp://osl.cs.illinois.edu/software/jcute/

27

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2.5 Test Cases Combiner

Test Cases Combiner is also developed by us. It combines the test cases generated from
JCUTE and RANDOOP. jJCUTE generates a single test data file. So, we can directly supply
it to the Test Cases Combiner, whereas RANDOOP generates a number of test data file.
So, we use TCs Extractor to store all Test cases generated by RANDOOP in a single file.
Therefore, the file generated by TCs Extractor is passed to the Test Cases Combiner. The
output of the Test Cases Combiner is a single test data file which contains both JCUTE and
RANDOQOP generated test cases. The module is also developed in Java.

4.2.6 COPECA

It stands for COverage PErcentage CAlculator. COPECA is developed by us. It measures
the MC/DC coverage of the given Java program using the test cases generated from jCUTE.
We have developed COPECA in Java. The working principle of COPECA is based upon
ETT(Extended Truth Table) creation. For each of the predicate present in the program
COPECA creates Truth Table and Extended Truth Table with the help of test cases generates
by the JCUTE tool. Using the extended truth table, it detects the number of independent
clauses present for that particular predicate. MC/DC % is computed with the help of the

following formula:

Z?:l 27:1 Ij

Zi:l Zj:l Cj

100 vV, C; =1 (4.1)
Where, n is the total number of predicates present the program and for each predicate m
number of conditions present in the predicate i. The value of m is varying from one predicate
to another predicate. The value of /; = 1, if I; is an independent clause otherwise I; = 0.
COPECA is a very robust tool. It can handle java program of any size. The Graphical User
Interface of the developed COPECA is shown in Figure 4.15.

4.2.77 TCs Minimizer

This module is also developed by us. The TCs Minimizer is used to eliminate all the
redundant and non-essential test cases present in the combine test data suite. The working
principle of TCs Minimizer is based upon the generated Extended Truth Table (ETT) for a
predicate. It detects first essential test case pair in order to prove a simple condition as an
independently affecting condition. It stores all the first time detected essential pair of test
cases for each independent clauses present in the program in a unique test case set. Finally,
it eliminates all the non-essential test cases present from the test suite and keeps only the
essential one. This working principle of TCs Minimizer ensures that, it will not reduce the

MC/DC% of the program which is computed with the set of original combined test data suite.

28

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

The Graphical User Interface of the developed TCs Minimizer is shown in Figure 4.16.

4.3 Algorithmic Description

In this section we present the algorithms used in ourproposed technique.
Algorithm 1 deals with the pseudocode of Java-Hybrid Concolic Testing. We can observe
from this algorithm that we supply a Java program into Java-HCT tool to produce MC/DC%.

Algorithm 1 shows the control flow of the overall procedure of our proposed approach.

Algorithm 1 Java-HCT
Input: J (Java Program)
Output: MC/DC%

1: Jg,Jy < Syntax_Converter(J)

2: TCs R <+ RANDOOP(Jg)

3: TCs J <+ jCUTE(J))

4: Input_values < TCs_Extractor(TCs R, TCs_J)
5: Total TCs < TCs_Combiner(Input_values)

6: Minimized TCs < TCs_Minimizer(Total TC's)
7. MC/DC% < COPECA(J, Minimized TC's)

8: return M C/DC%

Line 1 shows the execution of Syntax Converter using Java program as input and
produces Java program in RANDOOP syntax (Jr) and Java program in jCUTE syntax (J;)
as two outputs. Line 2 shows the execution of RANDOOP tool by supplying Ji as input
to generate test cases from RANDOOP tool (T'C's_R). Line 3 presents the execution of
JCUTE tool by supplying .J; as input to generate test cases from JCUTE tool (T'C's_.J). Now,
these two generated test case sets (7'C's_ R, T'C's_J) are forwarded to Test Cases Extractor
(TCs Extractor) modules to separate each input values after extracting from these two sets
as presented in Line 4.

Line 5 shows the execution of Test cases Combiner (TCs Combiner). This Combiner
module collects all the input values created from TCs Extractor and gathers in single set
called Total Test Cases (Total TCs). Line 6 shows the minimization process of total test
cases generated through Test Cases Minimizer (TCs Minimizer). This module produces
Minimized Test Cases (Minimized TCs).

Line 7 deals with the computation of MC/DC% through COPECA after supplying the
original Java program along with the Minimized TCs as input. Line 8 returns the final
MC/DC% as output.

Algorithm 2 describes the process of (COverage PErcentage CAlculator(COPECA)).
COPECA accepts Java program along with Test cases. COPECA produces MC/DC%,
Time, Predicates, Clauses(C), Variables, and Independently affected Conditions (I). Line 1

starts recording execution time. Lines 2 to 4 scan all the statements in program and identify

29

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

predicates present in program. Lines 5 to 7 identify total clauses and variables present in
the program. Lines 8 to 9 perform test cases file separator. Lines 10 to 13 use all test cases
and drive our predicates to generate Extended Truth Table (ETT). ETT refers the concept
of MC/DC. Through ETT we detect the total number of independently affected conditions
after following MC/DC rules as discussed in Basic Concept. Line 17 uses a mathematical
equation to finally compute the MC/DC%. Line 18 stops recording the execution time
i.e. Last time-stamp. Line 19 calculates the difference of both first and last recorded time

stamps to measure total execution time of COPECA.

Algorithm 2 COPECA

Input: Java Program (J), TC

Output: MC/DC%, Time, Predicate, Causes(C), Variable, Independently affected
conditions(I)

1: First Time-stamp <« Start time of recording

2: for <each statement s e J>do

3 if s contains && or || then

4 P+ PJ{s}

5. for <each predicate p ¢ P> do

6: C <+ C|J{c};1dentify clause ¢ present in predicate p
7 V « V | J{v}:Identify variable v present in clause ¢
8: for <each testcase t. ¢ T'C> do

9 Create separate file that contains selected input values

10: for <each predicate p ¢ P> do

11: for <each testcase t. ¢ TC> do

12: Assign selected input values from ¢, into corresponding variable present in
predicate p.

13: Generate Extended-Truth Table

14: for <each clause ¢ ¢ C> do
15: if c is independently af fected clause then

16: I+ I'\J{c}
172 MCDC% = % 100

18: Last Time-stamp < Stop time of recording
19: Total execution time <— Last Time-stamp - First Time-stamp

Explanation 1: Why this TCs Extractor is needed?

Justification: TCs Extractor is required because the test data generated from RANDOOP
are present in different test data files and each of the test data file contains many test cases.
So, these two generated test case sets (Test cases generated from JCUTE and RANDOOP)
are in different formats. 7'C's R, and T'C's_J consist of other information also. But
to measure MC/DC%, we require only input values those are automatically selected for
declared variables. Therefore, this extractor retrieves the only useful input values from both
the sets and saves in different files which are compatible to COPECA.

30

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Explanation 2: Why this TCs Minimizer is needed?

Justification: TCs Minimizer is required to remove non-essential test cases [42].
Non-essential test cases are test cases those are not required to support the set of conditions
to be included in independently affected conditions set according to the definition of
MC/DC. We observed that RANDOOP generates a large number of redundant test cases, so
our minimization is helpful to remove such redundant test cases. Since, we merge two test
case sets i.e. (T'C's_R,TCs J), so there may exist duplicate test cases, therefore we use

our minimizer technique to remove such duplicate test cases.

4.4 Experimental Study

In this section we discuss our experimental study by explaining the experimental setup, result

analysis, and threats to validity.

4.4.1 Experimental Setup

The experimental programs are ran on a computer system that has 4GB of memory (RAM)
Intel(R) Core(TM)15 CPU 650 @ 3.20 GHz 3.19 GHz and 32-bit operating system.

Our tool Java-HCT consists of mainly seven modules as shown in Figure 4.1. We
have developed Syntax Converter that converts the original Java program into two
syntactically different programs according to RANDOOP and jCUTE syntax. We have used
Feedback-Directed Random Testing tool (RANDOOP) developed by Pacheco et al. [43]
RANDOQOP uses random testing and systematic testing (Feedback-Directed) in such a way
that it generates test cases that achieve better code coverage as compared to existing random
testing techniques. For more information regarding RANDOOP tool, the readers are advised
to refer Pacheco et al. [43]. We have used Java Concolic Unit Testing Engine(JCUTE)
developed by Sen et al. [40]. CUTE uses concrete and symbolic testing simultaneously
to generate test cases automatically. For more details on JCUTE please refer to [40] We
have developed TCs Extractor that accepts two different test case sets (7'C's R, TCs _J)
individually and produces different input values. We have developed Test Cases Combiner
(TCs Combiner) that collects all input values extracted from 7T'C's R & TC's J, and
combines them into a single test case set. We have developed COverage PErcentage
CAlculator (COPECA) based on Extended Truth Table (ETT) concept. COPECA identifies
total independently affected conditions according to MC/DC criterion. COPECA receives
the original Java program along with the Minimized test cases as input and to produces
MC/DC% as output. Integrating all these seven modules forms the Java-HCT. Hence,
we propose a new hybrid concolic testing for Java programs which is the combination
of Feedback-Directed Random Testing and Java Concolic Testing. We have carried out

experimental analysis of our proposed approach with forty Java programs, selected from

31

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

various sources. Some of the programs such as StringBuffer, SwitchTest etc are taken
from Open Systems Laboratory Repository >. Some of the programs are considered
from programming sites * and rest of the other programs are considered from the student
assignments submitted by PG (Post Graduate) students of Software Engineering course at
NIT Rourkela.

4.4.2 Assumptions

* The experimental program must contain at least one predicate with minimum two

clauses.

* The clauses must in form of strings with pattern “[(]"[A — Za — 20 — 9_]*])]"[<=, <
==, =,>>=|[(]"[A = Za — 20 — 9 _|T[)]"”. wheren C N

* To identify independently affected conditions through effect analyzer, it is essential to

supply at least two test cases according to the definition of MC/DC.

4.4.3 Implementation

In this section, we present the working of our proposed technique with the help of a sample
Java program.

Figure 4.3, shows a sample Java program i.e. GradeCalculation.java. This Java
program calculates the grade of students based upon their marks. There is only one
single integer variable present in this program i.e. marks. To execute the Java program
in JCUTE or RANDOOP, we have to convert it into their respective formats. First, we
supply GradeCalculation.java to Syntax Converter as shown in Figure 4.4. The output of
Syntax_Converter is two Java files. One is executable on JCUTE and other is on RANDOOP
tester.

Figure 4.5 shows the JCUTE executable Java code. In this the header part is replaced
by the JCUTE related package. We have added “import cute.Cute;” statement. Also, it has
changed the variable definition syntax as per the rule of JCUTE. The integer variable marks is
definition as “marks= Cute.input.Integer();”. Remaining other statements are written same
as its is. Similarly, for RANDOOP executable Java code it has made few changes. The
RANDOOP executable Java code is shown in Figure 4.6. In this program all the scanning
variables must be passed through as function parameter. So, we have added a new function
called function in the program and substituted whole logic code inside it. we have passed
the marks variable through the function as per the RANDOOP syntax. Unlike jCUTE, there

is no requirement of any specific library file.

Zhttps://github.com/osl/jcute/tree/master/src/tests
3http://www.programmingsimplied.com/java-source-codes

32

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.7 shows the execution of Java program on RANDOOP and successful test
case generation. There are total seventeen files of test cases are generated. Each of these
seventeen files contains variable number of test cases. Figure 4.8 shows the total one hundred
seventy seven test cases are generated. Figure 4.9 shows the RandoopTest.java file which
contains the information about all other generated test data files. It doesn’t contain any test
case value. It shows that by combining all the test data files, it creates a test suite. Figure
4.10 shows a test data file. A single test test data file contains a large number of test cases.
All the test data values are present as the function parameter.

Figure 4.11 shows the test case generation from jJCUTE tool. There are total five test
cases are generated from jJCUTE. The test data generate rate of JCUTE is very much lesser
than the test data generate rate of RANDOOP. But, the data values generated by JCUTE is
very much effective even though it is much less. Figure 4.12 shows the other parameters
computed by JCUTE. We can observe that the number of functions invoked is one, total
number of branches covered is eight, branch coverage percentage achieved 25% and the total
number of paths traversed is seventy four out of five hundred within 21466 milliseconds =
21 seconds. Figure 4.13 shows the test cases generated by jJCUTE.

After the successful execution of Java program, we have to execute the TCs Executor
which will merge the total 177 test cases generated by RANDOOP in a single test case file.
After that the single test data file generated for the RANDOOP is combined with the total test
cases generated from jJCUTE. This process of test cases combination is done by an another
module that is Test Cases Combiner. We have developed a tool and named it as Java-HCT.
This Java-HCT contains this four modules which are TCs_Executor, Test Cases Combiner,
TCs Minimizer and COPECA (Coverage Percentage Calculator). Figure 4.14 shows the
graphical user interface of Java-HCT. For the given Java program, we have analyzed the
Modified Condition/ Decision Coverage percentage using our developed tool COPECA. We
achieved 41.667% of MC/DC with Independent Clause is equal to 5 and Simple Clause
is equal to 12, when analyzed with only JCUTE generated test cases. Similarly, we have
checked for RANDOOP generated test cases and we have achieved 66.667% of MC/DC.
The value of Independent clause is equal to 8 and Total simple conditions is equal to 12.
Then, we have combined the test cases from JCUTE (Test cases generated is equal to 6) and
RANDOQP (Test cases generated is equal to 177)and with the help of combined test cases
(Now, the test cases is equal to 182 (177+6)), we have computed the MC/DC%. The MC/DC
percentage achieved is 83.33% which is higher than the previously computed two M<C/DC
percentages. The total detected independent clauses are ten.

