
Computing MC/DC Criterion for
Object-Oriented Systems

Arpita Dutta

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Computing MC/DC Criterion for
Object-Oriented Systems

Dissertation submitted in partial fulfillment

of the requirements of the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science)

by

Arpita Dutta
(Roll Number: 215CS1067)

based on research carried out

under the supervision of

Prof. Durga Prasad Mohapatra

May, 2017

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Prof. Durga Prasad Mohapatra
Associate Professor

May 23, 2017

Supervisor’s Certificate

This is to certify that the work presented in the dissertation entitled Computing MC/DC
Criterion for Object-Oriented Systems submitted by Arpita Dutta, Roll Number 215CS1067,
is a record of original research carried out by her undermy supervision and guidance in partial
fulfillment of the requirements of the degree of Master of Technology in Computer Science
and Engineering. Neither this dissertation nor any part of it has been submitted earlier for
any degree or diploma to any institute or university in India or abroad.

Durga Prasad Mohapatra

Dedication

Dedicated to..........

My Loving Parents

Signature

Declaration of Originality

I, Arpita Dutta, Roll Number 215CS1067 hereby declare that this dissertation entitled
ComputingMC/DCCriterion for Object-Oriented Systems presents my original work carried
out as a postgraduate student of NIT Rourkela and, to the best of my knowledge, contains
no material previously published or written by another person, nor any material presented
by me for the award of any degree or diploma of NIT Rourkela or any other institution. Any
contribution made to this research by others, with whom I have worked at NIT Rourkela or
elsewhere, is explicitly acknowledged in the dissertation. Works of other authors cited in this
dissertation have been duly acknowledged under the sections “Reference” or “Bibliography”.
I have also submitted my original research records to the scrutiny committee for evaluation
of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT
Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

May 23, 2017
NIT Rourkela

Arpita Dutta

Acknowledgment

I owe deep gratitude to the ones who have contributed greatly in completion of this thesis.
Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Durga

Prasad Mohapatra for providing me with a platform to work in the field of Software Testing.
He has always supported and guided on challenging areas of Modified Condition/ Decision
Coverage and Concolic Testing. His profound insights and attention to details have been
true inspirations to my research.

I am very much thankful to my Ph.D. senior Mr. Sanghartana Godboley. He has the one
who suggested me to work in this area. He has always supported and guidedme to the correct
path of research. My research work and thesis is really impossible without his contribution
and support.

I am very much indebted to Prof. Pabitra Mohan Khilar, Prof. Bibhudatta Sahoo, Prof.
Ashok Kumar Turuk, and Prof. Ruchira Naskar for their encouragement and insightful
comments at different stages of the thesis that were indeed thought provoking.

I express my gratitude to Prof. Rajib Mall of IIT Kharagpur for providing the necessary
inputs and guidance at different stages of my work.

Most importantly, none of this would have been possible without the love of Mr. Arup
Dutta (Baba), Mrs. Sangeeta Dutta (Maa), and Amrita Dutta (Sister). My family to whom
this dissertation is dedicated to, has been a constant source of love, concern, support and
strength all these years. I would like to express my heartfelt gratitude to them.

I also like to thank Dr. Subhrakanta Panda, and Dr. Jagannath Singh for their unique
ideas and help whenever required.

I would like to thank all my friends and lab-mates (Bhagyashree Besra, SatyaManikyam
Perabhatula,Anshu Katiyar, Jitendra Kumar, P. Shruthi, Srijan Das, Saurav Sharma and
Mohammad Ashraf Gardizy) for their encouragement and understanding. Their help can
never be penned with words.

May 23, 2017
NIT Rourkela

Arpita Dutta
Roll Number: 215cs1067

Abstract

Modified Condition / Decision Coverage (MC/DC) is the second strongest criterion in
coverage based white-box testing. According to RTCA DO-178B and DO-178C standards,
it is mandatory for the safety critical systems to satisfy MC/DC criterion in order to ensure
adequate testing. This work presents two different methodologies to calculate MC/DC% of
a system. First, we compute MC/DC% of a software only after the completion of coding
phase. There are so many techniques present to generate the test cases for a system. But,
those test cases are not powerful enough to cover all the possible conditions present in the
program. So, we propose a hybrid technique for MC/DC test data generation. We combine
feedback-directed test case generation with concolic testing to form Java-Hybrid Concolic
Testing (Java-HCT). Java-HCT generates more number of test cases since it combines the
features of both. Hence, through Java-HCT we achieve high MC/DC. Combination of two
approaches handles/ overcomes different tradeoffs of completeness and scalability. We
develop Java-HCT using RANDOOP, jCUTE (Java Concolic Unit Testing Engine), and
COPECA (COverage PErcentage CAlculator). Combination of RANDOOP and jCUTE
creates more number of test cases. COPECA is used to measure MC/DC% taking the
generated test cases as input. Our experiment with forty Java programs shows that Java-HCT
produces better MC/DC% than individual testing techniques (feedback-directed random
testing and concolic testing). We have improved MC/DC by ×1.62 and by ×1.26 in
comparison to feedback-directed random testing and concolic testing, respectively.

In our second work, we compute MC/DC% of the given system, using model based
approach. We have proposed a novel technique for MC/DC computation during design
phase, using UML Sequence diagram. Sequence diagram presents the interactions among a
set of collaborating objects. The sequences of synchronized and asynchronized messages in
the sequence diagrams are used to define the code coverage goals. First, we design an UML
Sequence Diagram and generate an XMI code from it. Next, JAXB converts the XMI code
into Java code. After that, we supply Java code to jCUTE to generate concolic test cases.
These test cases and the Java code are supplied to our tool COPECA to measure MC/DC%.
We experimented with five case studies and worked on twenty seven sequence diagrams and
on an average, we achieved 55.29% MC/DC.
Keywords: Feedback Directed Random Testing; Concolic Testing; UML Sequence
Diagram;MC/DC.

Contents

Supervisor’s Certificate ii

Dedication iii

Declaration of Originality iv

Acknowledgment v

Abstract vi

List of Figures x

List of Tables xii

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . 4
1.2 Objectives . 4
1.3 Thesis Organization . 5

2 Basic Concepts 6
2.1 Some Relevant Definitions . 6
2.2 UML Diagrams . 11
2.3 Summary . 12

3 Literature Survey 14
3.1 Test Data Generation . 14

3.1.1 Random Testing . 14
3.1.2 Symbolic Testing . 15
3.1.3 Concolic Testing . 15
3.1.4 Hybrid Concolic Testing . 19
3.1.5 Other Related Works . 20

3.2 MC/DC (Modified Condition/ Decision Coverage) Testing 21

vii

3.3 Testing and coverage analysis using UML diagrams 22
3.4 Summary . 23

4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing 24
4.1 Overview of proposed framework . 24
4.2 Description in detail . 26

4.2.1 Syntax Converter . 26
4.2.2 RANDOOP . 27
4.2.3 jCUTE . 27
4.2.4 TCs Extractor . 27
4.2.5 Test Cases Combiner . 28
4.2.6 COPECA . 28
4.2.7 TCs Minimizer . 28

4.3 Algorithmic Description . 29
4.4 Experimental Study . 31

4.4.1 Experimental Setup . 31
4.4.2 Assumptions . 32
4.4.3 Implementation . 32
4.4.4 Result Analysis . 35

4.5 Threats to validity . 45
4.6 Comparison with related works . 45
4.7 Summary . 50

5 Measuring MC/DC at Design Phase using UML Sequence Diagram 52
5.1 Overview of proposed framework . 52
5.2 Description in detail . 53

5.2.1 ArgoUML . 53
5.2.2 JAXB . 54
5.2.3 jCUTE . 55
5.2.4 COPECA . 55

5.3 Algorithmic Description . 56
5.4 Experimental Study . 56

5.4.1 Experimental Setup . 57
5.4.2 Assumptions . 57
5.4.3 Implementation . 57
5.4.4 Result . 58

5.5 Comparison with related work . 64
5.6 Threats to Validity . 68
5.7 Summary . 68

viii

6 Conclusions and Future Work 69
6.1 Contributions . 69

6.1.1 Java-HCT . 69
6.1.2 MAUSD . 69

6.2 Future Work . 70

Dissemination 71

ix

List of Figures

1.1 Software testing technique classification 2

2.1 Euclid’s GCD computation program . 7
2.2 An example “if” structure to show MC/DC testing 8
2.3 Sample program for Concolic testing . 10
2.4 UML diagrams showing the different views of a system 12
2.5 UML Sequence Diagram for Book Renewal Scenario 13

4.1 Schematic representation of Java-HCT . 25
4.2 Benefit of Hybrid concolic testing . 25
4.3 Original Java program . 34
4.4 Graphical User Interface of Syntax_Converter 35
4.5 Java program in jCUTE executable format 36
4.6 Java program in RANDOOP executable format 37
4.7 Test data generation from RANDOOP framework 38
4.8 Successful execution of total test cases . 38
4.9 RandoopTest.java program contains information about all the generated test

case files . 39
4.10 Test Cases present in a single test data file 39
4.11 Test data generation from jCUTE tool . 40
4.12 Different parameter computation using jCUTE 40
4.13 Test Cases generated by jCUTE . 41
4.14 Graphical User Interface of Java-HCT . 42
4.15 Graphical User Interface of COPECA (Coverage Percentage Calculator) . . 43
4.16 Graphical User Interface of Minimizer . 43
4.17 Total number of Test Cases generated . 50
4.18 Computed MC/DC percentages . 51
4.19 Increase in MC/DC percentages . 51