We can observe that there are number of entries in the extended truth table for a single
condition. To prove a condition as independent a single pair of test case is also sufficient.
So, we have developed a test case minimization approach based upon the redundant
and non-essential test data removal strategy. The graphical user interface developed of

minimization is shown in Figure 4.16. We can observe that, for the given program the

33

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package hybrid_testingil;

import java.util.Scanner;

public class GradeCalculation {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

int marks = in.nextInt();

try{

System.out.print("Please enter your Marks (between O to 100) >> ");
if (marks<O0)

{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if (marks==0)

{System.out.println("You got Zero Marks: Go to Z00");}

else if (marks>100)

{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}

else if ((marks>=35) && (marks <50))

{System.out.println("YYour grade is C");}

else if ((marks>=50) && (marks <60))

{System.out.println("Your grade is C+");

Yelse if ((marks>=60) && (marks <70))

{System.out.println("Your grade is B");}

else if ((marks>=70) && (marks <80))

{System.out.println("Your grade is B+");}

else if ((marks>=80) && (marks <90))

{System.out.println("Your grade is A ");}

else if (marks>=90){System.out.println("Your grade is A+");}
}catch (Exception e){

System.out.println("Invalid entry for marks:");}

3}

Figure 4.3: Original Java program

34

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

-

| £ Syntax_Converter - o = = - — . =T W T ™™=

Syntax_Converter info

Input a Java Program

s\WRPITADeskiop\deskioptjcutelsroitests\GradeCalculation java Browse |

CONVERT

VIEW jCUTE SYNTAX FILE: VIEW |
VIEW RANDOOP SYNTAX FILE: VIEW |

NO. OF PREDICATES IDENTIFIED: G [VIEWPREDICATES |
NO. OF NON PREDICATES IDENTIFIED: 25 [VIEWNONPREDICATES |
NO. OF CONDITIONS IN THE PROGRAM: 12 [VIEW CONDITIONS |

LINE OF CODE(Original Program): 31

TOTAL TIME TAKEN: 445 ms

Figure 4.4: Graphical User Interface of Syntax Converter

total number of combined test cases is 182. After applying the minimization technique,
the test cases are reduced upto a very large extent. Now, the number of essential condition
is only eighteen and other remaining test cases are non-essential. We have gain verified the
MC/DC% with the help of these minimized test cases. We have achieved same MC/DC
value i.e. 83.33%. There is no change in MC/DC. The graphical interface developed for
COPECA is shown in Figure 4.15.

4.4.4 Result Analysis

Table 4.1 deals with the characteristics of different target Java programs. Column 3 shows the
size of programs in Lines of codes (LOCs). Columns 4,5,6, show the Predicates, Conditions,
and Variables respectively.

Table 4.2 shows the statistics of results on execution of RANDOOP and jCUTE tool.
Column 3 deals with the total test cases generated. Column 4 presents the reduced number
of'test cases. Column 5 presents the total execution time of RANDOOP (Time 1) in seconds.
Here, we have set the time 100 sec for all programs.

Table 4.3 shows the statistics of results on execution of JCUTE. Column 3 detects the
total number of branches covered. JCUTE explores the unexplored paths. Column 4 shows

the total number of paths covered. JCUTE finds the errors after executing the Java program.

35

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package tests;

import cute.Cute;

public class GradeCalculation {

public static void main(String[] args) {

int marks;
marks= Cute.input.Integer();
try{

System.out.print("Please enter your Marks (between O to 100) >> ");
if (marks<O0)

{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if (marks==0)

{System.out.println("You got Zero Marks: Go to Z00");}

else if (marks>100)

{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}

else if ((marks>=35) && (marks <50))

{System.out.println("YYour grade is C");}

else if ((marks>=50) && (marks <60))

{System.out.println("Your grade is C+");

Yelse if ((marks>=60) && (marks <70))

{System.out.println("Your grade is B");}

else if ((marks>=70) && (marks <80))

{System.out.println("Your grade is B+");}

else if ((marks>=80) && (marks <90))

{System.out.println("Your grade is A ");}

else if (marks>=90){System.out.println("Your grade is A+");}
}catch (Exception e){

System.out.println("Invalid entry for marks:");}

3}

Figure 4.5: Java program in JCUTE executable format

36

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package hybrid_testing;

import java.util.Scanner;

public class GradeCalculation {

public void function(int marks){

try{

System.out.print("Please enter your Marks (between 0 to 100) >> ");
if (marks<0)

{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if(marks==0)

{System.out.println("You got Zero Marks: Go to Z00");}

else if (marks>100)

{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}

else if ((marks>=35) && (marks <50))
{System.out.println("YYour grade is C");}

else if ((marks>=50) && (marks <60))
{System.out.println("Your grade is C+");

}else if ((marks>=60) && (marks <70))
{System.out.println("Your grade is B");?}

else if ((marks>=70) && (marks <80))
{System.out.println("Your grade is B+");}

else if ((marks>=80) && (marks <90))

{System.out.println("Your grade is A ");}

else if (marks>=90){System.out.println("Your grade is A+");}}
catch (Exception e)

{System.out.println("Invalid entry for marks:");}}

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

int marks = in.nextInt();

GradeCalculation gc =new GradeCalculation();
gc.function(marks);

1}

Figure 4.6: Java program in RANDOOP executable format

37

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Fle Edit Source Refactor Navigate Search Project Run Window Help

n A RS | s (BRI S R S AR N R AR R R Quaedcess | 1 |) Deug

4 Package Explorer 17 G|% *° B g Rndooples..) Randooplest.. 1) AsserTetl... [maths.caljave | [GradeCalcul.. 33 %% S 8 Tasklit 2 5 B8
b 4] comparisiond.java - package hybrid_testing; -0 3 ,HE]QE:‘ ?lxite ‘ 4
» I condiionjeva import java.util.Scanner; N
B Fi B public class GradeCalculation {
T = public void function(int rarks){ =

b) GradeCalculation,ava try{//Scanner class is wrapper class of System.in object Find Q] P ALY Adiate.
b 4] HelloWorld,ava System.out.print("Please enter your Marks (between @ to 160) > ");
3 m Market Sales java [/Checking input validity and grade based on input value
b) maths_caljava 2‘:("‘3”‘5(0)
: m QuineMcCluskeyAlgorthm ave System.out.println("Marks can not be negative: Your entry= "+ marks);
b 4] test higherjava Jelse if(narks—0){

i B JRE System Library [JavaSE-1.5] System.out.println("You got Zero Marks: Go to 200");

b g test

b 8 testl telse if (marks>100){

b AsserTestd

System.out.println("Marks can not be more than 180: Your entry= "+ marks);
i §® bubblesort

i @ CAssumel }
i CAssumel else if ((marks>@) && (marks<35))
% AssetTestl {
» g8 coniton System.out.println("You need to work hard: You failed this time with marks ="+ marks);
> @ Fruit Basket
4 (# GradeCalculation } (® Connect Mylyn X
4 it rendoop else if ((marks)=35) & (marks <58)) g Connectto yourtask and ALM tools or
b §] RandoopTest jave i . f create alocal task.
4) RandoopTestd java
4 {9 RandoopTest) @ Javadoc [2) Declaration ' Console 82 R Randoop 3 Call Hierarch MmE-f-=8
& debug inated> RandoopTest [Randoop Launcher] C:\Program Files\Java\jrel 8.0_511b (May 15, 2017, 3:34:25 PM)
@ testl(): void B
@ testl0() : void m

@ testld0: void
@ testl1]: void
@ testld2): void
o testll3(): void
@ testld(): void

Randoop Test Data

| Writable ‘ Smart Insert ‘ 16:41 ;

Figure 4.7: Test data generation from RANDOOP framework

File Edit Source Refactor Navigate Search Project Run Window Help

whd e AE R R R 0 R B CREL T A R R Quickhccess | 15 | [@TTava) 4 Deoug

[% Package Explorer 1%) \ # =0 RandoopTest... RandoopTest.. AssertTestl... maths_caljava [J] GradeCalcul.. 51 % = 0 [Tasklist % |
b) comparisionl java - package hybrid_testing; NG .|E]®=-:‘ -.,-‘ X1 B ‘ q
» 1) conditionjava impol:t Java.util.Scanner;) -
F @ Frint Basketjava public class GradeCalculation {
Fi @ public void function(int marks){ Td Q)

1) GradeCalculationjava try{//Scanner class is wrapper class of System.in object [Find Q¥ AL P Adiate.
b) HelloWorld,ava System.out.print("Please enter your Marks (between @ to 100) >> ");
b 4] Market Sales java /fchecking input validity and grade based on input value
b 11} maths_caljava ?(mﬁrksw)
I m i e e System.out.println("Marks can not be negative: Your entry= "+ marks);
b 1) test higherjava Jelse if(narks=cd){

» @\ JRE System Library [JavaSt-Li] System.out.println("You got Zero Marks: Go to 200");

b g8 test

) B testl Jelse if (marks>108){

b i AssertTest?
» i bubblesort
b @ CAssumel }
b g Chssumel else if ((marks>8) & (marks<35))
b G AssetTest] {
» @@ condition
- Fruit Basket
4 @ GradeCalculation } (® Connect Mylyn X
4 i randoop else if ((marks>=35) & (marks <50))
3 @ RandoopTest.java 1 L
4) RandoopTestd java
4 {2 RandoopTestd @ Javadoc @ Declaration) Console R Randoop 3“5 Call Hierarchy %G8 Q=0

& deb
50 Failure:

i Tests generat
o sl void -~~~]
@ 1estl00(): void Failures:

@ testl01(): void

@ testl02(): void

@ testl030:void

@& testldd(): void %

System.out.println("Marks can not be more than 168: Your entry= "+ marks);

System.out.println("You need to work hard: You failed this time with marks ="+ marks);

- Connect to your task and ALM tools or
b creste a local task.

Figure 4.8: Successful execution of total test cases

38

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Fle Edit Source Refactor Navigate Search Project Run Window Help

‘ﬁ'ﬁ'[ﬂ@;\“?@i’@@‘Q'O‘q"ﬂ?@"B@ Awil e e e Quick Access j@“%ﬁﬂabug

[§ Package Bxplorer 1 & ‘ @ Y= 0 [RandoopTest..) Randooplest..] AssertTestl.. [J] maths caljava [J) GradeCelcul.. fJ) RendoopTest.. |) "RandoopTes.. 21 %% 0
b test B package randoop; N
b B testl 4 import jupif.framework.?; _;
8 AseTes) public class Randnoplest, extends TestCase { H
: public static void main(String[] args)
> B bubblesort TestRunner. rumer = new TestRumer(); 5
b CAssumel TestResult result = runner.doRun(syite(), false); o
b G Chssumel if (! result.wasSuccessful()) {

b AssetTestl System.exit(1);
b g condition . .
= public RandoopTest(String name) {
b Fruit Basket super(nane);
4 GradeCalculation iY "
4 i randoop = public static Test suite() { -
4 f§) RendoopTest jave o Teskauite result = new Testiuite(); o
@ Rimdooolss b result.addTest(new TestSuite(RandoopTestd.class)); a
E § J L% result.addTest(new JestSuite(RandoopTestl.class));
main(String]]): void b result.addTest (new TestSuite(RandoopTest2.class)); EEC]
o sute): Test b result.addTest (new TestSyite(RandoopTest3.class)); b
& RandoopTest(Stiing) B result.addTest(new Testouite(RandoopTest4.class)); .
b §] RandoopTestd java o result.addTest(new Testauite(RandoopTests.class)); E
| result.addTest(new TestSuite(RandoopTesté.class));
» B RandocTet jova I result.addTest(new TestSuite(RandoopTest?.class)); E
b 4l RandoogTest0java b result.addTest (new JestSuite(RandoopTest8.class)); o
) §l) RandeopTestll java B result.addTest(new Testouite(RandoopTestd.class)); o
b @ RandeopTestl2java bl] result.addTest(new TestSuite(RandoopTest1d. class)); o
) i RandocpTestl3jave i result.addTest(new TestSuite(RandoopTestll. class)); =
t h result.addTest(new TestSuite(RandoopTest12. class)); "
! @ faoop [l h result.addTest(new JestSuite(RandoopTestl3. class)); i)
4] RandoopTest5jave b result.addTest(new TestSuite(RandoopTestld, class)); E
b] RandoopTestl6java b result.addTest (new TestSuite(RandoopTestls. class));
b) RandoopTest2,java b result.addTest (new Testouite(RandoopTestl6. class));
b @ RandoopTest3 java L return result; W
b) RandoopTestd java i ! 4
[3 @ RandoapTests java 7|)
» §) RandoopTesth,java
b @ RandoopTest7 java Jh|] & ‘avadac 2 Console | R Randoop 3 e Ca GEk=0

Figure 4.9: RandoopTest.java program contains information about all the generated test case
files

Rt e

Project Bun Window Help

R T N R = R B = e Cuick Access E | (@7) 45 Debug
F o) RandoopTest. 52 4 b =2A

B package randoop; .
T

import jupit.framework.*;
EI @& public class Randooplest@® extends TestCase {
public static boolean debug = false;
E: public void testl() throws Throwable {

& if (debug) System.out.printf{“¥nRandoopTest@.testl");

i

hybrid_testing.GradeCalculation var@ = new hybrid_testing.GradeCalculation();
var@.function(18);
var@.function(1);
var@.function(1);
var@.function(1);
var@. function(i@);
var@.function(188);
var@.function(@);
var@.function(@);
var@.function(1);
var@.function(186);
! var@.function(1@);
o var@.function{18);

@ 1
= public void test2() throws Throwable {

if (debug) System.out.printf(~%nRandoopTest@.test2");
claration] Console [Randoop 32 all Hierarchy %am Q=0