5.1 Schematic representation of MAUSD . 53
5.2 Fundamental working of JAXB . 55
5.3 Sequence diagram for Job searching . 58

x

5.4 XML code generated for the Sequence diagram shown in Figure 5.3 59
5.5 Java code generated from JAXB for the XML code shown in Figure 5.4 . . 60
5.6 Compilation on jCUTE . 60
5.7 One complete execution on jCUTE . 61
5.8 Results obtained by using jCUTE . 61
5.9 Test Cases generated by jCUTE . 62
5.10 MC/DC analysis using COPECA . 62
5.11 Number of generated test cases vs. the number of conditions present in the

Sequence Diagrams. 63
5.12 Number of independently affected conditions vs. number of simple conditions. 63
5.13 Branch Coverage percentage vs. Modified Condition/ Decision Coverage

percentage . 64

xi

List of Tables

2.1 Extended Truth Table for MC/DC analysis 8
2.2 Associativity and precedence of logic gates 9

3.1 Summary of concolic testers with their properties. 18
3.2 Summary of different work on concolic testing. 19
3.3 Characteristics of different approaches on concolic testing. 19

4.1 Characteristics of different target programs 46
4.2 Statistics of results on execution of RANDOOP 47
4.3 Statistics of results on execution of jCUTE 48
4.4 Results on execution of COPECA . 49

5.1 Characteristics of case studies . 65
5.2 Results analysis of jCUTE . 66
5.3 Result analysis of COPECA . 67

xii

List of Algorithms

1 Java-HCT . 29
2 COPECA . 30
3 MAUSD . 56

xiii

Chapter 1

Introduction

Software Development Life Cycle (SDLC) has one important and expensive activity called
software testing. It deals with the quality and reliability of the product developed. It includes
driving test cases along with a developed program and computing the response. It targets to
detects all bugs present in a software with the help of test cases vector. Test case design is the
most important phase in software testing life cycle. The software testing goals are mainly
classified into three categories:

1. Immediate goals or Short-term: It consists of Bug prevention, and Bug discovery.

2. Long-term Goals: It consists of Reliability, Customer satisfaction, Risk management,
and Quality.

3. Post-implementation Goals: It consists of Reduced maintenance cost, and Improved
testing process.

Software testing can be done in two ways- Manually and Automated. For practical
usage, manual testing is not advisable. Because manual testing leaves an ample scope
for un-catched errors. So, we have moved towards automated testing. Now-a-days a
large number of automated software testing tools are available such as Concolic testers
(CUTE, jCUTE, SCORE, CREST), random testers (RANDOOP) etc. Concolic testing is the
combination of Concrete and Symbolic execution. It is a systematic technique that performs
symbolic execution but uses randomly-generated test inputs to initialize the search and to
allow the tool to execute programs when symbolic execution fails.

Software testing is also classified as white box testing and black box testing. In white
box testing, we have the knowledge of internal structure of the software whereas in black
box testing, we know only the functionality of the software. We don’t have the knowledge
of internal structure (code). We are focusing towards white box testing. White box testing
a can be further classified as Fault based testing and Coverage based testing. Fault based
testing targets to detect certain type of faults present in the program. Mutation testing is
an example of a fault-based test strategy. Coverage based testing targets to cover certain
specific elements of a program. Following are different coverage based testing techniques.

1

Introduction

Figure 1.1: Software testing technique classification

• Statement Coverage: It aims to design test cases in order to execute all the statements
present in the program.

• Branch Coverage or Decision Coverage: It aims to design test cases which invokes
each decision present in the program for true and false result each, at-least for once.

• Condition Coverage: It aims to design test cases which invokes each condition of a
decision present in the program for true and false result each, at-least for once.

• Modified Condition/ Decision Coverage: It aims to design test cases which is able
to show the independent affect of each condition present in a predicate.

• Multiple Condition Coverage: Multiple Condition Coverage: This is the strongest
code coverage criterion, which finds all possible combinations of condition outputs
present in a predicate in a program. It invokes all entry and exit points at least once.

• Path Coverage: It tries to design test cases which covers all possible linear
independent paths present in the program.

Figure 1.1 shows the classification of software testing techniques. In coverage based
testing techniques, Multiple Condition Coverage (MCC) is the strongest one [1]. it subsumes
all other coverage based testing criterion. But for our research we have chosen Modified
Condition/Decision Coverage (MC/DC) criterion, which is the second strongest coverage
criterion. The reason behind the selection of second strongest criterion is completely based
upon the test case generation requirement. In order to test an n-condition predicate, in
MCC we require 2n number of test cases whereas in MC/DC it requires minimum (n+1)

2

Introduction

and maximum (2*n) test cases. The 2n number of test cases are redundant and it creates
an combinatorial explosion problem of test data generation. So, in the practical usage and
software application testing it is not advisable to adhere with Multiple Condition Coverage.
In MC/DC, the required (n+1) number of test cases are unique, non-redundant and capable
of invoking each and every atomic condition of a predicate.

According to guidelines provided by RTCA1/DO2-178B [60] and DO-178C [25]
standards, it is mandatory to achieve MC/DC for Level A safety critical software
applications. Effective test data generation for MC/DC coverage is a critical issue. The
short circuit evaluation done by the compiler on logical operators makes it difficult to reach
each and every atomic condition present in a predicate. Compiler simplifies a predicate and
generates the equivalent code using only the basic “if” structure which is free from AND
and OR operators. Further it uses code optimization techniques to simply the code. In this
phase, based upon the short-circuit evaluation, it eliminates many simple condition which
are very much essential for the MC/DC evaluation. There are many test data generation
techniques available. But alone these techniques are not sufficient to achieve high MC/DC
coverage because they are not capable of generating all possible useful test data for Modified
Condition/Decision Coverage. To overcome the problem of less coverage attainment, we
have proposed a hybridized method for test data generation. This technique combines the
test cases generated by feedback directed random testing and concolic testing and tries to
discover more number of independently affecting conditions. We have develop a tool called
Java-HCT (Java-Hybrid Concolic Tester) using RANDOOP 3, jCUTE 4 and COPECA.

Test cases are usually designed to satisfy the requirements which are actually coded
and presented through a software or program. It makes test case generation process very
complex for cluster levels. Further this approach may be inefficient at component-based
software development, where testers may not have actual source code. Hence, it is useful
to generate test cases at the software design level instead from the source code. Testing at
design phase is very advantageous for SDLC. Using this testing at design phase deals with
the compliance of the implementation with the design documentation, which is missing is
source code based testing. Also, in this case the generated test data is independent of any
specific implementation of the design. So, we have proposed an automated technique of test
data generation from UML Sequence Digram. The process of generating test cases from
design documents is known as Grey box testing because it is combination of both black box
and white box testing strategy. We have developed and implemented a tool called MAUSD
(MC/DC Analyser for UML Sequence Diagram) for measuring MC/DC percentage using

1Radio Technical Commission for Aeronautics.
2Document
3https://github.com/randoop/randoop-eclipse-plugin
4http://osl.cs.illinois.edu/software/jcute/

3

Chapter 1 Introduction

ArgoUML 5, JAXB 6, jCUTE 7, and COPECA.

1.1 Motivation

This section presents the motivation behind the developing the techniques basically related
with the Modified Condition/Decision Coverage.

• Limited work is done in the area of automated testing methods that support MC/DC
using concolic testing.

• Automated tool for MC/DC test case generation

– Improves software quality

– Performs exhaustive testing of a software.

– Reduces software testing time.

• RTCA/ DO-178B and DO-178C standardization: Safety critical systems strictly
require the satisfaction of MC/DC for Level A certification of a software systems.
So, it is desirable to develop an automated tool to compute the MC/DC percentage of
given system.

While computing coverage, we have been motivated towards model based testing. In
model based testing, we can start testing from design phase onwards. We don’t have to wait
for the completion of coding phase. UML diagrams represent various perspectives of the
project under development. UML sequence diagram contains complex interactions among
sets of collaborating objects from different classes. It shows the behavioral aspects of the
system. so, we want to develop an approach to compute the MC/DC percentage of a project
at design phase using UML sequence diagram.

1.2 Objectives

We set the following objectives for our research work based on the motivations outlined in
the previous section.

• To develop a hybridized technique (combination of Feedback Directed Random
Testing and Concolic Testing) for MC/DC test data generation in order to achieve
high MC/DC coverage for Java programs.

• To compute MC/DC% of object-oriented systems using UML Sequence Diagram.
5http://argouml.tigris.org/
6https://jaxb.java.net/
7http://osl.cs.illinois.edu/software/jcute/

4

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents the background knowledge required to understand the whole
thesis. It contains the definition of Condition, Predicate, Branch Coverage, Modified
Condition/ Decision Coverage Primary Gates, Concolic testing, Feedback-Directed
Random TestingUML diagrams and specifically UML sequence diagram etc. We explain
all the concepts with help of examples.

Chapter 3 provides an overview of the related work done in field of various test
data generation strategies, MC/DC testing criterion and test and coverage analysis of UML
diagrams. We have mainly focused on random testing, symbolic testing, concolic testing
and hybrid concolic testing strategies of test data generation. In this chapter, we also
discussed the work on testing of object-oriented software using UML sequence diagrams.

Chapter 4 presents a hybrid concolic testing (HCT) technique to improve the Modified
Condition/ Decision Coverage for input Java programs. We present the schematic
representation of proposed approach followed by detail description and algorithmic
description. Also, we explain the proposed technique with the help of an example Java
program. Subsequently, we present the experimental results and threats to validity of
proposed approach. We also present comparison with related work.

Chapter 5 presents a technique for Modified Condition/ Decision Coverage measurement
using UML sequence diagram. We present the description of each module used in
framework followed by the Schematic representation of proposed technique. We present
the algorithm used and a example to discuss the complete flow of approach. Subsequently,
we present the result analysis of proposed technique and threats to validity of our approach.
We have also compared our proposed technique with existing one.

Chapter 6 concludes the thesis with a summary of our contributions. We also give a
brief idea towards the possible future extension of our work.

Chapter 2

Basic Concepts

In this chapter we discuss some important background concepts which will help to
understand the further chapters.

2.1 Some Relevant Definitions

Definition 2.1 Condition: Booleans expression without and logical operator such as AND
(&&) and OR (||) operator. Conditions are also known as clauses.

For example, (var1<var2) is a condition, where var1 and var2 are variables. Conditions
consists of relational operators such as <, >, >=, =< etc. Conditions are known as clauses.

Definition 2.2 Predicate: It is a group of one or more conditions connected with
logical operators such as AND (&&) and OR (||) operator.

For example, (var1<var2) && (var3>=80) is a predicate, (var1<var2) and (var3>=80)
are two conditions connected with the help of AND operator.

Definition 2.3 Branch Coverage: Branch coverage is a method of testing which
aims to ensure that all possible outcomes of a decision point has to be executed at least
once. With the help of above statement, it ensures that all reachable code is executed at
least once [14].

The possible outcome for a branch coverage statement is either true or false. The branch
coverage criterion tries to make sure that none of the branch statement present in the program
leads to an abnormal behavior of the application. The branch coverage percentage of a
program is computed with help of formula given in Equation 2.1.

Branch Coverage Percentage =
No. of decision outcomes tested

Total number of decisions present
(2.1)

Let us explain the working of branch coverage using an example program. Figure
2.1 shows a sample program to evaluate Greatest Common Divisor (GCD) between two
numbers. To achieve 100% branch coverage, a suitable test suite is presented below:

6

Chapter 2 Basic Concepts

1. int GreatestCommonDivisor(int var1x, int var2y){
2. while(var1x!=var2y){
3. if(var1x>var2y){
4. var1x=var1x-var2y;
5. }
6. else{
7. var2y=var2y-var1x;
8. }
9. }
10. return var1x;
11. }

Figure 2.1: Euclid’s GCD computation program

Test Suite {(var1x=3, var2y=3), (var1x=3, var2y=2), (var1x=4, var2y=3), (var1x=3,
var2y=4)}.

Definition 2.4 Modified Condition / Decision Coverage: According to DO178C
standard, the essential requirements of MC/DC are follows [6, 7]:

• All statement in the program has been invoked at least once.

• All point of entry and exit in the program has been invoked at least once.

• All control statement (i.e., branch point) in the program has taken all possible outcomes
(i.e., branches) at least once.

• All non-constant Boolean expression in the program has evaluated to both a true and
a false result.

• All non-constant condition in a Boolean expression in the program has evaluated to
both a true and a false result.

• All non-constant condition in a Boolean expression in the program has been shown to
independently affect that expression’s outcome. Two different approaches to confirm
that the minimum tests are achieved are the unique-cause approach and the masking
approach.

– For unique-cause MC/DC, a condition is shown to independently affect a
decision’s outcome by varying just that condition while holding fixed all other
possible conditions.

– For masking MC/DC, a condition is shown to independently affect a decision’s
outcome by applying principles of Boolean logic to assure that no other condition
influences the outcome (even thoughmore than one condition in the decisionmay
change the value).

7

Chapter 2 Basic Concepts

1. if(A||B){
2. // Do-Something
3. }

Figure 2.2: An example “if” structure to show MC/DC testing

Table 2.1: Extended Truth Table for MC/DC analysis
TCs No. M N result M N

1 True True True 3 2
2 True False False 1
3 False True False 1
4 False False False

The concept of independence of a clause is mathematically explained below:
Let P = (c1, c2,, ci,cn−1, cn) be a predicate consisting of n clauses and

Bool_Res(P) be a user defined mathematical function returns the boolean decision of
predicate P. Independence of clause ci is denoted as ϕP (c)

ci
. Mathematically,

ϕP (c)

ci
= Bool_Res(c1, c2, .., ci, ..cn−1, cn)⊕Bool_Res(c1, c2, ..,¬ci, ..cn−1, cn) (2.2)

where, ⊕ is an exclusive-or operation.
If ϕP (c)

ci
= 1, then ci is an independent clause, otherwise not.

Let’s take the example “if” structure in Figure 2.2. The MC/DC test cases are generated
using the steps given below:

• Prepare a truth table for the predicate.

• Now, develop an Extended Truth Table (ETT) so that it indicates an atomic condition
as independently influenced atomic conditions.

• Please, show the pairing of test cases. Here, independence of M shows to take 1+3,
and independence of N shows to take 1+2.

• At last, maintain the test cases as 1+2+3, viz i.e.(True,True)+(True,False)+(False,True)

MC/DC subsumes the criteria of decision, condition and condition/decision coverage
(C/DC). If MC/DC coverage is 100%, then all these structural coverages will be 100%.
Equation 2.3 shows the subsumption relationship of all the coverages. Leftmost coverage
criterion is the strongest one.

MC/DC ⇒ CDC ⇒ CC ⇒ DC (2.3)

8

Chapter 2 Basic Concepts

Where, MC/DC stands for Modified condition/ decision coverage.
CDC stands for Condition Decision Coverage.
CC stands for Condition Coverage.
DC stands for Decision Coverage.

Definition 2.5 Primary logic gates/elements: There are three primary logic gates
viz. AND (&&), OR (||) and NOT (!). Remaining all gates are derived by using these
primary gates. These are used to join clauses present in the predicates. The associativity
and precedence of these gates are shown in Table 2.2.

Table 2.2: Associativity and precedence of logic gates
Logic Gate Associativity Precedence
AND(&&) left to right 2
OR(||) left to right 3
NOT (!) right to left 1

AND (&&) Gate: In a predicate, if all clauses are joined by using “&&”, then MC/DC
must satisfy the following criteria:

• There must be at least one test case that makes all clauses true in the same time. i.e.
Bool_Res(P) = 1.

• Secondly, there must be at least n test cases (n is the number of clauses present in the
predicate), that set each clause as false one by one by keeping all other clauses true.
i.e. Bool_Res(P)=0.

OR (||) Gate: In a predicate, if all clauses are joined by using “||”, then MC/DC must
satisfy the following criteria:

• There must be at least one test case that makes all clauses false in the same time. i.e.
Bool_Res(P)=0.

• Secondly, there must be at least n test cases (n is the number of clauses present in the
predicate), that set each clause as true one by one by keeping all other clauses as false.
i.e. Bool_Res(P)=1.

In conclusion, we can say that for conjunctive and disjunctive expressions we can easily
find (n+1) test cases and using these two basic gates idea, we get (n+1) test cases required
for any other predicate.

Definition 2.6 Concolic testing: Concolic testing explores all the execution paths
and ensures that all the reachable paths are executed[3, 10]. Unit testing is of two types. 1)

9

Chapter 2 Basic Concepts

Concrete Execution, where the potential inputs are chosen randomly, so that the probability
of reaching errors present in the program is astronomically less. 2) Symbolic Execution: It
takes symbolic values for the variables present in the program and symbolically runs the
program. It collects the symbolic path constraints with the help of theorem prover. It detects
whether the branch will be taken or not. It is not scalable for large programs. Concolic
testing is the combination of both concrete and symbolic execution for unit testing.

CONCrete + SymbOLIC= CONCOLIC testing uses concrete execution over a concrete
input to guide symbolic execution[40]. In the first run, it takes the random value and covers
a path, afterward with negating the conditions in the path covered and simplifying complex
and unmanageable symbolic expressions with the help of constraint solvers like Z3 solver,
lp-Solver, etc, it traces a new unexplored path. In this way, it reaches to all the possible paths
present in the binary program computation tree. It achieves high scalability and branch
coverage than symbolic or concrete execution.

Let us understand concolic testing with an example program shown in Figure 2.3.