Figure 4.10: Test Cases present in a single test data file

39

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

@ JCUTE (CUTE for JAVA): lic Testil
W
% [#-
(@ p B Ju
rJava Program to be Tested
Source Directory |C.\Users\ARF'ITA\DesIdop\desktop\jcule\src ‘ &=
Main Java File |C:\Users\ARF‘ITA\DesIdop\desktop\jcute\arc\te sts\GradeCalculation java \ [
Function to be Tested |tests.GradeCalcu lation.main ‘ - | Program parameters |
Testing Log | Output | Statistics
-Log
rPath# | Input Trace Source:
1 101(integer) in main |- : call in main
2 - : other in main
3 ---: call in main
4 - : other in main
last ---: branch in main
- : branch in main
---: branch in main
- call in main
---: other in main
- call in main
---: other in main
- call in main
---: other in main
|—: call in main
---: other in main
|—: call in main
---: other in main
|—: other in main
rProgress
Paths Covered 74/500 Branches Covered 8 Branch Coverage 25.0% Errors 0 DFSInfo 0/0/5
Total Progress [T I

Figure 4.11: Test data generation from JCUTE tool

|
Java Program to be Tested |
Source Directory |C'\U5ers\ARF'ITA\Desk‘lop\desKtop\jcute\arc ‘ = ‘
Main Java File |C:\Users\ARPITA\DesIdop\desKtop\jcule\src\te sts\GradeCalculation.java | [
Function to be Tested |te5ts.GradeCalcu lation.main ‘ b | Program parameters \

[Testing Log | Output | Statistics |

r Summary of Bugs Found rCoverage 5 ¥
Total number of erroneous execution paths : 0
Number of execution paths violating jCUTE assertion : 0 | | Total functions invoked : 1
Humber of deadlocked execution paths : 0 Total branches covered : g
Humber of execution paths throwing an Exception : 0 Percentage of branches covered : 25.0%
Number of execution paths having data-races : 0 Total number of execution paths : 74
Number of fields having race : 0 | | Total runtime in milliseconds : 21486
Number of distinct exceptions thrown : 0
- Coverage Details
& branches covered out of 32 branches in the function <tests.GradeC: ion: void main(j lang.String[])>
Progress
Paths Covered T4/500 Branches Covered 8 Branch Coverage 25.0% Errors 0 DFS Info 0/0/5
Total Progress [T]

Figure 4.12: Different parameter computation using JCUTE

40

Chapter 4

Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

public woid testl{){
1=0:
input = new Object[1]:
input[i++] = new Integer (577319795 ;

i=0;

cute. Cute . input = thi=s;

test=s GradeCalculation maininull]};
T
public woid test2()1{

i=0;

input = new Object[1]:

input[i++] = new Integeri(-—1);

i=0;

cute. Cute . input = this=s;

test=s . GradeCalculation. maini{null) ;
T
public woid test3(){

i=0;

input = new Object[1];

input[i++] = new Integexri(0):

i=0;

cute. Cute. input = thi=;

test=s . GradeCalculation. maini{null) ;
I
public woid testd4i(){

i=0;

input = new Object[1];

input[i++] = new Integeri(l):

i=0;

cute. Cute.input = thi=;

tests . GradeCalculation maini{null) ;
T

Figure 4.13: Test Cases generated by JCUTE

41

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

CUsers\ARPITAworksnacelhvorid testino\GradeCalculationirandoon

=

0

\desktopycuteltests_GradeCalculation_main_Testjava Browse jeute tc file
C\Users\ARPITAD ocuments\dcxGradeFile java Browse randoap tcfile

182

Figure 4.14: Graphical User Interface of Java-HCT

42

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

|£| COVERAGE PERCENTAGE CALCULATOR (o0 |

MC/DC %0 Generator

Select the target file{original java program): cute\sroitests\GradeCalculation. java Browse

" T file{output of Jcute): _GradeCalculation_main_Testjava Browse

N
Compute MC/DC% and all other attributes:
No. of predicates Identified: 6 View Predicates
No. of variables Identified: 1 View Variables
| Extended Truth Table for all the predicates: View
i
Total Time taken(milisecs): 20405
L
No. of Independently affecting conditions: 10 View
N
No. of conditions in the program: 12 View
U
[l MC/DC% (formula=IfC*100): 83.3333%

» Back

Figure 4.15: Graphical User Interface of COPECA (Coverage Percentage Calculator)

M -
Lo vnivizeR - B M x| |

INPUT PANEL

SELECT MERGED TESTCASE FILE:
C:\Users\ARPITADocuments\CombineGradeFile java BROWSE

'CLICK ON THE BUTTON TO MINIMIZE TESTCASES: MINIMIZE

IDENTIFY TEST SUITE
TESTCASE ID'S IN ORIGINAL TEST SUITE TESTCASE ID'S PRESENT IN: lM]l\l‘l:MAI TEST SUITE _'J { OK J {
publicvoid test1(} [a public void test1(} [a
publicvoid tes2(} public void test3(y
public void testa(){ public void test4 (1
public void testa () public void test18(){
nuhlic ynid testRiy |‘r public void test22(4 \v

TESTCASES REQIURED FOR A PARTICULAR CLAUSE: VIEW

VIEW CONTENT OF SELECTED TESTCASE: l v] { VIEW J
ANALYSIS VERIFIER
RUN COPECA WITH MINIMAL TEST SUITE: COPECA
TESTCASES IN ORIGINAL TEST-SUITE: 192
VERIFY
TESTCASES TN MINTMAL TEST-SUTTE: 18

MC/[DC% USING MERGED TEST SUTTE:

TESTCASES IN NON-MINIMAL TEST-SUITE: 104
MC/DC% USING MINIMALTEST SUITE:

DIFFERENCE BETWEEN THIS TWO MC/DC% IS ALWAYS "0"

Figure 4.16: Graphical User Interface of Minimizer

43

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Column 5 deals with the total errors detected. JCUTE produces test cases automatically.
Column 6 presents total number of test cases generated. Column 7 presents the total
execution time of JCUTE (Time 2).

Table 4.4 presents the generated test cases and MC/DC% for RANDOOP, jCUTE,
and Java-HCT. Figure 4.17 shows the comparison of generated Test Cases. In Figure
4.17, X-axis shows the SI. No. of programs and Y-axis shows the total number of test
cases. Column 3 shows the test cases generated by Feedback-Directed Random Tetsing.
RANDOORP is the tool that generates these test cases. Column 4 presents the test cases
generated by Java Concolic Unit Testing Engine (JCUTE). Column 5 shows the total number
of test cases of RANDOOP and jCUTE. TCs Minimizer accepts these total test cases and
only selects the essential test cases according to MC/DC criterion. Column 6 presents
the minimized test cases. Columns 7,8,9 deal with the MC/DC percentages according to
RANDOOP, jCUTE, and Java-HCT. Figure 4.18 shows the comparison of all three MC/DC
percentages. In Figure 4.18, X-axis shows the programs and Y-axis shows the computed

MC/DC percentage. These percentages are defined below:

Definition 4.1 MC/DC _1%: This MC/DC percentage is computed through RANDOOP and
COPECA.

Definition 4.2 MC/DC 2%: This MC/DC percentage is computed through jCUTE
and COPECA.

Definition 4.3 MC/DC 3%: This MC/DC percentage is computed through RANDOOP,
JCUTE and COPECA or Java-HCT.

Column 10 and 11 deal with the increase in MC/DC. Column 10 is named as Inc 1
and shows the difference between MC/DC 1% and MC/DC 3% as shows in Eq.4.2,
whereas Column 11 named as Inc 2 shows the difference between MC/DC 2% and
MC/DC 3% as shown in Eq.4.3.

| Inc_1 =MC/DC_3% - MC/DC_1% | (4.2)

| Inc_2=MC/DC_3% - MC/DC_2% | (4.3)

We have experimented for forty Java programs. On an average we computed the values of
Inc 1 and Inc_2 which are 29.91% and 16.26% respectively. According to the observation
of our experimental study, Java-HCT achieved better MC/DC by x 1.62 as compared to
RANDOOP and by x 1.26 as compared to jJCUTE. Figure 4.19 shows the line graph of
Increase in MC/DC for forty Java programs. In Figure 4.19, X-axis shows the programs and

44

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Y-axis shows the differences of MC/DC percentages i.e. Increase in MC/DC.

4.5 Threats to validity

* Since, we compute MC/DC percentage, therefore programs without predicates are not

useful to our experimental study.

* We combine two different testing techniques, so there may be chance of duplications,

that we resolved by using TCs. Minimizer.

* The third threat to validity concerns with string value operations used by the target

programs, that are not supported by our developed tool COPECA.

4.6 Comparison with related works

In this section, we present the comparison of proposed technique with some of the existing
similar approaches.

Godefroid et al. [44] proposed an improved random testing technique by providing
Directed fashion (Systematic way) combined with symbolic execution to generate test input
values. They have merged the improved concrete and static symbolic testing and developed
a new test test data generated strategy and named it as DART (Directed Automated Random
Testing.) In our proposed work, we used feedback-directed random testing instead of only
directed because feedback-directed provides better code coverage. We have combined
feedback-directed random testing with concolic testing in order to explore more number of
paths. According to Pacheco et al. [38] RANDOOP is better in completeness and scalability.
So, we have combine JCUTE [45] and RANDOOP to implement the hybridization approach.

Majumdar et al. [37] presented a hybrid concolic testing for C programs, whereas we
have implemented hybrid concolic testing for Java programs. They have implemented their
algorithm on top of CUTE tool and random tester. We have implemented the technique with
JCUTE and RANDOOP testing tools. They have worked for branch coverage, whereas we
have targeted for MC/DC. They obtained x4 branch coverage and x 2 branch coverage using
hybrid technique over random testing and concolic testing respectively. We have improved
MC/DC by x1.62 and by x1.26 for feedback-directed random testing and concolic testing

respectively using hybridization.

45

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Table 4.1: Characteristics of different target programs

SI. Program LOC # of # of # of
No. Name Predicates | Conditions | Variables
1 SwitchTest 84 1 2 2
2 StringBuffer 1369 5 10 3
3 ScopeCheck 148 8 18 8
4 MyQuickSort 87 1 2 3
5 MathCalll 190 13 26 4
6 | MylnsertionSort | 70 2 6 4
7 Condition 60 4 9 3
8 FruitSales 267 23 69 4
9 InsertionSort 163 7 14 6
10 Comparisonl 128 17 43 4
11 DSort1 136 10 20 2
12 | GradeCalculation | 103 6 12 1
13 MarketSalesl 179 8 17 4
14 FruitBasketl 209 12 38 2
15 BSTree 307 6 13 3
16 SwitchTest2 104 6 16 5
17 AssertTest 75 3 7 3
18 BubbleSort 142 6 14 7
19 DSort BST 305 3 7 3
20 CAssume 63 3 7 3
21 Demol 76 3 8 2
22 MarketSales2 230 24 49 7
23 MathCall2 160 7 14 4
24 Selection_Sort 163 7 14 6
25 Sorting_algo 336 25 50 9
26 SwitchTest3 80 2 2 1
27 StringBuffer1 485 5 15 4
28 StudentGrades 67 5 10 1
29 Testy 53 3 6 1
30 Weight 39 1 3 3
31 Weight Expl 114 10 22 3
32 Weight Exp2 77 5 13 3
33 Wildlifel 17 9 28 3
34 Wildlife2 199 13 40 3
35 Zodiac 104 18 84 10
36 WBS 321 5 10 3
37 AssertTest2 91 7 21 7
38 HelloWorld 44 2 4 2
39 IFExample 82 2 4 2
40 [FSample 95 6 12 3

46

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Table 4.2: Statistics of results on execution of RANDOOQOP

SI. Program Test Cases | Reduced TCs | Time R
No. Name (TCs_R) (Sec)
1 SwitchTest 31173 20 100
2 StringBuffer 12866 12 100
3 ScopeCheck 56174 20 100
4 MyQuickSort 4112 5 100
5 MathCalll 32731 70 100
6 | MylnsertionSort 9008 13 100
7 Condition 12013 26 100
8 FruitSales 131201 114 100
9 InsertionSort 28011 28 100
10 Comparisonl 47813 93 100
11 DSortl 30132 39 100
12 | GradeCalculation 27613 23 100
13 MarketSales1 31031 43 100
14 FruitBasketl 53131 271 100
15 BSTree 21941 86 100
16 SwitchTest2 31217 29 100
17 AssertTest 9017 31 100
18 BubbleSort 18106 43 100
19 DSort BST 2017 36 100
20 CAssume 7362 73 100
21 Demol 9894 44 100
22 MarketSales?2 50136 313 100
23 MathCall2 31014 38 100
24 Selection_Sort 35814 53 100
25 Sorting_algo 71313 343 100
26 SwitchTest3 2015 5 100
27 StringBuffer1 30131 15 100
28 StudentGrades 17012 103 100
29 Testy 17134 19 100
30 Weight 6893 10 100
31 Weight Expl 2013 25 100
32 Weight Exp2 33134 26 100
33 Wildlifel 51013 40 100
34 Wildlife2 46813 50 100
35 Zodiac 96001 190 100
36 WBS 12813 20 100
37 AssertTest2 19315 42 100
38 HelloWorld 6814 10 100
39 IFExample 7969 12 100
40 IFSample 8981 24 100