1. struct node{
2. int data;
3. struct node *link;
4. };
5. int doubly(int a)
6. { return(2*a+1);}
7. int concolic_test(node *head,int val){
8. if(val>0){
9. if(head != NULL){
10. if(doubly(val)==node->data){
11. abort();
12. }
13. }
14. }
15. return 0;
16. }

Figure 2.3: Sample program for Concolic testing

Initially the random test driver generates values (head=NULL, val=236). But, by using
these values the probability of reaching to the abort statement is very less. But, as per the
first time execution rule, concolic tester takes these random concrete values and set the
concrete state as (head=NULL; val=236), symbolic state as (head = head0; val = val0)

with “NULL” constraints. When, the control reaches to the statement 8, it gets a constraint
(val > 0) and this constraint get resolved because (val=236) and then the control reaches to
statement 9. The constraint at this point is not resolved because (head=NULL). Therefore
the concolic tester will take such new values that can resolve both the constraints (val
> 0) && (head !=NULL). So, in the next run it takes concrete state as (val=236; head
→data=634; head →link=NULL) and symbolic state as (head = head0; val = val0; head

10

Chapter 2 Basic Concepts

→data = data0; head →link = n0). By, these values the control successfully reaches up
to statement 9, but at the statement 10, it gets a new constraint ((2 ∗ val + 1)=head →data)
which is not solved by the taken values. So, concolic tester take such values that satisfies
all the constraints that are (val > 0) && (head! = NULL) && (2*val+1=head →data).
The concolic tester takes concrete value as (val=1; head →data=3; head →link=NULL)
and symbolic state as head = head0; val = val0; head →data = data0; head →link = n0

by using these values the control reaches to the statement 11 and detects the error. This
concolic testers are saving concrete and symbolic values to reaches all the possible paths of
the program.

Definition 2.7 Feedback-Directed Random Testing: “It is a combination of random
and systematic approach that results a test suite consisting of unit tests for the classes
under test. Systematic approach deals with Feedback-Directed, i.e as soon as an input
value is built, it is executed and checked against a set of contacts and filters. The result of
the execution determines whether the input is redundant, illegal or useful for generation of
more input [38].”

We have an open source avalibale tool for Feedback-Directed RandomTesting, it’s called
as RandomTester for object-Oriented Programs (RANDOOP)1. It is 100% automated testing
tool and may not expect any input from the user, also scaled to realize the application with
huge number of classes such as almost more than 100 classes

2.2 UML Diagrams

UML stands for Unified Modeling Language. It is basically used in the designing phase
of object-oriented software systems. It models the software application in many different
perspectives. There are nine different types of UML diagrams which present five different
views of a system [4, 14].

The UML diagrams can capture the following five views of a system as shown in Figure
2.4.

• User’s view

• Structural view

• Behavioral view

• Implementation view

• Environmental view

1https://github.com/randoop/randoop-eclipse-plugin

11

Figure 2.4: UML diagrams showing the different views of a system

UML Sequence diagram
UML Sequence digram represents the behavioral view of the system. It shows the

interaction between different objects of a system in two dimensional chart format. The two
dimensional chart is read from top to bottom. The objects involved in the scenario are present
at the top of the chart as boxes attached to a vertical dashed line. Sequence digram also
presents the timing sequence of the different activities involved for that particular scenario
[11, 14]. An example sequence diagram for book renewal scenario is shown in Figure 2.5.

2.3 Summary

We have discussed all the basic definitions used in our proposed approach. We have
explained Condition, Predicate, Branch Coverage, Modified Condition/ Decision Coverage
Primary Gates, Concolic testing, Feedback-Directed Random Testing, UML diagrams and
specifically UML sequence diagram etc. with help of example.

Chapter 2 Basic Concepts

Figure 2.5: UML Sequence Diagram for Book Renewal Scenario

13

Chapter 3

Literature Survey

3.1 Test Data Generation

In this chapter, first we discuss some available related work carried out by different
researchers in the area of random testing, symbolic testing, and concolic testing. Then, we
discuss the available work on MC/DC testing. Finally, we describe some of the existing
work related with testing of coverage analysis of UML diagrams.

3.1.1 Random Testing

Lei et al. [47] described a novel framework for randomized unit testing. They have proved
the empirical importance of the randomly generated unit test data. They have minimized
the test data failures, which increases significant benefits. Randomized test case generation
techniques allows high coverage in less amount of time[8]. Sometimes, test cases are failed
because of very long sequence of method calls. Lei et al. [47] has used the Zeller and
Hildebrandt’s test case minimization algorithm in order to reduce the long method call
sequences. They had tested their proposed framework on lab-built data structures and open
source data structures.

Bird et al. [61] proposed a random test generation technique for software systems. The
nature of the test cases in such systems are designed to explore all possible branches of the
execution tree. They have also predicated the total case generation time. The test cases
are processing a self-checking property. The implementation of this technique is tested on
various IBM programs such as sort/merge programs, /I language processors, and graphics
support and Graphical Data Display Manager alphanumeric.

Quick Check is a random testing tool. It is developed for the Haskell programs. It is
used for testing the properties of the program [24]. Haskell functions are used to describe
the properties of the program. They are automatically tested with the help of random
inputs. Random testing techniques are highly suitable for the function programs because,
the properties of a program are stated in a very fine grain. When the function is developed
from different tested components, th random testing provides good coverage of the definition

14

Chapter 3 Literature Survey

under test.

3.1.2 Symbolic Testing

In order to remove the limitations and inadequacy of concrete testing symbolic testing
approaches are developed, In symbolic testing, we execute a program using symbolic
variables instead of concrete one.

King [63] describes the symbolic execution of the programs. In symbolic execution,
instead of supplying normal inputs (e.g. numbers) into the programs, symbolic variables
are substituted. The flow of execution proceeds in the same way as it in concrete execution
except the values that present in the form of symbolic formulas. The problem arise when
the control flow reaches to a branch statement. They have also described a system called
EFFIGY. EFFIGY provides a symbolic execution platform for program debugging and
testing.

Clarke [62] describes a system which generates symbolic test cases for ANSI Fortran
programs. For a given path, system creates a set of constraints on its symbolic execution
by using the program’s input values. If the constraint is linear, then linear programming
techniques are used to generate the solutions. The solution consists of test data which
will helps to drive the execution down to the given path. If the constraint is non-linear
and inconsistent, then the given path is display as non-executable. In order to increase the
detection rate of program errors artificial constraints are developed. Artificial constraints
are used to simulate the error conditions and also try to solve the each set of augmented
constraints. The system also provides the facility to represent the output variables in terms
of the program input variables. The variables helps in the error detection and also in the
automatic program documentation and assertion generation.

Visser et al. [39] shows how the model checking and symbolic execution is used to
generate the test data in order to achieve the structural code coverage that manipulates a
complex data structure. They have mainly focused branch coverage. They worked on
the red-black tree of the Java TreeMap library with the help of JavaPathFinder as a Model
Checker. They have introduced and compared three types test case generation techniques.
The techniques are Black-Box model checking, Straight model checking and White-Box
model checking. The main contribution of Visser et al. [39] is to show how efficient
white-box test input generation can be done for code manipulating complex data, taking
into account complex method preconditions.

3.1.3 Concolic Testing

Godfroid et al. [44] developed a tool and named it as DART (Directed Automated Random
Testing) for automated software testing. It combines three main techniques: (i) automatic
extraction of program interface with the external environment by using a static-code parsing

15

Chapter 3 Literature Survey

technique. (ii) Automated generation of a program test driver for the derived interface which
will perform random testing in order to simulate the regular environment on which the
program operate. (iii) Program analysis under the random input and automatic generation of
new input values to explore the other possible paths present in program. The main strength
of DART is that, it made the testing activity fully automated. Now there is zero requirement
of writing any harness code or test driver. During execution, DART detect many standard
errors. For example assertion violation, program crashes, and non-termination etc. DART
is pioneer of concolic testing technique.

Sen at al. [45] proposed and developed a tool called CUTE (Concolic Unit Test Engine)
for C program. This tool address the problem of automated unit testing with memory graphs
as input. The approach used for memory graph is based on combination of Concolic and
symbolic testing techniques. They have used an efficient constraint solver i.e. lp_Solver.
lp_Solver has the following important properties which improves the strength of CUTE. It
will do fast unsatisfiability check, common sub-constraint elimination, and also incremental
checking. CUTE tries to cover all feasible paths present in the program in a similar way to
systematic testing.

Sen et al. [40] developed another tool i.e jCUTE (Java Concolic Unit Test Engine) which
is a concolic test generator for Java programs. It is an open source tool available on Internet 1.
It generates test cases for both simple and multi-threaded Java programs. It also supports the
concurrent programs. Concolic testing combines the concrete and symbolic testing technique
with using a powerful constraint solver. It discovers the deadlock and race conditions using
schematic schedule explorations. jCUTE is using vectorized clock to generate large number
of test cases and to support the concurrent programs. It creates execution tree for the program
and tries to reach all the leaf nodes of the tree. jCUTE supports three different types of search
strategies i.e. Random Search strategy, Depth First Search strategy and iii) Quick Search
strategy. In the Depth First Search strategy we have to mention the maximum depth and in
Quick Search strategy we have to mention the threshold value. The first value chosen jCUTE
is a Random Number. Mostly the value is taken from one the largest number supported by
the variable data type for jCUTE. It maintains log files and maintain traces for each run. The
search optimality is based upon the path coverage and branch coverage. For our experimental
study, we have used jCUTE as a concolic tester.