47

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing
Table 4.3: Statistics of results on execution of JCUTE
S1. Program Branches | Paths | Errors | Test Cases | Time J
No. Name Covered | Covered | Found | (TCs J) | (milli sec)
1 SwitchTest 18 101 0 8 20640
2 StringBuffer 32 131 42 9 28895
3 ScopeCheck 53 346 0 22 77311
4 MyQuickSort 15 1 0 5 957
5 MathCalll 41 313 0 10 90911
6 | MylnsertionSort 20 32 0 6 12366
7 Condition 27 83 0 7 23546
8 FruitSales 81 470 75 12 140154
9 InsertionSort 45 225 0 10 21900
10 Comparisonl 91 1000 0 27 237689
11 DSortl 52 250 3 4 68551
12 | GradeCalculation 8 66 0 5 17484
13 MarketSales1 35 139 0 8 39810
14 FruitBasket1 44 150 0 8 326767
15 BSTree 41 6 1 5 2580
16 SwitchTest2 42 684 0 14 159575
17 AssertTest 14 11 11 7 15174
18 BubbleSort 39 132 0 8 218288
19 DSort BST 19 12 3 8 2986
20 CAssume 10 181 0 6 49683
21 Demol 9 73 0 4 26663
22 MarketSales?2 71 38 0 11 12664
23 MathCall2 32 159 0 11 45596
24 Selection_Sort 45 114 0 9 38443
25 Sorting_algo 114 224 0 9 122434
26 SwitchTest3 234 75 0 11 18350
27 StringBuffer1 41 7 0 7 4321
28 StudentGrades 18 41 1 8 6894
29 Testy 4 13 0 3 514
30 Weight 39 35 0 4 1041
31 Weight Expl 114 142 0 10 6692
32 Weight Exp2 77 133 0 8 5318
33 Wildlifel 176 173 0 6 2070
34 Wildlife2 199 234 0 10 4227
35 Zodiac 104 25 0 63 14028
36 WBS 321 63 0 7 23634
37 AssertTest2 91 100 120 13 170047
38 HelloWorld 44 121 0 5 1937
39 IFExample 82 7 1 7 3174
40 [FSample 95 11 6 13 13519

48

Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Chapter 4

L99] $¢ 001 eee8 SL S LE el vC o[dwres,q] (017
0 08 001 001 0% L 61 L 4\ o[duwexd q] 6¢
0 0 001 001 001 S | c 01 PIIOMO[[SH 8¢

¢S6 | 18¢ 619L L9°99 60°8¢ (0)% 199 el 4% QSIS LE
01 0¢ 0¢ 0¢ 0 81 LC L 0¢ SdM 9¢

Il | 1671C 98°LC 9991 S6¢ [el 1374 €9 061 JeIpOZ 193
01 0t 08 017 01 65 09 0f 0% CHPIIM 43

CLSE | eV oY LSES S8LI vI'L [43 9v 9 (01% [ITPIIM %3
0 0 001 001 001 81 143 8 9¢ zdxgq_1ysiom 43
0 0 SY'S6 Sv'c6 SY's6 133 c¢ 01 $¢ 1dxq_Jy3rom 1€

eeee | €E°¢Ee 9999 e ee eeee S 14| v 01 WSTOM 0¢

L99] | €££°¢¢E £ees 99°99 0S L1 C 13 61 ISTENS 6¢
0¢ 0¢ 08 0s 0¢ 0¢ [8 €01 SOpeINIUSPMS 8¢C

veel | veel 001 9998 9998 154 C L cl [Jogng3uLns LT
0 0S 001 001 0S 14 91 L1 S IS YONMS 9¢
0¢C 44 0L 0¢ 8¢ eL (693 6 13743 03[JunJos S¢

SIL | 6CVl 0S c8 ¢y [LGE 81 a9 6 €S HOS u0no9[oF vC

vI'L | 8CvI 1L 8¢ 19 vILS 0¢ 6r L1 8¢ CI[BDYIEN 154
0 80t Ov'eL v EL 8¢'69 8L 1443 L1 ele CS9[eSIIBIN C

d| S¢ S'L8 SL 29 4\ 87 14 1744 [owa(] 1C

6C] | 85°8C 001 IL°C8 L 01 6L 9 €L SWNSSY) 0¢

LS8C | 6C V1 PILS LS 8C S8y 6 1744 8 9¢ LSd HoSd 61

ey 1¢ | LS8T 8C 19 8¢y [LGE IC 9¢ 8 14 HoSo1qqnyg 81

98°Cv | 98¢y 001 vILS vI'LS 6 8¢ L L€ 1S9 J10SSY L1

STl | SL8I SCle SL8I ¢l 0¢ (44 vl 6¢C AISOLYINMS 91

8¢Sl | #S'19 1918 £C69 LO°EC vC L6 < 98 SR NS | Sl

¢S 01 | S0I¢ ¢S5 09 0¢ LY 6¢ 65 6LC 8 [LC [193SegNL{ vl

€5€C | 6TS¢ €88 0LV9 v6°CS 154 1S 8 194 [S9[eSINIEIN el
¥4 L91 SL 0s eeee 81 8¢C S 134 uonenojeyopery) | ¢l
01 S¢ ¢8 SL 0¢ 8¢ 1394 174 6¢ [0S L1

LTI | €C0¢ €186 98 1v 06°LC I8 0¢l LC €6 Juostieduio) 01

vI'L | 6CVI [L°68 LS 8L 1L 0¢ 8¢ 01 8¢ posuon.resuy 6

Syl | ¥9¥C ¢S 9¢ q\N4% 88 1¢ 41! 9¢1 4\ VIl So[eSHNL] 8

1TTC | Wiy 8888 L9799 47444 ol 153 L 9¢ uonrIpuos) L

eeee | £6°¢8 el 0¢ 0 11 61 9 el HOSUOIIOSUIAN | 9

80°¢€C | LSCS €C69 1)% 9991 Sy 08 01 0L [[EDYIEIN S
0 0 001 001 001 ¢ 01 S S HOSYIMOAN v

L99] | €C°¢C 001 €ees LLLL 0¢ 5% $¢ 0¢C }09yHadoog 3
0¢ (012 08 0% (012 0¢ 1T 6 cl Iojngsulng 4
0¢ 0¢ 0001 0s 0s 1% 8¢ 8 0¢C 1S9LYoNMS |
_ — _ _ _ SOL SOL SOL SWEN ‘ON

Coul | 19Ul | %€ DA/ | %T DA/DN | %I DA/JN | paziuuny | sOI 810l | 41000 | JOOANVY weIrsold 1S

VIOAdOD JO UONNIOXI U0 SINSAY 4§ 9[qeL

49

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

RANDOOP TCs B CUTETCs Java-HCT

100

50

80

70

60

50

Test Cases

40

30

20

L L e,

lD“

123 4 56 7 89 1011121314151617 181920 21 2223 24 2526 27 2829 30 31 32 33 34 35 36 37 38 39 40
Programs

Figure 4.17: Total number of Test Cases generated

4.7 Summary

We have proposed a hybrid technique of feedback-directed random testing and concolic
testing to improve the MC/DC% of input Java programs. We have explained the proposed
technique in detail with its schematic representation. We have shown the implementation
of the proposed algorithm with the help of an example Java program. We have stated
the assumptions taken. We have experimented with forty Java programs and found on
an average increase of 29.91% and 16.26%, when compared to feedback-directed random
testing and concolic testing respectively. We have improved MC/DC by x1.62 and by x 1.26
in comparison to feedback-directed random testing and concolic testing respectively. In the
next chapter, we propose an approach to compute MC/DC% at design phase using UML

sequence diagram.

50

Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Chapter 4

& MC/DC_2%

MC/DC_1%

4 5 6 7 B 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

3

2

Programs

Computed MC/DC percentages

Figure 4.18

== nc_1

== _7

I

ll

“/

I

LA
WA

)

\.'4

AW/

vV U

50

=
@

(=]
~

2 R 2

(Pu)3a/o w aseassu)

30

20

10

8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

34 5 6 7

2

Programs

Increase in MC/DC percentages

Figure 4.19

51

Chapter 5

Measuring MC/DC at Design Phase
using UML Sequence Diagram

In this chapter, we present our proposed approach fo measuring MC/DC at design phase
using UML sequence diagrams. We describe the proposed approach in detail with the
algorithmic description and implementation using a sample sequence diagram. We also
present our experimental analysis of the proposed approach.

Now-a-days, testing starts from requirements gathering onwards. As early we start the
testing of the given system, the chances of failure reduces. We know that, Object-oriented
programs are much more difficult and require more efficient techniques for designing and
testing as compared to procedural programs. For procedural programs, we use to draw
data flow diagrams (DFD). But, DFDs have manly limitations. They do not depict the
control flow information and many other relevant information. So, in order to resolve those
limitations, for object-oriented programs, UML diagrams are introduced. UML diagrams
contain different views of the software system with the help of different diagrams. We have
developed a technique to test UML sequence diagram. Testing at design phase helps to plan a
better program structure, increases the software reliability and also reduces the overall testing
cost. We measure MC/DC percentage of the given system using UML sequence diagram. It

also helps to understand the complexity of the given system.

5.1 Overview of proposed framework

Figure 5.1 shows the schematic representation of MC/DC Analyzer for UML Sequence
Diagram (MAUSD). MAUSD consists of four modules, which are as follows: ArgoUML !,
JAXB, jCUTE 2, and COPECA. ArgoUML, JAXB, and jCUTE are open source modules,
whereas COPECA 1is our developed module. ArgoUML produces XML after designing
UML Sequence Diagram. Java Architecture for XML Binding (JAXB) converts the XML

code into Java code. Now, this converted Java code is prepared manually according to

Thttp://argouml.tigris.org/
Zhttp://osl.cs.illinois.edu/software/jcute/

52

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

XNMI to
XML
Convertor

XMI JAXEB

Document

MAUSD
ARGOUML

UML

Designer

HMI Code
Generator

L 4

COPECA 4_4_ jCUTE 4—

T

Figure 5.1: Schematic representation of MAUSD

the template of JCUTE tool. jCUTE accepts this Java program and generates test cases
automatically. Now, these test cases are supplied along with the Java program to compute
MC/DC%.

5.2 Description in detail

In this section, we discuss the flow of schematic representation of MAUSD. Also, we
describe each component of MAUSD.

5.2.1 ArgoUML

ArgoUML is an open source UML (Unified Modeling Language) tool with BSD license. It
supports all standard UML 1.4 diagrams. UML 1.4 diagrams are Class diagram, Activity
diagram (including Swimlanes), Statechart diagram, Use Case diagram, Deployment
diagram (includes Object and Component diagram in one), Collaboration diagram.
AlgoUML is running on Java platform. It is available in 10 different languages. It also
provides code generation for C++, Java, PHP4 and PHPS5. Argo UML also supports the
reverse engineering from the Java source code (i.e. diagram generation from the source
code). Documentation of ArgoUML is available . ArgoUML also provides platform to
generate the database schema and it also allows to do code in other languages such as
Delphi or Ruby. ArgoUML generates .xmi file for each of the behavioral diagram. For

our proposed work of measuring MC/DC% of UML Sequence Diagram, we have used

3http://argouml.tigris.org/documentation/index.html

53

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

AgroUML to design the Sequence diagram. We have generated the .xmi file from the
sequence diagram using the same tool only. The .xmi file contains all the information
present in the sequence diagram. For each of the component present in the sequence

diagram, it generates an unique xmi:id. The main components of the .xmi file are as follows:

» Connector
* Message
* Lifeline

+ Attribute

The .xmi file is a type of .xml file with few more information. In order to generate the
Java code we require XML file. So, we have used the .xmi code to generate the .xml file.

For this transformation, it requires only to change the extension of the file format.

5.2.2 JAXB

It stands for Java Architecture for XML Binding. 1t is an open source tool *. It converts the
Java objects into XML and XML into Java Objects. It provides the facility to change the
Java objects into xml, the conversion process of xml to Java objects is known as marshalling
(write). Similarly, it also converts the XML into Java objects. The vice-versa conversion
process is known as unmarshalling(read). The basic operation of JAXB is shown in Figure
5.2. Features of JAXB are as follows:

1. Annotation support

2. Additional Validation Capabilities

3. Small Runtime Library

4. Additional Validation Capabilities

5. Reduction of generated schema-derived classes

In the proposed approach, we have used JAXB to generate Java Objects from XML file
generated from the sequence diagram. The Java objects are present in a .java file. The
Java file is having structure of normal Java with some additional packages. The additional
packages are annotation packages. Such as javax.xml.bind.annotation.XmlAttribute;
javax.xml.bind.annotation.Xml Element; javax.xml.bind.annotation.XmlRootElement; etc.

The process of to Java object conversion is as follows:

“http://www.java2s.com/Code/Jar/j/Downloadjaxbapi22jar.htm

54

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.2: Fundamental working of JAXB

* Step 1: Create POJO or bind the schema and generate the classes

* Step 2: Create the JAXBContext object

Step 3: Create the Unmarshaller objects

Step 4: Call the unmarshal method

 Step 5: Use getter methods of POJO to access the data

523 jCUTE

It stands for Java Concolic Unit Test Engine. It is an open source tool available on Internet
>, It is an automated concolic testing tool which generates test cases for both simple and
multi-threaded Java programs. It also supports concurrent programs. Concolic testing
combines the concrete and symbolic testing techniques using a powerful constraint solver. It
discovers the deadlock and race conditions using schematic schedule explorations. JCUTE
uses vectorized clock to generate large number of test cases and to support the concurrent
programs. It creates execution tree for the program and tries to reach all the leaf nodes of the
tree. JCUTE supports three different types of search strategies i.e. Random Search strategy,
Depth First Search strategy and Quick Search strategy. In the Depth First Search strategy
we have to mention the maximum depth and in Quick Search strategy we have to mention
the threshold value. The first value chosen by JCUTE is a Random Number. Mostly the
value is taken from one the largest number supported by the variable data type for jCUTE.
It maintains log files and traces for each run. The search optimality is based upon the path

coverage and branch coverage.

5.24 COPECA

It stands for COverage PErcentage CAlculator. COPECA is developed by us. It measures
the MC/DC coverage of the given Java program using the test cases generated from
JCUTE. We have developed COPECA in Java. The working principle of COPECA is
based upon ETT(Extended Truth Table) creation. For each of the predicate present in the
program, COPECA creates the Truth Table and Extended Truth Table with the help of test

Shttp://osl.cs.illinois.edu/software/jcute/

55

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

cases generated by JCUTE tool. Using the extended truth table, it detects the number of
independent clauses present in that particular predicate. MC/DC % is computed using the

following formula:

Z?:l 27:1 Ij "
2?:1 Z;n:l Cj

where, n is the total number of predicates present the program and for each predicate m

MC/DC% = 100 vV, 0 =1 (5.1)

number of conditions present in the predicate i. The value of m varies clause, otherwise

I; = 0. COPECA is a very robust tool. It can handle Java programs of any size.

5.3 Algorithmic Description

Algorithm 3 MAUSD

Input: UML Sequence Diagram

Output: MC/DC%

Design a Sequence diagram for the given use cases using ArgoUML.

Generate the XMI code from the designed UML Sequence diagram using ArgoUML.
Execute JAXB using XMI code to produce an executable Java code.

Generate test cases for the executable Java code using jJCUTE.

Taking the test cases and Java code as input, Compute MC/DC% using COPECA and
the formula given below:

AP

MC/DC% = (I/C) x 100 (5.2)

where, the number of independently affected conditions is denoted by I and the total
number of simple conditions is denoted by C.

Algorithm 3 deals with the function of MC/DC Analyzer for UML Sequence Diagram
(MAUSD). Line 1 of Algorithm 3 shows the use of ArgoUML to design the UML Sequence
Diagram after understanding the concept of given use cases. Line 2 shows code-generation
of UML Sequence Diagram in the form of XMI using ArgoUML. Line 3 presents the code
conversion from XMI to executable Java code using JAXB. Line 4 shows the use of JCUTE
(Java concolic tester) to accepts the Java code to generate test cases. Line 5 deals with
COPECA execution. COPECA takes the test cases and Java code as input and computes the
MC/DC percentage as output.

5.4 Experimental Study

Here we discuss the details of tools, experimental setup required results of our experiment.

56

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

5.4.1 Experimental Setup

Our computer is configured by using dual core processor of Intel(R) Core(TM) 15 version.
The processing speed of CPU is 3.20 GHz. RAM is installed of 4 GB and operating system
is of 32 bit. We have used Windows 7 Professional as experimental platform. We have used
three open source tools and one is our developed tool. The open source tools are ArgoUML
(Argo Unified Modeling Language), JAXB (Java Architecture for XML Binding), JCUTE
(Java Concolic Unit Test Engine), and our developed tool is COPECA (Coverage Percentage
Calculator). JAXB is available as a plug-in for Eclipse. Remaining ArgoUML and jJCUTE

are individual tools easily available on Internet.

5.4.2 Assumptions
In this section, we present the assumptions taken for the proposed technique.

 All the sequence diagrams are designed based upon the given requirement and designer

understandability. It can be varied from person to person.

* The program should contain at-least one predicate (two clauses). If value of Clauses
is “0” then MC/DC percentage will be undefined.

* We require at least two test cases to prove a condition as independent condition.

5.4.3 Implementation

In this section, we explain the proposed approach of MC/DC analysis at design level using
an example Sequence diagram.

Figure 5.3 shows Sequence diagram for a scenario where a job seeker is searching for
the information related to jobs. In this diagram the number of actors involved is 1 and the
number of objects involved is 2. total synchronous and asynchronous messages present is
3 and 3 respectively. The number of loops involved is 1. Figure 5.4 shows the .xml code
generated for the sequence diagram. After getting the .xml code, we supplied it to JAXB(Java
Architecture for XML Binding) to generate the compatible Java objects. The Java code
obtained by JAXB is shown in Figure 5.5. But, the Java file generated from JAXB is not
compatible with the concolic tester JCUTE. So, we have done some manual interpretation
in the Java code obtained from JAXB to make it compatible with JCUTE. After that the
compatible Java code is compiled and executed on Concolic tester JCUTE. Figure 5.6 shows
the compilation of Java code on JCUTE. Similarly Figure 5.7, Figure 5.8and Figure 5.9 show
the execution of JCUTE and the results obtained. The total number of branches covered,
paths covered are 65 and 10 respectively. The branch coverage percentage is the 62.5%
in the total execution time of 2069 ms. At last, we supplied the compatible Java code and
the test cases obtained by JCUTE to the COPECA (Coverage Percentage Calculator) and

57

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

computed the MC/DC percentage. The MC/DC percentage obtained for the Java program is
100%. Developed Graphical User Interface (GUI) for COPECA is shown in Figure 5.10.

Job Seeker: Find Job Page: Search Criteria: Search Engine: Database: Job Listing: Job Listing Collection:

1.3: searchCriteria
1.3.1 readloblistings
1311 create

1.3.2: jobListingCallection

1.4 joblistingCollection

2: jobInformation

Figure 5.3: Sequence diagram for Job searching

5.4.4 Result

Table 5.1 shows the experimental characteristics of the case studies under taken for our
experiment. We experimented with five case studies. Individual case study consists of
different number of use cases. So, according to the use cases, there exists different number
of corresponding sequence diagrams. In Table 5.1, Columns 2 and 3 show the case study
names and scenarios related to the use cases, respectively. Column 4 shows the total
number of actors involved. Column 5 presents the total number of objects created for
each sequence diagram. Columns 6 and 7 show the total number of synchronous messages
and asynchronous messages respectively. Column 8 shows the number of loop combine
fragments in the sequence diagram. Column 9 shows the number of Alternative combine
fragments. Column 10 shows the total number of conditions present.

Table 5.2 shows the results obtained on the execution of JCUTE (Java Concolic Test
Engine) tool for the Java program obtained from JAXB after some manual changes. Column

4 and 5 present the number of branches covered and number of paths covered. Column 6

58

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

<message xmi:type="pm] :Message" xmi:
"_2gWisVjaDEee DJVO-TutXQ" connector
<message xmi:type="gm]:Message" xmi
"_2gWisWDaDEee DJVO-TutXQ" connector
<message xmi:type="gm]:Message" xmi
zendEvent="_2gWscTaDEee DJIVD-TutX("
<message xmi:type="gm]:Message" xmi:i
" 2gWsWzaDEee DJVO-TutXQ" connector="_2gWs(QDaDEee DJVO-TutXQ"/>
<message xmi:type="gml:Message" xmi:id="_2qWsfDaDEee DIVO-Tut¥Q" name="joblistingCollection" messageSort="reply" receiveEvent="_OgWscDaDEee DJVD-TutXQ"
sendEvent="_2gWsbzaDEes DIVO-TutX()" connector="_2gWsQDaDEes DJIVO-TutXQ"/>
<message xmi:type="gm]:Message" xmi:id=" 2gWsfTaDEee DJVD-TutX(" name="create" receiveEw
"_2gWsXjaDEee DJVO-TutXQ" conn mIstaDEee_DJVU—7utXQ"/>
<message xmi:type="gm]:Message" xmi '_2gWisfjaDEee DJVO-TutXQ" name="create" receiveE
"_2qgWisZjaDEee DJVO-TutXQ" connector _QQWSRJaDEee_DJ‘JU—?utXQ"/>
<message xmi:type="uml:Message" xmi:id=" 2glisfzaDEee DJIVD-TuiX(]" name="add" receiveEvent=" 2glisazaDEee DJIVD-TuiX(}" sendEvent="_ 2gWsajaDEee DJVO-TutXQ"
connector="_2gWsQzaDEee DJV0-TutXQ"/>
r </ownedBehavior>
<ownedAttribute xmi:type="gm]:Property" xmi:id="_2qWsgDaDEee DJVO-TutXQ" name="Job Seeker" Etd="_291'15NTE.DEEE_DJ'JDJut}{Q”/’>
<ownedAttribute xmi:type="gm]:Property" xmi:id="_2qWsgTaDEee DJVO-TutXQ" name="Find Job Page" end="_2gWsNjaDEee DJVO-TutXQ 2gWsODaDEee DJVO-TutXQ
_2gWsPjaDBee DIVO-TutXQ"/>
<ownedAttribute xmi:type="gml:Property" xmi:id="_2qgWsgjaDEee DJVO-TutXQ" name="Search Criteria" end="_Z2glisOTaDEee DJVO-TutXQ _Z2gWsOzaDEee DJVO-TutXD
_QQWSPDaDEee_DJ‘JU—"FutXQ"/>
<ownedAttribute xmi:type="gml:Property" xmi:id=" 2gWsgzaDEee DJVO-TutXQ" name="Search Engine" end="_2gWsPzaDEee DJVO-TutXQ 72gstTaDEee7DJ‘JU—7utXQ"/>
<ownedAttribute xmi:type="gml:Property" xmi:id=" 2qgWshDaDEee DJVO-TutX()" name="Database" end="_ 2gWs(QjaDEee DJVO-TuiX) 2gWsRDaDEee DJVO-TutX(
_2gWsRzaDEee DJVO-TutXQ"/>
<ownedAttribute xmi:type="gm]:Property" xmi:id="_2gWshTaDEee DJV0-TutX(" name="Job Listing" end="_2glsSDaDEee DIVD-TutX(Q"/>
<ownedAttribute xmi:type="gm]:Property"” xmi:id="_2gWshjaDEee DJVO-TutX(" name="Job Listing Cellection" E:d="_2quR’I'aDEee_DJ‘mf'!ut}{Q"/)
- «/packagedElement>
<packagedElement xmi:type="gml:SendOperationBvent" xmi:id=" 2gWshzaDEee DJVD-TutXQ" name="SendOperationEventl"/>
<packagedElement xmi:type="pml:ReceiveOperationEvent" d="_2gWsiDaDEee DJVO-TutdQ" name="ReceiveOperationEventl" />
pe="uy) :ProfileApplication” xmi:id="_2gWsiTaDEee DJVO-TutXQ">
<xmi:Extension extender="http://www.eclipse.org/enf/2002/Ecore">
<elnnotations xmi:type="ggore:EAnnotation" xmi:id="_ 2gWsijaDEee DJV0-TutX(" source="hitp://www.eclipse.orq/uml2/2.0.0/UML">
<references xmi:type="ggorg:EPackage" href="http://schema.omg.org/spec/UML/2.1.1/StandardProfilel? . xmif vzU58YinEdqtvbnfBIL Sw"/>

id="_2gWseDaDEee DJVO-TutXQ" name="criteria" messageSort="reply" receiveEvent="_2gWsVzaDEee DJVO-TutXQ" sendEvent=
2gWsNzaDBee DJIVO-TutXQ"/>

'_2gWiseTaDEee DIVO-TutXQ" name="searchCriteria" receiveE
QQWSPTEDEee_DJVU—"FutXQ"/>

'_2glisejaDEee DJVD-TutXQ" name="joblistingCollection" messageSort="reply" receiveEvent="_2gWscjaDEee DJVO-TutXQ"
connector="_2gWsPTaDEee DJVO-TutX("/>

_2glisezaDEee DIVD-TutX()" name="readJoblListings" receiveEvent=" 2gWsXDaDEee DJVD-TutX(}" sendEvent=

nt="_2gWsWTaDEee DJVO-TutXQ" sendEven

nt="_2gWsXzaDEee DJVO-TutX]" sendEvent=

"_2gWsZzaDEee DJVO-TutXQ" sendEvent=

g <profilelpplication x

Figure 5.4: XML code generated for the Sequence diagram shown in Figure 5.3

shows the achieved branch coverage percentage. Column 7 shows the total execution time
(in milliseconds) of JCUTE. jCUTE also generates the test cases. but we have kept the
test data information in an another table because of its comparison with MC/DC related
parameters. On an average for the five case study projects, we obtained 11.59 number of
branches covered, 8.11 number of paths covered, 73.12% percentage of branch coverage in
6095.22 ms of execution time.

Table 5.3 shows the result analysis of our experiment. Column 4 shows the total
number of test cases generated through JCUTE tool. Column 5 shows the total number
of independently affected conditions present in the Java code of each sequence diagram.
Column 6 shows the total number of simple conditions present in the Java code. The
entries in Columns 5 and 6 are computed using COPECA (Coverage percentage Calculator).
COPECA also computes MC/DC% which is presented in Column 7. Column 7 presents
the execution time of COPECA. On an average we have obtained (1.7 = 2) number of
independent clause and (55.29 = 55)% MC/DC for five case study projects with (3.85 = 4)
number of average test cases. The average execution time of COPECA is (59.25 = 59) ms.