Kohkonen et al. [26] developed another concolic tester i.e. LCT 2 (Lime Concolic
Tester) for sequential Java programs. Lime Concolic Tester instruments the byte-code of
the Java program under test in order to enable the symbolic execution and then it collects
the constraints generated on the input values which is further used to guide the tester to
find the unexplored paths. LCT supports the distributed architecture. In the distributed
environment, clients are generating the test input values for the program under test. On the

1http://osl.cs.illinois.edu/software/jcute/
2http://www.tcs.hut.fi/Software/lime/userguide.pdf

16

Chapter 3 Literature Survey

other side, Server node is is monitoring and collecting the generated test cases. LCT used
bit vector SMT solver Boolector. Boolector helps to generate more precise integer values.
It also allows to generate test data values for a given rang of integer data.

Cadar et al. [33] developed another family of concolic testing tools consists of EXE
[33] (Execution generated executions), KLEE [51] and Rwset [34](Read Write Set). KLEE
is the extended version of EXE. EXE is a bug finding tool for real time code based on
concrete and symbolic execution. KLEE is also a bug finding tool, along with it also
generates high line coverage on complex and environment intensive programs. Rwset
uses an efficient technique to prune the redundant program paths by tracking the memory
access (Read/Write) of program variables and based upon this information they limited the
redundant, unimportant paths. We have used jCUTE as a concolic tester, and it supports
most of the frequently used data types.

Jayraman et al. [30] developed a tool jFUZZ. It is a Concolic white box fuzzer for Java
programs that built on the top of NASA tool Java Path Finder (JPF). It took a set of values
from user and derived a fuzzy set of values base upon them. It helps to exercise new control
path in the program. Tillman et al. [20] developed a tool Pex which is used for the test
case generation of .NET based framework. It extended the concept of dynamic symbolic
execution. We have developed the tool for Java programs. It takes Java program as an input
and generates test cases as an output. We have developed a code transformation technique
to increase the generation of test cases by jCUTE.

In Table 3.1, we have compared concolic testing tools. In Table 3.1, Column 2 shows the
programing language supported by the tool. Column 3 and Column 4 represents the platform
supported and Constraint solver used respectively. Column 5 shows the support for Float and
Double data types are available or not. Column 6 presents the support for pointer variables
is available or not. Similarly, Column 7 presents the support for native call. Column 8 and
9 shows the support for non-linear arithmetic expression and bitwise operator respectively.
Column 10 and 11 tells about array offsets and function pointers. The abbreviations used in
Table 3.1 are the following:

• “Y”means the tool supports the feature.

• “N”means the tool does not support the feature.

• “P”means the tool can partially support the feature.

• “NA”means unknown.

Table 3.2 shows different techniques developed using concolic testing. Column 3 and
Column 4 presents the testing type and framework developed. Column 5 and Column
6 represents the input and output for the proposed approach. Similarly Table 3.3 shows
characteristics of different techniques terms of test case generation, coverage percentage
measurement, determination of time constraints and speed computation.

17

Chapter 3 Literature Survey

Ta
bl
e
3.
1:
Su
m
m
ar
y
of
co
nc
ol
ic
te
st
er
sw

ith
th
ei
rp
ro
pe
rti
es
.

To
ol

Su
pp
or
tin

g
Su
pp
or
tin

g
Su
pp
or
t

Su
pp
or
tf
or

Su
pp
or
tf
or

Su
pp
or
tf
or

Su
pp
or
tf
or

Su
pp
or
tf
or

Su
pp
or
tf
or

Su
pp
or
tf
or

N
am

e
L
an
gu
ag
e

Pl
at
fo
rm

C
on
st
ra
in
ts
So
lv
er

flo
at
/d
ou
bl
e

po
in
te
r

na
tiv
e
ca
ll

no
n-
lin
ea
r
op
.

bi
tw
is
e
op
.

of
fs
et

fu
nc
tio
n
po
in
te
r

D
A
RT

C
N
A

LP
_S
O
LV

ER
N

N
N

N
A

N
A

N
N

SM
A
RT

C
LI
N
U
X

LP
_S
O
LV

ER
N

N
N

N
A

N
A

N
N

C
U
TE

C
LI
N
U
X

LP
_S
O
LV

ER
N

Y
N

N
A

N
A

N
N

jC
U
T
E

JA
VA

L
IN
U
X
/W

IN
D
O
W
S

N
A

N
-

N
N
A

N
A

N
N

C
R
ES

T
C

LI
N
U
X

Y
IC
ES

N
N

N
P

P
N

N

EX
E

C
LI
N
U
X

ST
P

N
Y

N
Y

Y
Y

N

K
LE

E
C

LI
N
U
X

ST
P

N
Y

P
Y

Y
Y

N
A

RW
SE

T
C

LI
N
U
X

ST
P

N
Y

N
Y

Y
Y

N
A

jF
U
ZZ

JA
VA

LI
N
U
X

B
U
IL
T
O
N
JP
F

N
N
A

N
N

N
N
A

N
A

PA
TH

C
R
AW

LE
R

C
N
A

N
A

N
A

N
A
A

N
N
A

N
A

N
A

N
A

PE
X

.N
ET

W
IN
D
O
W
S

Z3
N

N
A

N
N
A

N
A

N
A

N
A

SA
G
E

M
A
C
H
IN
E
C
O
D
E

W
IN
D
O
W
S

D
IS
O
LV

ER
N
A

N
Y

N
A

N
A

N
A

N
A

A
PO

LL
O

PH
P

W
IN
D
O
W
S

C
H
O
C
O

N
A

N
A

N
N
A

N
N
A

N
A

SC
O
R
E

C
LI
N
IX

Z3
SM

T
So
lv
er

Y
N

N
Y

N
N
A

N
A

18

Chapter 3 Literature Survey

Table 3.2: Summary of different work on concolic testing.
S.No Authors Testing FrameWork Input Output

Type Type Type Type
1 Das Concolic Testing, BCT,CREST, C-Program MC/DC%

et al. [15, 22] MC/DC CA
2 Bokil SC, DC, AutoGen C-Program Test data,

et al. [29] BC,MC/DC Time
3 Majumdar HCT, BC CUTE Editor in Test Cases

et al. [37] C-Language
4 Burnim Heuristics Concolic CREST Software Branch

et al. [35] Testing, BC Application in C Covered
5 Kim Distributed Concolic SCORE Embedded C BC%,

et al. [21] Testing Program Effectiveness
6 Sen Concolic Testing, CUTE, C and Java Test Cases,

et al. [40] BC JCUTE Programs BC%, Time

Table 3.3: Characteristics of different approaches on concolic testing.

Sl.No Authors Generated Test Measuring Determined Computed

Cases Coverage% Time Constraints Speed

1 Das et al. [15, 22] X X X X

2 Bokil et al. [29] X X X X

3 Majumdar et al. [37] X X X X

4 Burnim et al. [35] X X X X

5 Kim et al. [21] X X X X

6 Sen et al. [40] X X X X

3.1.4 Hybrid Concolic Testing

Majumdar et al. [37] presented a hybrid concolic testing for C programs. They have proposed
an algorithm that interleaves random testing with concolic testing to achieve both a deep
and a wide exploration of program state space. They have implemented their algorithm on
top of CUTE tool and applied it to achieve better branch coverage for two large C based
applications. For the same testing budget, almost they obtain 4× branch coverage and 2×
branch coverage of random testing and concolic testing respectively. We are inspired from
Majumdar et al.’s [37] core idea and proposed a new technique called Java-Hybrid Concolic
Testing, which is implemented in Java language.

19

Chapter 3 Literature Survey

3.1.5 Other Related Works

Ganai et al. [58] and Ho et al. [54] proposed a techniques of VLSI design validation where
a combination of formal (symbolic execution or BDD based reachability) and random
simulation engines are combined to improve design coverage for big scale designs. Our
proposed approach combines the Feedback-Directed Random Testing and Java Concolic
Testing for Java programs to obtain better MC/DC.

Pacheco et al. [38, 41, 43] presented a technique that improves random test generation
by incorporating feedback obtained from executing test cases as they are created. Their
proposed approach results a test suite consisting of Java unit tests for the classes to be tested.
Their experimental study shows that, use of feedback-directed random test generation is far
better than systematic and undirected random test generation in term of coverage and error
detection. In our approach, we used this improved random testing with the combination of
Java concolic testing to obtain high MC/DC.

Ferguson et al. [59] proposed an input generation technique that is initiated by executing
the programwith a random input, and systematically creates the input values so that it follows
the different path. In our proposed approach, we combine the generated test cases through
two different testing methods to achieve high MC/DC.

Csallner et al. [36, 48] developed a tool called JCrasher. JCrasher is an independent
implementation of undirected random test generation whose goal is to uncover exceptional
behavior that points to a bug. It generates test data randomly, and then removes tests that
throw exceptions not considered by JCrasher to potentially reveal the faults. JCrasher takes
a list of classes to be tested and a ‘depth’ parameter that limits the number of method callers
it chains together as input. JCrasher created much redundant and illegal input that could be
detected using feedback-directed heuristic. Our proposed approach is based on Java Hybrid
concolic testing and target to measure MC/DC percentage.

Bush et al. [56] developed a testing tool called PREfix. PREfix typically finds more
defects than the software engineer. PREfix defects are not necessarily directly comparable
to defect counts, because PREfix sometimes reports several defects for a single underlying
cause. Bush et al. [56] reported the results for statement coverage, predicate coverage,
branch coverage, and path coverage.

Li et al. [12] implemented a prototype tool named as XPTester(Xacml Policy Tester) and
conducted extensive experiments upon real world policies to demonstrate the scalability,
efficiency, and effectiveness. Li et al. [12] proposed an automatic XACML requests
generation for testing access control policies by employing symbolic execution techniques.

Saito et al. [13] proposed an approach to generate test data for knowledge based approach
to generate test scenarios for Web Applications. Their approach can generate two types of
test data: Constraints-based test data and database-based test data. In our approach is based
on Java language and able to process Java programs. Our tool generate test cases to compute

20

Chapter 3 Literature Survey

MC/DC%.
Godboley et al. [9, 16–18] proposed a number of code transformation technique in order

to automate concolic testing for modified condition/ decision coverage test data generation.
Their pre-processing techniques are helpful in solving the short-circuiting effect of logical
expression which leads to a less number of test data generation. By using this code
transformation technique complier will generate more number of test data by traversing all
possible paths present in the execution tree.

3.2 MC/DC (Modified Condition/ Decision Coverage)
Testing

Awedikian et al. [31] have proposed a new approach of automatic test cases generation for
achieving MC/DC coverage. They have developed a new fitness function for the genetic
algorithm. The limitation of their work is that most of the time their hill climbing strategy
is used to get stuck in local minima instead of reaching to the global minima. We have
developed a code transformation technique to explore some uncovered paths present in the
program. The transformed program generates a number of test cases, with the help of which
we can achieve higher MC/DC.

Hayhurst et al. [53] have explained the building blocks of MC/DC and interpreted this
testing as a logic gate testing. They have used some boolean logic gate simplification to
reduce the number of gates required to get a boolean expression. We have used pattern based
short circuit methodology to generate the minimal (n+1) test cases required for MC/DC of
n-conditional predicate.

Kuhn [57] has proposed the boolean difference approach to generate MC/DC specific
test cases. He has also defined about the faults that may come while MC/DC test case
generation. In our proposed approach, we have also tried to give a reflection of required
test cases according to the MC/DC code coverage. This will help the concolic testers to
generate a number of useful test cases.

Bokil et al. [29] have proposed and developed a tool called as Autogen, which generates
non-redundant MC/DC test cases. This tool works only for C-programs. They have used the
assert insertion methodology to create the test cases. They have found that there technique of
MC/DC test case generation takes 1/3 of time thanmanual test case generation. Our proposed
and developed tool is working for Java programs. We have used code transformation
technique to increase the number of test case generate to achieve higher MC/DC.

Godboley et al. [5] have developed a new approach to distributed concolic testing (DCT)
to enhance the MC/DC coverage. They have named their tool as SMDCT (Scaling MC/DC
percentage using DCT). In this technique, they have used EX-NOR code transformation[32,
50] and SCORE tool for reliable and scalable concolic testing. We have used jCUTE as a

21

Chapter 3 Literature Survey

concolic test case generating tool. We have not applied any distributed environment for our
proposed technique.

3.3 Testing and coverage analysis using UML diagrams

Swain et al. [28] developed a test case generation technique using UML use case and
sequence diagram. Their proposed technique is used for system and integration testing.
They have generated Use case dependency graph (UDG) using use-case diagram and using
sequence diagram. They generated concurrent control flow graph (CCFG). By using these
two graphs they have generated test cases. Their testing strategy was based upon predicate
coverage.

Fraikin et al. [52] developed the concept for automated testing of OO (object
oriented)-programs and also developed a tool called SeDiTeC. It uses sequence diagrams,
which are complemented by test case data sets consisting of various parameters and return
values for the method calls. It supports specification of various test case data sets for each
and every sequence diagram. They have also introduced the concept of combined sequence
diagram to reduce the number of sequence diagrams.

Rountev et al. [46] defined various coverage criteria based on control flow. This testing
was for interactions among a set of collaborating objects. They proposed their technique for
UML Sequence Diagrams. The coverage criteria were based on Sequence Diagram that were
reverse-engineered from the program code. Their results compared different techniques for
testing of object interactions and provided insights for testers and for builders of test coverage
tools.

Nayak et al. [27] proposed a technique for synthesizing test data from the information
embedded in model elements such as class diagrams, sequence diagrams, and OCL
constraints. The test effectiveness of the system was dependent on the selection of different
tests. In this regard, selecting the test cases and identifying test cases boundary was an
important task. The final result of test data synthesis denoted a feasible domain which was
a sub-domain of the initial domain for the selected scenarios.

Abdurazik et al. [49] proposed an approach on the fault revealing capabilities of test
sets. The test cases were generated from UML statecharts and sequence diagrams. Their
experimental analysis concluded that the UML diagram can be use to produce test cases.
Also, they concluded that different UML diagrams play different roles in testing. Abdurazik
et al. [49] considered both State chart and sequence diagrams which is a merit to their
proposed work.

Chartchai et al. [23] proposed a technique which generated test data during the design
phase of a software under development. They proposed a genetic algorithm (GA) technique
for searching quality test data. Finally, they used these generated test data along with classes
created to generate JUnit test cases.

22

Vadakkumacheril et al. [19] proposed a technique for implementation of sequence
diagram to generate Java code with the help of XMI representation. They mainly focused
on Sequence Diagrams as the model. The transformation of UML to XMI was done with
help of BOUML3 tool. They produced Java files according to the sequence diagram. They
had not proposed any technique to generate test cases, they have not computed any code
coverages.

3.4 Summary

In this chapter, we have thoroughly discussed the related work done in the area of test data
generation. We mainly focused on random, symbolic, concolic and hybrid concolic test data
generation techniques. We also presented few other related work on test data generation. We
discussed about the work related to modified condition/ decision coverage testing technique.
Subsequently, we have explained various works related to test data generation using UML
diagrams. Out of the nine important UMLdiagrams, we have focused on sequence diagram.

3http://www.bouml.fr/index.html

Chapter 4

Java-HCT: An approach to increase
MC/DC using Hybrid Concolic Testing

In this chapter we discuss a hybridized technique of MC/DC test data generation. We present
the algorithmic description of proposed approach followed by detail description. We also
discuss the assumptions taken and experimental analysis of the proposed technique.

Java-Hybrid Concolic Testing is the best combination of Feedback-Directed Random
testing and Java Concolic Testing to achieve better MC/DC. We have inspired from the
core-idea proposed by Majumdar et al.[37]. They proposed a Hybrid Concolic Testing
algorithm, that interleaves random testing with concolic execution to obtain both a deep
and a wide exploration of program state space. They have implemented their algorithm on
top of concolic tester (CUTE) and experimented to obtain high branch coverage for two large
programs;VIM 5.7 and Red black tree. Their results show that hybrid concolic testing obtains
almost 4× than random testing and almost 2× than concolic testing. We extendMajumdar et
al.’s [37] work for measuring MC/DC and that too for Java programs. Majumdar et al. [37]
implemented their algorithm using undirected random testing and concolic testing, whereas
we proposed an efficient technique i.e. Feedback-Directed Random testing with concolic
testing to obtain high MC/DC.

4.1 Overview of proposed framework

Our proposed technique Java-HCT consists of seven modules. These are i)
Syntax_Converter, ii) RANDOOP, iii) jCUTE, iv) TCs Extractor, v) TCs Combiner,
vi) TCs Minimizer, and vii) COPECA. These modules are shown in Figure 4.1. Java-HCT
accepts a Java program and produces MC/DC%. Basically Java-HCT is the combination of
RANDOOP and jCUTE that produces test cases which are plugged into our developed tool
COPECA (Coverage Percentage Calculator) so that, the hybrid tool is capable of computing
MC/DC%. Java-HCT deals with hybrid concolic testing of Java programs by combining
Feedback-Directed Random Testing and concolic testing. Our proposed technique provides
deep as well as wide exploration of concolic execution, which is represented in Figure 4.2.