We can also compute the test case generation speed of Concolic tester JCUTE using

Equation 5.3

Number of Test Cases
Test Case Generation Time

Test Case Generation Speed = (5.3)

Fig. 5.11 shows the total number of test cases generated for the number of conditions
present in the sequence diagram. Number of test cases generates is always greater than or

equal to the number of conditions present the program. Fig. 5.12 presents the comparison

59

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

2&# /¢ This file was generated by the JawaTH Architecture for XML Binding(JAME) Reference Implement: - m
7 package xmljava; m
F= dmport java.io.Serializable; .
S dmport java.util.ArraylList;

12 dmport jawas.util.List;

11 dmport javax.xml.bind.JAXEElement;

12 dmport jawvax.aml.bind.annotation.¥mlAccessType;

1% dmport javax.xml.bind.annotation.¥mlAccessorType;

14 dmport javax.aml.bind.annotation.¥mléattribute;

15 dmport javax.xml.bind.annotation.¥mlElement;

16 dmport jawax.zml.bind.annotation. ¥mlElementRef;

17 dmport javax.xml.bind.annotation.¥mlElements;

18 dmport jawax.zml.bind.annotation.¥mlMizxed;

1% dmport javax.xml.bind.annotation.¥mlRootElement;

2@ dmport jawax.ml.bind. annotation.¥mlichemaType;

21 dmport javax.xml.bind.annotation.¥XmlType;

22 dmport jawax.:ml.bind.annotation.¥mlvalue;

23 dmport javax.xml.namespace.QName;

24 fiMmlaccessorType(XmlAccessType. FLELD)

25 ([@mlType(name = %, propCrder = {

26 " _dimport™,

27 “partnerLinks™,

28 "wariables™,

29 "sequence™

M m

S1 ([i¥mlReoctElement(name = “process™)
52 public class Process {

S4 fixmlElement{name = “import™)

=5 protected List<Process.Import> _import;

SE= fixmlElement{required = true)

=7 protected Frocess.PartnerLinks partnerLinks;
Ll fixmlElement{required = true)

=9 protected Frocess.variables wariablesj| >
4 | mnr I "

Figure 5.5: Java code generated from JAXB for the XML code shown in Figure 5.4

| | JCUTE (CUTE for JAVA): A Concolic Unit Testing Engine for Java = ol

e e

Java Program to be Tested
Source Directory |C:\Users\DPM\D0cuments\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\on\jcute\src | &=
Main Jawva File |C:\Users\DPM\D0cuments\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\0n\jcute\src\tests\xmljavaProcess.Java | E

Function to be Tested |tests.xmljavaPmcess.main | - | Program parameters |

[TestingLog | Output | Statistics
Output

cd C\Users\DPMDocumentsitetBeansProjects\PDL\jcute_for_after_transformationyjcutetmpjcute

javac -d C:\WUsers\DPMDocuments\iMetBeansProjects\PDLYcute_for_after_transfarmation\jcuteitmpjeute\classes -sourcepath
CAllsers\iDPMDocumentsiMetBeansProjects\PDLYcute_for_after_transformationijcuteisre
CUsers\DPM\Documentsi\tMetBeansProjects\iPDL)jcute_for_after_transformationijcutelsrcitestswmljavaProcess java

Exit0

cd ClUsers\DPMIDocumentsiMetBeansProjects\PDLYcute_for_after_transformationyjcuteitmpjcute

Jjava-Xmx51 2m-¥msS1 2m-Deute.sequential=false cute.instrument. Cutelnstrumenter -keep-line-number-d
CiAllsers\iDPMDocumentsiMetBeansProjects\PDLcute_for_after_transformationijcuteitmpjcutelclasses -x com.vladium -x cute -x Ipsolve —-app
tests.xmljavaProcess

Soot started on Fri May 12 09:43:49 I5T 2017

Transforming tests xmljavaProcess. .

Sig"=java.lang.Object: vaid =init={="

Sig=cute.Input: int Integer()="

Sig"=java.io.PrintStream: void print(java.lang.5tring)="

Writing to C:\Users\iDPM\Documents\MetBeansProjects\PDLjcute_for_after_transformationljcuteitmpjcutelclassesitestsismljavaProcess.class
Sootfinished on Fri May 12 09:45:49 15T 2017

Soot has run for 0 min. 0 sec.

Exit0

Progress

Paths Covered 0 Branches Covered 0 Branch Coverage 0.0 Errors 0 DFS Info 1]

Total Progress |]

Figure 5.6: Compilation on JCUTE

60

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

|| JCUTE (CUTE for JAVA): A Concolic Unit Testing Engine for Java =n Een<T

) ElnEele

Java Program to he Tested

Source Directory |C:\Users\DF'M\Documents\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\on\jcute\src | &=
Main Java File |C:\Users\DPM\Documents\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\0n\jcute\src\tests\xmljavaProcess.Java | B
Function to be Tested |tesls.xmljavaPmt:ess.main | - | Program parameters |

[TestingLog | Output | Statistics
-Output

U TS ST T WD U TS TS T TS T e ST T S TS DT S LTS 0T TisT e TS TOT T T T T & U i TR G oS Tou
java-ea-Xmx512m -Xms512m -Djava library.path=C:/Users/DPM/IDocumentsiMetBeansProjectsiPDUjcute_for_after_transformationfjcutel
-Deute.args=-m:0-d:500-p:1 =j-r: cute RunOnce tests xmljavaProcess.main

Exit0

| »

cd C\Users\DPMIDocumentsitetBeansProjects\PDLjcute_for_after_transfarmationyjcuteitmpjcuteloutputilast

Jjava-ea-Xmx512m -Xms512m -Djava library. path=Ci/UsersiDPMIDocumentsiMetBeansProjectsiPDUjcuts_for_after_transfarmation/jcute/
-Deute.args=-m:1-v-r: cute. RunOnce tests xmliavaProcess. main

Exit 0

cd C\Users\DPMDocumentsitletBeansProjects\PDL\jcute_for_after_transfarmationyjcutetmpjeuteloutputilast
java-ea-Xmx512m-¥Xms51 2m -Djavalibrary.path=C:/Users/iDPMiDocumentsiMetBeansProjectsiPDUjcute_for_after_transformationfjoute/
-Deute.args=-m:0-d:500-p:1 =j-r: cute RunOnce tests xmljavaProcess.main

AR One complete search is gyer HeRERRRRRRssRsEssns

Exit 2

cd C\Jsers\DPMDocumentsitMetBeansProjects\PDL\cute_for_after_transfaormationyjcutetmpjeuteloutputilast
java-ea-Xmx512m-¥Xms51 2m -Djavalibrary.path=C:/Users/iDPMiDocumentsiMetBeansProjectsiPDUjcute_for_after_transformationfjoute/
-Deute.args=-m:1 -v-r: cute. RunOnce tests xmljavaProcess.main

Exit 0

4]

Progress

Paths Covered 10/10000 Branches Covered 65 Branch Coverage 62.5% Errors 0 DFS Info 010132

Total Progress []

Figure 5.7: One complete execution on JCUTE

|CUTE (CUTE for JAVA): A Concolic Unit Testing Engine for Java == sl

| EnEee

Java Program to be Tested
Source Directory |C:\Users\DPM\D0cumems\NetEleansProjects\PDL\jcute_for_aﬂer_transformalion\jcute\src | =
Main Jawva File |C:\Users\DPM\D0cumems\NetEleansProjects\PDL\jcute_for_aﬂer_transformali0n\jcute\src\tests\xmljavaProcess.java | 8
Function to be Tested |tests.xmljavaProcess.main | - | Program parameters |
Testing Log | Output Statistics

v of Bugs Found rCowverage v
Total number of erroneous execution paths : 0
Number of execution paths violating jCUTE assertion : 0 Total functions invoked : 1
Number of deadlocked execution paths : 0 Total branches covered : 65
MNumber of execution paths throwing an Exception : 0 Percentage of branches covered : 62.5%
MNumber of execution paths having data-races : 0 Total number of execution paths : 10
MNumber of fields having race : 0 Total runtime in milliseconds : 20649
Mumber of distinct exceptions thrown : 0

rCoverage Details

65 branches covered out of 104 branches in the function <tests.xmljavaProcess: void main{java.lang.String[1)=

Progress

Paths Covered 10110000 Branches Covered 65 Branch Coverage 62.5% Errors 0 DFS Info 0/0i32

Total Progress |]

Figure 5.8: Results obtained by using jJCUTE

61

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

| £ JCUTE (CUTE for JAVA): A Concolic Unit Testing Engine for Java

=3 E (X3
M=
® b | nEe e
Java Program to he Tested
Source Directory |C:\Users\DF'M\Documents\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\on\jcute\src | &=
Main Java File |C:\Users\DPM\Documents\NetEleansProjects\PDL\jcute_for_aﬂer_transformat\0n\jcute\src\tests\xmljavaProcess.Java | B
Function to be Tested |tesls.xmljavaPmcess.main | - | Program parameters |
[TestingLog | Output | Statistics
Log
Path # Input Trace Source:
1
2
K}
4
]
6
7
9
10
Progress
Paths Covered 10/10000 Branches Covered 65 Branch Coverage 62.5% Errors 0 DFS Info 010132
Total Progress []
Figure 5.9: Test Cases generated by jJCUTE
- R ——— =
| £| COVERAGE_PERCENTAGE_CALCULATOR El_lg
COPECA |
MC/DC % Generator
Select the target file(original java program): TADocumentsxmljavaProcess. java Browse
Select Test filefoutput of Jcute): ts_xmljavaProcess_main_Test java Browse
Compute MC/DC% and all other attributes:
No. of predicates Identified: B View Predicates
No. of variables Identified: 1 View Variables
Extended Truth Table for all the predicates: View
Total Time taken(milisecs): 666
No. of Independently affecting conditions: 12 View
No. of conditions in the program: 12 View
MC/DC%o (formula=I/C*100): 100.0%
L S Back |

Figure 5.10: MC/DC analysis using COPECA

62

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

13
16 ﬂ
14 l\
W12
: [\
:EIO \
23
RN [A\ A
4 4
21 ==Test Case
0 0 ¥ =f=Condition
& 3 3 T S S s ¥ & & S
\0%\ 0@@ 0\@ &0 e&) \\\@ @\\z ¢ (\0\\@ Q\‘!b \°¢ ¢ 0@@. g}”‘\‘ e‘fb ¢°\\0 <-£*\é #}o &Q@ ‘}0* tk‘?? \OQ \?00 “00 '»\D ‘-& @,,.eb
L
KA RN F oo & & &
L T Y T) & ¢ 3 SN
R R & R § ¥
L M Yoy o
(@Q’ ¥ & &
& § <
B
Projects

Figure 5.11: Number of generated test cases vs. the number of conditions present in the
Sequence Diagrams.

between the total number of independently affected conditions and total number simple
conditions. Similarly, Figure 5.13 shows the comparison between the branch coverage
percentage and MC/DC percentage. We can observe that the MC/DC coverage is always
less than the branch coverage. The reason behind the lesser amount of MC/DC than branch
coverage is the subsumption relationship. MC/DC is a stronger coverage criteria than branch
coverage. In branch coverage, we have to satisfy the each atomic condition present in the
predicate but, in case of MC/DC coverage we have to satisfy the whole composite condition

relation in order to prove the independence of the unique clause.

Y O b R " &

P AR R I A N ST G N 4 & 9 &
& & 4 bép § & ¢ F & ¢ & @ & &Q" 0 ,\q} J P & o & ‘Q}\s &
\%“a & F e.Q\ & & & AR S I «‘1& & o & ,,g;‘)e‘ d’é y 2
S A A € § e g FF e

A R O S ¥ ® & o & ¥

A %@0 A F

4 ¥ { 2

o & &

& QQ\\ &

§
Projects

Figure 5.12: Number of independently affected conditions vs. number of simple conditions.

63

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

250%

200%

150%

100%

50% -
[s

| =4=MC/DC%

0%

Sequence Diagrams

Figure 5.13: Branch Coverage percentage vs. Modified Condition/ Decision Coverage
percentage

5.5 Comparison with related work

Abdurazik et al. [49, 55] proposed an approach on the fault revealing capabilities of test sets
generated from StateChart and Sequence Diagram. In our proposed work we only considered
sequence diagram, in our future work we may consider both the diagram to achieve high
coverage.

Vadakkumacheril et al. [19] proposed a technique to generate Java code from XMI
representation of sequence diagram. They have used BOUML tool. In our proposed work,
we also generate Java code with the help of XMI representation through JAXB tool and
ArgoUML tool. Our work is more advanced than the work proposed by the Vadakkumacheril
et al. [19], since we generate test cases and measure code coverage for the produced Java
code.

Eriksson et al. [2] has developed a novel technique to measure logical coverage design
diagrams. They have chosen class diagram, first they have generated the structural code from
the diagram and then measured the logical coverage percentage. In our proposed technique,
we have taken sequence diagram to generate the code. They have worked in C++ language

whereas we have implemented our proposed approach using Java language.

64

Measuring MC/DC at Design Phase using UML Sequence Diagram

Chapter 5

z z 0 0 (¢ € 4 pesnun a3[op SINT | LT
€ € 0 I v v 4 wInjar 500q SINT | 9T
€ 4 0 I v € 4 UOTIBAIISII 500 SINT | ST
C I 0 0 z € I j00q ansst ST | +T
4 I 0 0 z € I 300q YoIeds ST | €T
z I 0 0 v 4 C urgo[yuepmis ST | Tt
¢ C 0 I 14 S € ysonbax aredax SId | 1T
z I 0 I z € 4 oseqerepS LYY S¥d | 0T
4 [0 4 € S € IredarS T sad | 61
€ 4 0 € 9 S € surgorwS 1Y SYd | 81
4 I 0 I z v z IS IAA SYd | LI
C I 0 I € 4 4 Io[jonuoo SW | 91
L € I 0 S € 4 Hodax Ma1A Svd | SI
z I 0 I S S 4 SJUSIPaISUL ANSST SVY | ¥1
v z 0 4 1 9 € JTopio sseyand SVY | €1
4 I 0 I L 9 4 pIed nuow SVd | Tl
4 I 0 0 v v z urgo[SVd | 11
4 I 0 z 4 v z SIN'Td ST | 01
¢ C 0 L €l L € .Hozobﬂoo IopIo aSeuewr SINVAM | 6
0 0 0 1 € € 1 juowoFeuew ejep Jorddns [SNVAM | 8
0 0 0 I € € I Io[jonuod eep [edp | SINVEAM | L
0 0 0 I € € I Io[jonu0d j10dax SINVEM | 9
0 0 0 I S € I yonpoid a3euew SINVEM| §
0 0 0 € 8 € 4 [rejop aokojdws aFeuew |SINVEM | +
4 I 0 € z v z REVEANEREN SINVEM| €
0 0 0 I S v 4 Topio doeyd SINVEM | T
¢ (¢ 0 I S € I uIgoj SINVEM | T
PpaajoAur paajoAur ﬁ&mo‘a sogessowr sogessowr PIAJOAUL PIAJOAUL SAIpMS ON
SUONIpUO) JO #| SOANBUIAY JO JO # mgood JOo# mSOGOuﬂoG\Am< JOo# mﬂoco.h&oﬁ\mm JOo# muoo.EO JO #S1030% JO # SOLIBUAIS ase) IS

SOIpMIS 95D JO SONSIIdIOLIRY)) (1'G 9[qeL

65

Measuring MC/DC at Design Phase using UML Sequence Diagram

Chapter 5

91 001 11 L1 pasnun 939[op SIN'T LT
LT18 001 1 €l uImjal Jooq SIN'T 9z
8759 8L L 4 UOIBAIISAI J0Oq SIN'T ST
S19L 7L L 8 3[00q ansst SIN'T T
0S92 001 01 11 3009 yoIeas SIN'T €T
187¢ €9 9 4! ur30[juapmys SIN'T (44
7665 LL'LL L 91 ysonbaur sredas Sy 1T
€€0¢ 08 6 1 aseqereps SAA 0T
6978 001 11 S1 aredorg 1Y SAA 61
LLOL 8¢ b 01 suIyoRWS 1Y S 81
TLOS SL 8 Sl IS Y SWA Ll
€60t 001 11 il 12[[01U0D Sy 91
910L1 0S 9 4! podar mara SVY Sl
S1001 SL 8 L1 SJUSIPAIZUI ANSST SV 1
1LEL 08 8 €l 19p10 dseyoind SV €1
L8YY 001 11 €l pIed nuow SV |
8689 001 01 SI u13o[SV 11
98hP S9 L 01 SIN'1d SINTd | 01
610€1 L0y S 8 ID[[01U0D 10pIo dFeueW | SINVEIM | 6
€8¢ ze8l z S juowdSeuew ejep JA1ddns | SINVEM | 8
L89L 29 S 8 ID[[01UOD BJEP [8IP SINVEM | L
4344 '8t 9 6 19[[01u0d J10da1 SINVEM | 9
0101 01 4 L yonpoud oZeuewt SINVEAM | S
Sh6v 99 9 8 [rejap sokodwo a3euew | SNVAM | +
1L9€ 001 €1 Sl I0PIO SAI0AI SIAVEIM | €
GS8S S8 11 1 1opIo soeyd SINVEIM | T
€98L 06 8 4! u13o[SINVEM | 1

Amav Govﬁmrﬁ AXVOMN.ENVOU Uo.~®>oo ﬁo.ﬁo\/oo Ewuwmﬁg mo%ﬂzm ‘ON
oEwH Qoﬁ.em mﬂﬁwm mo # moﬂogﬁm mo # ooﬁoﬁ@om Om.&U ﬁm

dLNDIJo sisAjeue synsay :7°¢ 9[qe],

66

Measuring MC/DC at Design Phase using UML Sequence Diagram

Chapter 5

9% %001 4 4 4 posnun 2)3[9p SIN'T LT
171 %001 ¢ ¢ S uInjaI 00q SIN'T 9T
L %99°99 ¢ z S UOIJBAIISAI J00q SIN'T ST
€¢ %0S 4 I ¢ 3[00q anssI SIN'T T
St %001 4 z ¢ 3[00q yoIeds SIN'T €T
8 %0S 4 I ¢ uI307 Juapmys SIN'T 144
9z %9999 ¢ 4 b ysonbau aredox S 1T
9% %0S 4 I 4 aseqeIepS LYY S 0T
26 %001 z z L aredarg 1Y S 61
89 %EE€E ¢ I S auryorRWwS 1Y S 81
S %05 4 I ¢ R[OS LYY ST L1
9] %001 4 z € 19110109 S 91
121 %S8' T L ¢ 91 Hodar mara SV SI
9¢1 %0S 4 I € SJUQIPAITUL ANSSI SV al
19 %05 4 4 S JIapio aseyoind SVd €l
96 %001 4 z 4 paed nuaw SV 4!
SL %001 4 4 ¢ uI3o] SV 11
8¢ %05 z I ¢ SIN'1d SINTd | 01
€T %EE€E ¢ I 4 I9[[01u0d 19pIo dFeuewl | SINVEM | 6
Ly %0 0 0 I juowd3euew eiep 11 ddns | SINVEM 9
€Tl %0S 4 4 4 I9[[01U0D BIEP [P SINVIM | L
€9 %EEEE ¢ ! ¢ I3[101)u0d 110dar SINVAM | 9
61 %0 0 0 ¢ yonpoud o3euew SINVAM | S
€¢ %99°99 ¢ 4 S [rejap sokodwio a3euew | SNVAM | +
97 %001 4 z € IOPIO0 QA1 SINVEM | ¢
8¢ %SL b ¢ ¢ 1opio soeyd SINVIM | ¢
S %08 S 4 L u13o[SINVEM | 1

(sw) owry, (D) suonipuod | (J) sUORIPUOD sase) weidelq SAIPMIS ‘ON
uonnadxy | %DA/ON ordung juopuadopuy | 1S9L JO # oouanbog ase) IS

VOAd0D JO sisk[eue nsay :€°G Qe

67

5.6 Threats to Validity

* We have only considered, UML Sequence diagram using ArgoUMI. We can’t assure

for the higher version and other existing tools.
* We have manually change the Java Object code into JCUTE executable .java program.

* We are not able to compute the total execution time of MAUSD, because the execution
time of ArgoUML depends on individual software designer. Also, we are not able to
record the execution time of JAXB. But, we have computed the total time taken by
JCUTE and COPECA.

5.7 Summary

We have developed an approach to measure the MC/DC% using sequence diagram. We
explained the proposed technique in detail using block diagram. We have explained
each module used in detail. We have explained the flow of execution using an example
sequence diagram. We have experimented for five case studies. These case studies include
twenty-seven sequence diagrams. On an average, we have achieved 55.29% of MC/DC in
59 ms.

Chapter 6

Conclusions and Future Work

This thesis is mainly focused on automating the MC/DC analysis of object oriented systems.
We have developed techniques to measure MC/DC percentage both at design level and
coding level.

In this chapter, we summarize the major contribution made in this thesis. Subsequently,

we present some suggestions for the extension of proposed techniques.

6.1 Contributions

In this section we present the major contributions. There are two main contributions,
Java-HCT, and MAUSD.

6.1.1 Java-HCT

To improve existing concolic testing and obtain high Modified Condition/Decision Coverage
(MC/DC), we proposed a novel technique called Java-Hybrid Concolic Testing (Java- HCT).
This technique is called hybrid because it is the combination of two testing techniques i.e.
Feedback-directed Random Testing and Concolic Testing. We experimented Java- HCT for
forty Java programs and found on an average increase of 29.91% and 16.26% MC/DC, when
compared to feedback-directed random testing and concolic testing respectively. We have
improved MC/DC by x 1.62 and by x 1.26 for feedback-directed random testing and concolic

testing respectively

6.1.2 MAUSD

We proposed an automated technique to measure MC/DC percentage for UML Sequence
Diagram using concolic testing. We experimented five case studies and worked on twenty
seven Sequence diagrams. On an average, for the twenty-seven sequence diagrams, we
achieved 55.29% MC/DC.

69

6.2 Future Work

In this section, we present some of the possible extensions to our proposed techniques.

* We can extend the hybrid concolic testing in distributed environment to enhance the

useful test data generation in less amount of time.

* We will develop new code transformation techniques to increase the MC/DC% of Java

programs.

* We can make more robust and develop a dynamic version of the present MC/DC
analyzer i.e. COPECA.

* We will compute some more coverage metrics for some other UML behavioral

diagrams such as Statechart diagram, Activity diagram etc.

* We will merge the test cases generated from various UML diagrams to test complete

behavioral aspect of the systems.

» We will develop some efficient test case prioritization techniques for procedural and

object-oriented software.

Dissemination

Internationally indexed journals (Web of Science, SCI, Scopus, etc.)'

1.

Arpita Dutta, Sangharatna Godboley, and Durga Prasad Mohapatra, HiRSA:
Computing Hit Ratio for SOA applications through Tcases, International Journal of

Computational Systems Engineering (IJCSYSE), Inderscience. 2017. (Accepted)

Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall.
GECOJAP: A novel source-code preprocessing technique to improve code coverage.
Computer Standards & Interfaces, Elsevier. 2017.(Accepted) (SCI)

Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall. J?
Model: A novel framework for Improved Modified Condition/Decision Coverage
Analysis. Computer Standards & Interfaces, Elsevier, Volume 50, pages 1-17, 2016.
(SCI)

Sangharatna Godboley, Subhrakanta Panda, Arpita Dutta, and Durga Prasad
Mohapatra. An Automated Analysis of the Branch Coverage and Energy Consumption
Using Concolic Testing, Arabian Journal for Science and Engineering. 2016.
DOI:10.1007/s13369-016-2284-2. (SCI)

Sangharatna Godboley, Arpita Dutta, Avijit Das, Durga Prasad Mohapatra, and Rajib
Mall.Making a concolic tester achieve increased MC/DC, Innovations Systems and
Software Engineering, 12(4), 319-332, 2016. DOI:10.1007/s11334-016-0284-8.

Sangharatna Godboley, Arpita Dutta, and Durga Prasad Mohapatra. Reduced Energy
Consumption for MC/DC Testing, International Journal of Business Information

Systems (IJBIS), Inderscience. (In press)

Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra , and Rajib Mall.
Green J3 Model: A novel approach to measure Energy Consumption of Modified
Condition/ Decision Coverage using Concolic Testing, CSI Transactions on ICT,
pages 1-17, Springer, 2016. DOI 10.1007/s40012-017-0157-9.

! Articles already published, in press, or formally accepted for publication.

71

Dissemination

8.

Sangharatna Godboley, Arpita Dutta, and Durga Prasad Mohapatra.
Green-DRCT:Measuring Energy Consumption of an enhanced Branch Coverage and
Modified Condition/Decision Coverage Technique, IGI Global. (Accepted)

International Conferences

1.

Arpita Dutta, Sangharatna Godboley and Durga Prasad Mohapatra, COLT: Extending
CONCOLIC Testing to measure LCSAJ Coverage, 30th IEEE TENCON-16,
Singapore, pp.373-378, 2016. DOI: 10.1109/TENCON.2016.7848024.

. Arpita Dutta, Sangharatna Godboley and Durga Prasad Mohapatra, Measuring

Branch Coverage for the SOA based Application using Concolic Testing, International
Conference on Advances in Computing and Data Sciences (ICACDS-16), Springer,
Krishna Engineering College, Ghaziabad (UP) India, 2016. (Presented)

. Arpita Dutta, Sangharatna Godboley and Durga Prasad Mohapatra, Measuring Hit

Ratio metric for SOA based Application using Black-box testing, 3rd International
Conference on Computational Intelligence in Data Mining (ICCIDM-16), Springer,
KIIT, Bhubaneswar, 2016. (Presented)

. Durga Prasad Mohapatra, Sangharatna Godboley and Arpita Dutta, Measuring

Hit ratio of Software Systems using UML Sequence Diagram, 58th Technical
Annual Session by The Institute of Engineers (India), 2016. (Received SANDEEP
MOHAPATRA MEMORIAL MEDAL)

Sangharatna Godboley, Arpita Dutta, Avijit Das, and Durga Prasad Mohapatra,
Measuring MC/DC at Design Phase using UML Sequence Diagram and Concolic
Testing, 13th International IEEE India Conference INDICON, IISC, Bengaluru, India,
pp. 1-6,2016. DOI: 10.1109/INDICON.2016.7839079.

Sangharatna Godboley, Arpita Dutta, and Durga Prasad Mohapatra. Java-HCT: An
approach to increase MC/DC using Hybrid Concolic Testing for Java programs. In
proceedings of the 15th Federated Conference on Computer Science and Information
Systems (36th IEEE Software Engineering Workshop), Gdansk University of
Technology, Gdansk, Poland,Annals of Computer Science and Information Systems,
Volume 8, pages 1709-1713, 2016.

Sangharatna Godboley, Arpita Dutta, Bhagyashree Besra and Durga Prasad
Mohapatra, Green-JEXJ: A new tool to measure energy consumption of improved
concolic testing, 2015 International Conference on Green Computing and Internet of
Things (ICGCloT), Noida, pp. 36-41. 2015. DOI: 10.1109/ICGCIoT.2015.7380424.
(Best Paper Award)

72

Article under preparation

1. Arpita Dutta, Sangharatna Godboley, and Durga Prasad Mohapatra, Driving Tcases
to compute Hit Ratio for UML 1.X Sequence Diagram, International Journal of System

Assurance Engineering and Management, Springer (Scopus). (Major Revision)

2. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall,
DRCT: A New Transformation Technique to Achieve Increase in MC/DC, IET
Software (SCI). (Under Revision)

3. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, Avijit Das, and Rajib
Mall, Scaling Modified Condition / Decision Coverage using Distributed Concolic
Testing for Java programs, Computer Standards & Interfaces, Elsevier (SCI). (Under

Review)

4. Sangharatna Godboley, Arpita Dutta, Devang Swami, Durga Prasad Mohapatra,
Towards Green Software Testing: A promising approach to compute CO2 Emission
and Cost Analysis of Software Testing Tools, Sustainable Computing, Elsevier
(SCIE). (Under Revision)

2 Articles under review, communicated, or to be communicated.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Bibliography

Son, H.S., Park, Y.B. and Kim, R.Y.C., 2016. MCCFG: an MOF-based multiple
condition control flow graph for automatic test case generation. Cluster Computing,

Springer, pp.1-10.

Eriksson, A. and Lindstrom, B., 2016. UML Associations: Reducing the gap in test
coverage between model and code. In proceedings of 4th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD), February
19-21, Rome, Italy, Vol. (1), pp. 589-599. SciTePress.

Dhok, M., Ramanathan, M.K. and Sinha, N., 2016, May. Type-aware concolic testing
of JavaScript programs. In proceedings of the 38th International Conference on
Software Engineering, ACM. pp. 168-179.