24

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.1: Schematic representation of Java-HCT

Figure 4.2: Benefit of Hybrid concolic testing

25

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2 Description in detail

Figure 4.1 shows the tool for Java-Hybrid Concolic Testing (Java-HCT). Java-HCT is
developed by integrating seven modules. The process starts by supplying a Java program.
From Figure 4.1 we can observe that, this Java program is converted into two different
syntaxes using Syntax_converter. Since, we supply this Java program into both RANDOOP
and jCUTE, it is essential to convert the original Java program into respective tool
syntaxes. Now, the Java program in RANDOOP syntax is supplied to Random tester for
Object-Oriented Programs (RANDOOP) to generate TCs_R automatically. Similarly Java
program in jCUTE syntax is supplied into Java Concolic Unit Testing Engine (jCUTE) to
generate TCs_J automatically. Unfortunately, TCs_R and TCs_J are not in same syntax.
Therefore, TCs Extractor module is used for both test suites to extract the input values those
are present in TCs_R and TCs_J as described in Figure 4.1. Then all the extracted input
values are supplied into TCs Combiner to produce Total test cases. Since, these test cases
may be redundant and useless for MC/DC, therefore we have developed a module named
TCs Minimizer that accepts all the input values and checks which are essential to compute
MC/DC percentage and removes rest of those non-essential test cases. Now, the minimized
test cases are supplied into COverage PErcenatge CAlculator (COPECA). Since, we focus
on increasingMC/DC percentage, so we have developed this COPECA to measaure MC/DC
percentage. COPECA accepts the minimized test cases along with the original Java program
as input and produces MC/DC%, as output.

Below, we discuss in detail about each module used in Java-Hybrid Concolic testing.

4.2.1 Syntax Converter

Syntax Converter is developed by us. The original Java program is not executable in both
jCUTE and RANDOOP tester. So, syntax convertor converts the Java program into an
appropriate formate of jCUTE and RANDOOP. In RANDOOP, we have add a new user
defined function e.g. function which takes the input data values from the RANDOOP tester
instead of the user. For RANDOOP, Syntax converter replaces all the statements inside the
main function body to an another function and passed the variables as function parameter
for which the RANDOOP drive test values. In RANDOOP, there is no need to add any
external import package in the Java program. RANDOOP supports all the Java library files.
Whereas, for jCUTE, syntax converter has to add a new package i.e. “import cute.Cute;”.
Also, wherever the variables are scanning values from user r any pre-specifiewd file we have
to replace it with a particular syntax of jCUTE according to the datatype of the variable.

26

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2.2 RANDOOP

RANDOOP is an open source tool which generates feedback-directed random test cases for
unit testing. It is a plugin for Eclipse or NetBeans IDE.We have used it with Eclipse. Radoop
generates test cases randomly, but smartly. It generates sequences of constructor invocations
or method invocations for the classes under test. It executes the created test sequences, and
using the result generated from the execution it creates assertions, which helps to capture
the behavior of the program. It generates the test cases from assertions and code sequences.
RANDOOP is mainly used for two purposes: i) To detect the bugs present in the program.
ii) To create test cases for regression testing. It is very powerful tool. It detects mainly
previously undetected errors in IBM’s JDKs, SUN’s JDKs and Core.Net etc.

4.2.3 jCUTE

It stands for Java Concolic Unit Test Engine. It is an open source tool available on Internet
1. It is an automated concolic testing tool which generates test cases for both simple and
multi-threaded Java programs. It also supports the concurrent programs. Concolic testing
combines the concrete and symbolic testing technique with using a powerful constraint
solver. It discovers the deadlock and race conditions using schematic schedule explorations.
jCUTE is using vectorized clock to generate large number of test cases and to support the
concurrent programs. It creates execution tree for the program and tries to reach all the
leaf nodes of the tree. jCUTE supports three different types of search strategies i.e. Random
Search strategy, Depth First Search strategy and iii) Quick Search strategy. In the Depth First
Search strategy we have to mention the maximum depth and in Quick Search strategy we
have to mention the threshold value. The first value chosen jCUTE is a Random Number.
Mostly the value is taken from one the largest number supported by the variable data type
for jCUTE. It maintains log files and maintain traces for each run. The search optimality is
based upon the path coverage and branch coverage.

4.2.4 TCs Extractor

It is developed by us. TCs Extractor is used for the test cases generated by RANDOOP.
Actually, RANDOOP generates ‘n’ number of test data files along with one extra file which
contains the information about the total number of generated files. In each generates test data
file there are ‘m’ number of test cases are present. So, TCs Extractor extracts all the ‘m’ test
cases from each ‘n’ number of test data files and keep it in a single file which contains total
‘n*m’ test cases. This module is developed in Java language.

1http://osl.cs.illinois.edu/software/jcute/

27

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

4.2.5 Test Cases Combiner

Test Cases Combiner is also developed by us. It combines the test cases generated from
jCUTE and RANDOOP. jCUTE generates a single test data file. So, we can directly supply
it to the Test Cases Combiner, whereas RANDOOP generates a number of test data file.
So, we use TCs Extractor to store all Test cases generated by RANDOOP in a single file.
Therefore, the file generated by TCs Extractor is passed to the Test Cases Combiner. The
output of the Test Cases Combiner is a single test data file which contains both jCUTE and
RANDOOP generated test cases. The module is also developed in Java.

4.2.6 COPECA

It stands for COverage PErcentage CAlculator. COPECA is developed by us. It measures
the MC/DC coverage of the given Java program using the test cases generated from jCUTE.
We have developed COPECA in Java. The working principle of COPECA is based upon
ETT(Extended Truth Table) creation. For each of the predicate present in the program
COPECA creates Truth Table and Extended Truth Table with the help of test cases generates
by the jCUTE tool. Using the extended truth table, it detects the number of independent
clauses present for that particular predicate. MC/DC % is computed with the help of the
following formula:

MC/DC% =

∑n
i=1

∑m
j=1 Ij∑n

i=1

∑m
j=1Cj

∗ 100 ∀j Cj = 1 (4.1)

Where, n is the total number of predicates present the program and for each predicate m
number of conditions present in the predicate i. The value of m is varying from one predicate
to another predicate. The value of Ij = 1, if Ij is an independent clause otherwise Ij = 0.
COPECA is a very robust tool. It can handle java program of any size. The Graphical User
Interface of the developed COPECA is shown in Figure 4.15.

4.2.7 TCs Minimizer

This module is also developed by us. The TCs Minimizer is used to eliminate all the
redundant and non-essential test cases present in the combine test data suite. The working
principle of TCs Minimizer is based upon the generated Extended Truth Table (ETT) for a
predicate. It detects first essential test case pair in order to prove a simple condition as an
independently affecting condition. It stores all the first time detected essential pair of test
cases for each independent clauses present in the program in a unique test case set. Finally,
it eliminates all the non-essential test cases present from the test suite and keeps only the
essential one. This working principle of TCs Minimizer ensures that, it will not reduce the
MC/DC% of the programwhich is computed with the set of original combined test data suite.

28

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

The Graphical User Interface of the developed TCs Minimizer is shown in Figure 4.16.

4.3 Algorithmic Description

In this section we present the algorithms used in ourproposed technique.
Algorithm 1 deals with the pseudocode of Java-Hybrid Concolic Testing. We can observe

from this algorithm that we supply a Java program into Java-HCT tool to produceMC/DC%.
Algorithm 1 shows the control flow of the overall procedure of our proposed approach.

Algorithm 1 Java-HCT
Input: J (Java Program)
Output: MC/DC%
1: JR, JJ ← Syntax_Converter(J)
2: TCs_R← RANDOOP (JR)
3: TCs_J ← jCUTE(JJ)
4: Input_values← TCs_Extractor(TCs_R, TCs_J)
5: Total_TCs← TCs_Combiner(Input_values)
6: Minimized_TCs← TCs_Minimizer(Total_TCs)
7: MC/DC%← COPECA(J,Minimized_TCs)
8: returnMC/DC%

Line 1 shows the execution of Syntax_Converter using Java program as input and
produces Java program in RANDOOP syntax (JR) and Java program in jCUTE syntax (JJ)
as two outputs. Line 2 shows the execution of RANDOOP tool by supplying JR as input
to generate test cases from RANDOOP tool (TCs_R). Line 3 presents the execution of
jCUTE tool by supplying JJ as input to generate test cases from jCUTE tool (TCs_J). Now,
these two generated test case sets (TCs_R, TCs_J) are forwarded to Test Cases Extractor
(TCs Extractor) modules to separate each input values after extracting from these two sets
as presented in Line 4.

Line 5 shows the execution of Test cases Combiner (TCs Combiner). This Combiner
module collects all the input values created from TCs Extractor and gathers in single set
called Total Test Cases (Total TCs). Line 6 shows the minimization process of total test
cases generated through Test Cases Minimizer (TCs Minimizer). This module produces
Minimized Test Cases (Minimized TCs).

Line 7 deals with the computation of MC/DC% through COPECA after supplying the
original Java program along with the Minimized TCs as input. Line 8 returns the final
MC/DC% as output.