Han, D., Xing, J., Yang, Q., Wang, H. and Zhang, X., 2016. Formal Sequence:
Extending UML Sequence Diagram for Behavior Description and Formal Verification.

In proceedings of IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), Vol. (2), pp. 474-481.

Godboley, S., Mohapatra, D.P., Das, A., and Mall, R., 2016. An improved
distributed concolic testing approach. Sofiware: Practice and Experience,Wiley, DOI:
10.1002/spe.2405.

Godboley, S., Dutta, A., Mohapatra, D.P., Das, A., and Mall, R., 2016. Making
A Concolic Tester Achieve Increased MC/DC, Innovations in systems and software
engineering, Springer, DOI:10.1007/s11334-016-0284-8.

Godboley, S., Dutta, A., Mohapatra, D.P., and Mall, R., 2016. J3 Model: A novel
framework for improved Modified Condition/Decision Coverage analysis,Computer
Standards and Interfaces, Elsevier,Vol.(50), pp. 1-17, DOI: 10.1016/j.¢51.2016.09.006.

Chen, J., Kuo, F.C., Chen, T.Y., Towey, D., Su, C. and Huang, R., 2016. A Similarity
Metric for the Inputs of OO Programs and Its Application in Adaptive Random Testing.
IEEE Transactions on Reliability.

74

Dissemination

[9] Godboley, S., Panda, S., Dutta, A. and Mohapatra, D.P., 2016. An Automated Analysis
of the Branch Coverage and Energy Consumption Using Concolic Testing. Arabian

Journal for Science and Engineering, pp.1-19.

[10] Sen, K., Necula, G., Gong, L. and Choi, W., 2015, August. MultiSE: Multi-path
symbolic execution using value summaries. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, ACM., pp. 842-853.

[11] Noh, S. and Shortle, J.F., 2015. Sensitivity analysis of event sequence diagrams for
aircraft accident scenarios. In proceedings of 34th Conference on Digital Avionics
Systems (DASC), IEEE/AIAA, pp. 3E2-1.

[12] Li, Y., Li, You., Wang, L., and Chen, G., 2014. Automatic XACML requests generation
for testing access control policies. In proceedings of SEKE-14, Hyatt Regency,
Vancouver, Canada, pp. 217-222.

[13] Saito, H., Takada, S., Tanno, H., and Oinuma, M., 2014. Test Data Generation for
Web Applications: A Constraint and Knowledge-based Approach. In proceedings of
SEKE-14, Hyatt Regency, Vancouver, Canada. pp. 110-114.

[14] Mall, R., 2014. Fundamentals of software engineering. PHI Learning Pvt. Ltd.

[15] Das, A., and Mall, R., 2013. Automatic Generation of MC/DC Test Data. International
Journal of Software Engineering, Acta Press, 2(1).

[16] Godboley, S., and Mohapatra, D.P., Time Analysis of Evaluating Coverage Percentage
for C Program using Advanced Program Code Transformer In proceedings 7th CSI
International Conference on Software Engineering Vol. 11, Chennai, India, pp. 91-97.

[17] Godboley, S., Prashanth, G.S., Mohapatra, D.P., and Majhi, B., 2013. Enhanced
modified condition/decision coverage using exclusive-nor code transformer.
In proceedings of International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing (iMac4s), IEEE, Kottayam, Kerala,
India, pp. 524-531.

[18] Godboley, S., Prashanth, G.S., Mohapatra, D.P., and Majhi, B., Increase in Modified
Condition/Decision Coverage using program code transformer. In proceedings of
IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad, Indiapp,
1400-1407.

[19] Vadakkumcheril, T., Mythily, M., and Valarmathi, ML., 2013. A Simple
Implementation of UML Sequence Diagram to Java Code Generation through
XMI Representation. International Journal of Emerging Technology and Advanced
Engineering, 2 (12).

75

Dissemination

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Tillman, N., Jamrozik, K., Fraser, G.,and Halleux, J., 2013. Generating test suites with
augmented dynamic symbolic execution. In proceedings of International Conference

on Tests and Proofs, Springer, Berlin, pp. 152-167.

Kim, M., Kim, Y., and Rothermel, G., 2012. A Scalable Distributed Concolic Testing
Approach: An Empirical Evaluation. In proceedings of Fifth IEEE International
Conference on Software Testing, Verification and Validation (ICST), IEEE, Downtown
Montreal Montreal, QC, Canada pp. 340-349.

Das, A., 2012. Automatic Generation of MC/DC Test Data. Master Thesis, Computer
Science & Engineering, Indian Institute of Technology, Kharagpur, India.

Chartchai, D., 2011. Generation of Software Test Data from the Design Specification
Using Heuristic Techniques. Thesis (Ph.D.) Department of Computing University of
Bradford.

Claessen, K., and Hughes, J., 2011. QuickCheck: a lightweight tool for random testing
of Haskell programs. Acm sigplan notices, 46(4), pp. 53-64.

RTCA Inc. 2011. DO-178C: Software Considerations in Airborne Systems and
Equipment Certification, Washington, D.C.

Kéhkonen, K., Launiainen, T., Saarikivi, O., Kauttio, J., Heljanko, K., and Niemel4, I.,
2011. LCT: An open source concolic testing tool for Java programs. In proceedings of
the 6th Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE), pp. 75-80.

Nayak, A., and Samanta, D., 2010. Automatic Test Data Synthesis using UML
Sequence Diagrams, Journal of Object Technology, 9(2), pp. 115-144.

Swain, S.K., Mohapatra, D.P. and Mall, R., 2010. Test case generation based on
use case and sequence diagram. International Journal of Software Engineering, 3(2),
pp.21-52.

Bokil, P.,, Darke, P., Shrotri, U., and Venkatesh, R., 2009. Automatic Test Data
Generation for C Programs. In proceedings of 3rd IEEE International Conference on

Secure Software Integration and Reliability Improvement, Washington, DC, USA, pp.
359-368.

Jayaraman, K., Harvison, D., Ganesh, V., and Kiezun, A., 2009. jFuzz: A concolic
whitebox fuzzer for java, In proceedings of NASA Formal Methods, Springer, pp.
121-125.

76

Dissemination

[31] Awedikian, Z., Ayari, K., and Antoniol, G., 2009. MC/DC automatic test input data
generation. In proceedings of Genetic and Evolutionary Computation Conference
(GECCO), New York, USA, pp. 1657-1664.

[32] McMinn, P., Binkley, D. and Harman, M., 2009. Empirical evaluation of a nesting
testability transformation for evolutionary testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 18(3), pages 11.

[33] Cadar, C., Ganesh, V., Pawlowski, PM., Dill, D.L. and Engler, D.R., 2008. EXE:
automatically generating inputs of death. ACM Transactions on Information and System
Security (TISSEC), pp. 322-335.

[34] Boonstoppel, P., Cadar, C. and Engler, D., 2008. RWset: Attacking path explosion in
constraint-based test generation. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer, Berlin, Heidelberg, pp.
351-366.

[35] Burnim, J., and Sen, K., 2008. Heuristics for scalable dynamic test generation. /n
proceedings of Automated Software Engineering (ASE), pages 443-446, Washington,
D.C., USA.

[36] Csallner, C., Smaragdakis, Y., and Xie, T., 2008. Dsd-crasher: A hybrid analysis tool
for bug finding, ACM Transaction on Software Engineering and Methodology, 17(2),
pp. 8:1-8:37.

[37] Majumdar, R., and Sen, K., 2007. Hybrid concolic testing, In proceedings of 29th
International Conference on Software Engineering 2007, pp. 416-426.

[38] Pacheco, C., Lahiri, S. K., Emst, M. D., and Ball, T., 2007. Randoop:
Feedback-directed random test generation, In proceedings of 29th International
Conference on Software Engineering, 2007. ICSE 2007.

[39] Visser, W., Pasareanu, C. S., and Pelanek, R., Test input generation for java containers
using state matching, /n proceedings of the 2006 International Symposium on Software
Testing and Analysis, ser. ISSTA, New York, NY, USA: ACM, pp. 37-48.

[40] Sen, K., and Agha, G., 2006. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In International Conference on Computer Aided Verification,

Springer Berlin Heidelberg, pp. 419-423.

[41] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T., 2006. Feedback-directed
random test generation, In 7echnical Report MSR-TR-2006-125, Microsoft Research,
pp. 75-84.

77

Dissemination

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Lei, Y., and Andrews, J. H., 2005. Minimization of randomized unit test cases.
In proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, 2005. ISSRE 2005, pp. 10 pp.—276.

Pacheco, C. and Ernst, M. D., 2005. Eclat: Automatic Generation and Classification
of Test Inputs./n proceedings of ECOOP 2005 - Object-Oriented Programming: 19th
European Conference, Glasgow, UK, July 25-29, 2005. Heidelberg: Springer Berlin,
pp. 504-527.

Godefroid, P., Klarlund, N., and Sen, K., 2005. DART: Directed automated random
testing. In proceedings of Programming Language Design and Implementation (PLDI),
New York, USA, pp. 75-84.

Sen, K., Marinov, D., and Agha, G., 2005. CUTE: A concolic unit testing engine
for C. In proceedings of European Software Engineering Conference / Foundations
of Software Engineering (ESEC/FSE), Lisbon, Portugal, pp. 263-272.

Rountev, A., Kagan, S., and Sawin, J., 2005. Coverage criteria for testing of
object interactions in sequence diagrams, In Fundamental Approaches to Software
Engineering, LNCS 3442, pap. 282-297.

Lei, Y., and Andrews, J. H., 2005. Minimization of randomized unit test cases.
In proceedings of 16th IEEE International Symposium on Software Reliability
Engineering, 2005. ISSRE 2005, pp. 10.

Csallner, C., and Smaragdakis, Y., 2004. Jcrasher: an automatic robustness tester for
java, Software: Practice and Experience, 34(11), pp. 1025-1050.

Abdurazik, A., Offutt, J., and Baldini, A., 2004. A controlled experimental evaluation
of test cases generated from UML diagrams. Technical Report, ISE-TR-04-03. George

Mason University.

Harman, M. , Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper,
M., 2004. Testability Transformation. /EEE Transactions on Software Engineering pp.
3-16.

Cadar, C., Dunbar, D. and Engler, D.R., 2004. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In proceedings
of Operating Systems Design and Implementation (OSDI), San Francisco, CA, pp.
209-224.

Fraikin, F. and Leonhardt, T., 2002. SeDiTeC-testing based on sequence diagrams.
In the proceedings of the 17th IEEE international conference on Automated Software
Engineering (ASE) 2002. Washington, DC, USA, pp. 261-266.

78

Dissemination

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Kelly, H. J., Dan, V. S., John, C. J., and Leanna, R.K., 2001. A practical tutorial on
modified condition/decision coverage, NASA Langley Technical Report .

Ho, P.H., Shiple, T., Harer, K., Kukula, J., Damiano, R., Bertacco, V., Taylor,
J. and Long, J., 2000. November. Smart simulation using collaborative formal and
simulation engines. In proceedings of the 2000 IEEE/ACM international conference

on Computer-aided design, pp. 120-126.

Abdurazik, A., Offutt, J., 2000. Using UML collaboration diagrams for static checking
and test generation. In proceedings of International Conference on the Unified

Modeling Language. pp. 383-395.

Bush, W.R., Pincus, J.D., and Sielaff, D.J., 2000. A static analyzer for finding dynamic
programming errors. Software: Practice and Experience, 30(7), pp. 775-802.

Kuhn R., 1999. Fault classes and error detection capability of specification-based
testing. In proceedings of ACM Transactions on Software Engineering Methodology,
8(4), New York, USA, pp. 411-424.

Ganai, M.K. and Tech, B., 1998. Enhancing simulation with BDDs and ATPG (Master’s
thesis, University of Texas at Austin).

Ferguson, R. and Korel, B., 1996. The chaining approach for software test data
generation. ACM Transactions on Software Engineering and Methodology (TOSEM),
5(1), pp.63-86.

RTCA, Inc., 1992. RTCA/DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, Washington, D.C.

Bird, D.L. and Munoz, C.U., 1983. Automatic generation of random self-checking test
cases. IBM systems journal, 22(3), pp.229-245.

Clarke, L.A., 1976. A system to generate test data and symbolically execute programs.
IEEE Transactions on software engineering, (3), pp.215-222.

King, J.C., 1976. Symbolic execution and program testing. Communications of the
ACM, 19(7), pp.385-394.

79

	Supervisor's Certificate
	Dedication
	Declaration of Originality
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objectives
	Thesis Organization

	Basic Concepts
	Some Relevant Definitions
	UML Diagrams
	Summary

	Literature Survey
	 Test Data Generation
	Random Testing
	Symbolic Testing
	Concolic Testing
	Hybrid Concolic Testing
	Other Related Works

	MC/DC (Modified Condition/ Decision Coverage) Testing
	Testing and coverage analysis using UML diagrams
	Summary

	Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing
	Overview of proposed framework
	Description in detail
	Syntax Converter
	RANDOOP
	jCUTE
	TCs Extractor
	Test Cases Combiner
	COPECA
	TCs Minimizer

	Algorithmic Description
	Experimental Study
	Experimental Setup
	Assumptions
	Implementation
	Result Analysis

	Threats to validity
	Comparison with related works
	Summary

	Measuring MC/DC at Design Phase using UML Sequence Diagram
	Overview of proposed framework
	Description in detail
	ArgoUML
	JAXB
	jCUTE
	COPECA

	Algorithmic Description
	Experimental Study
	Experimental Setup
	Assumptions
	Implementation
	Result

	Comparison with related work
	Threats to Validity
	Summary

	Conclusions and Future Work
	Contributions
	Java-HCT
	MAUSD

	Future Work

	Dissemination