Algorithm 2 describes the process of (COverage PErcentage CAlculator(COPECA)).
COPECA accepts Java program along with Test cases. COPECA produces MC/DC%,
Time, Predicates, Clauses(C), Variables, and Independently affected Conditions (I). Line 1
starts recording execution time. Lines 2 to 4 scan all the statements in program and identify

29

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

predicates present in program. Lines 5 to 7 identify total clauses and variables present in
the program. Lines 8 to 9 perform test cases file separator. Lines 10 to 13 use all test cases
and drive our predicates to generate Extended Truth Table (ETT). ETT refers the concept
of MC/DC. Through ETT we detect the total number of independently affected conditions
after following MC/DC rules as discussed in Basic Concept. Line 17 uses a mathematical
equation to finally compute the MC/DC%. Line 18 stops recording the execution time
i.e. Last time-stamp. Line 19 calculates the difference of both first and last recorded time
stamps to measure total execution time of COPECA.

Algorithm 2 COPECA
Input: Java Program (J), TC
Output: MC/DC%, Time, Predicate, Causes(C), Variable, Independently affected
conditions(I)
1: First Time-stamp← Start time of recording
2: for <each statement s ϵ J> do
3: if s contains && or || then
4: P ← P

∪
{s}

5: for <each predicate p ϵ P> do
6: C ← C

∪
{c};Identify clause c present in predicate p

7: V ← V
∪
{v};Identify variable v present in clause c

8: for <each testcase tc ϵ TC> do
9: Create separate file that contains selected input values
10: for <each predicate p ϵ P> do
11: for <each testcase tc ϵ TC> do
12: Assign selected input values from tc into corresponding variable present in

predicate p.
13: Generate Extended-Truth Table
14: for <each clause c ϵ C> do
15: if c is independently affected clause then
16: I ← I

∪
{c}

17: MCDC% = |I|
|C| ∗ 100

18: Last Time-stamp← Stop time of recording
19: Total execution time← Last Time-stamp - First Time-stamp

Explanation 1: Why this TCs Extractor is needed?
Justification: TCs Extractor is required because the test data generated from RANDOOP
are present in different test data files and each of the test data file contains many test cases.
So, these two generated test case sets (Test cases generated from jCUTE and RANDOOP)
are in different formats. TCs_R, and TCs_J consist of other information also. But
to measure MC/DC%, we require only input values those are automatically selected for
declared variables. Therefore, this extractor retrieves the only useful input values from both
the sets and saves in different files which are compatible to COPECA.

30

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Explanation 2: Why this TCs Minimizer is needed?
Justification: TCs Minimizer is required to remove non-essential test cases [42].
Non-essential test cases are test cases those are not required to support the set of conditions
to be included in independently affected conditions set according to the definition of
MC/DC. We observed that RANDOOP generates a large number of redundant test cases, so
our minimization is helpful to remove such redundant test cases. Since, we merge two test
case sets i.e. (TCs_R, TCs_J), so there may exist duplicate test cases, therefore we use
our minimizer technique to remove such duplicate test cases.

4.4 Experimental Study

In this section we discuss our experimental study by explaining the experimental setup, result
analysis, and threats to validity.

4.4.1 Experimental Setup

The experimental programs are ran on a computer system that has 4GB of memory (RAM)
Intel(R) Core(TM)i5 CPU 650 @ 3.20 GHz 3.19 GHz and 32-bit operating system.

Our tool Java-HCT consists of mainly seven modules as shown in Figure 4.1. We
have developed Syntax_Converter that converts the original Java program into two
syntactically different programs according to RANDOOP and jCUTE syntax. We have used
Feedback-Directed Random Testing tool (RANDOOP) developed by Pacheco et al. [43]
RANDOOP uses random testing and systematic testing (Feedback-Directed) in such a way
that it generates test cases that achieve better code coverage as compared to existing random
testing techniques. For more information regarding RANDOOP tool, the readers are advised
to refer Pacheco et al. [43]. We have used Java Concolic Unit Testing Engine(jCUTE)
developed by Sen et al. [40]. CUTE uses concrete and symbolic testing simultaneously
to generate test cases automatically. For more details on jCUTE please refer to [40] We
have developed TCs Extractor that accepts two different test case sets (TCs_R, TCs_J)
individually and produces different input values. We have developed Test Cases Combiner
(TCs Combiner) that collects all input values extracted from TCs_R & TCs_J , and
combines them into a single test case set. We have developed COverage PErcentage
CAlculator (COPECA) based on Extended Truth Table (ETT) concept. COPECA identifies
total independently affected conditions according to MC/DC criterion. COPECA receives
the original Java program along with the Minimized test cases as input and to produces
MC/DC% as output. Integrating all these seven modules forms the Java-HCT. Hence,
we propose a new hybrid concolic testing for Java programs which is the combination
of Feedback-Directed Random Testing and Java Concolic Testing. We have carried out
experimental analysis of our proposed approach with forty Java programs, selected from

31

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

various sources. Some of the programs such as StringBuffer, SwitchTest etc are taken
from Open Systems Laboratory Repository 2. Some of the programs are considered
from programming sites 3 and rest of the other programs are considered from the student
assignments submitted by PG (Post Graduate) students of Software Engineering course at
NIT Rourkela.

4.4.2 Assumptions

• The experimental program must contain at least one predicate with minimum two
clauses.

• The clauses must in form of strings with pattern “[(]n[A−Za− z0− 9_]+[)]n[<=, <

,==, ! =, >,>=][(]n[A− Za− z0− 9_]+[)]n”. where n ⊂ N

• To identify independently affected conditions through effect analyzer, it is essential to
supply at least two test cases according to the definition of MC/DC.

4.4.3 Implementation

In this section, we present the working of our proposed technique with the help of a sample
Java program.

Figure 4.3, shows a sample Java program i.e. GradeCalculation.java. This Java
program calculates the grade of students based upon their marks. There is only one
single integer variable present in this program i.e. marks. To execute the Java program
in jCUTE or RANDOOP, we have to convert it into their respective formats. First, we
supply GradeCalculation.java to Syntax_Converter as shown in Figure 4.4. The output of
Syntax_Converter is two Java files. One is executable on jCUTE and other is on RANDOOP
tester.

Figure 4.5 shows the jCUTE executable Java code. In this the header part is replaced
by the jCUTE related package. We have added “import cute.Cute;” statement. Also, it has
changed the variable definition syntax as per the rule of jCUTE. The integer variablemarks is
definition as “marks= Cute.input.Integer();”. Remaining other statements are written same
as its is. Similarly, for RANDOOP executable Java code it has made few changes. The
RANDOOP executable Java code is shown in Figure 4.6. In this program all the scanning
variables must be passed through as function parameter. So, we have added a new function
called function in the program and substituted whole logic code inside it. we have passed
the marks variable through the function as per the RANDOOP syntax. Unlike jCUTE, there
is no requirement of any specific library file.

2https://github.com/osl/jcute/tree/master/src/tests
3http://www.programmingsimplied.com/java-source-codes

32

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.7 shows the execution of Java program on RANDOOP and successful test
case generation. There are total seventeen files of test cases are generated. Each of these
seventeen files contains variable number of test cases. Figure 4.8 shows the total one hundred
seventy seven test cases are generated. Figure 4.9 shows the RandoopTest.java file which
contains the information about all other generated test data files. It doesn’t contain any test
case value. It shows that by combining all the test data files, it creates a test suite. Figure
4.10 shows a test data file. A single test test data file contains a large number of test cases.
All the test data values are present as the function parameter.

Figure 4.11 shows the test case generation from jCUTE tool. There are total five test
cases are generated from jCUTE. The test data generate rate of jCUTE is very much lesser
than the test data generate rate of RANDOOP. But, the data values generated by jCUTE is
very much effective even though it is much less. Figure 4.12 shows the other parameters
computed by jCUTE. We can observe that the number of functions invoked is one, total
number of branches covered is eight, branch coverage percentage achieved 25% and the total
number of paths traversed is seventy four out of five hundred within 21466 milliseconds ≡
21 seconds. Figure 4.13 shows the test cases generated by jCUTE.

After the successful execution of Java program, we have to execute the TCs_Executor
which will merge the total 177 test cases generated by RANDOOP in a single test case file.
After that the single test data file generated for the RANDOOP is combined with the total test
cases generated from jCUTE. This process of test cases combination is done by an another
module that is Test Cases Combiner. We have developed a tool and named it as Java-HCT.
This Java-HCT contains this four modules which are TCs_Executor, Test Cases Combiner,
TCs Minimizer and COPECA (Coverage Percentage Calculator). Figure 4.14 shows the
graphical user interface of Java-HCT. For the given Java program, we have analyzed the
Modified Condition/ Decision Coverage percentage using our developed tool COPECA. We
achieved 41.667% of MC/DC with Independent Clause is equal to 5 and Simple Clause
is equal to 12, when analyzed with only jCUTE generated test cases. Similarly, we have
checked for RANDOOP generated test cases and we have achieved 66.667% of MC/DC.
The value of Independent clause is equal to 8 and Total simple conditions is equal to 12.
Then, we have combined the test cases from jCUTE (Test cases generated is equal to 6) and
RANDOOP (Test cases generated is equal to 177)and with the help of combined test cases
(Now, the test cases is equal to 182 (177+6)), we have computed theMC/DC%. TheMC/DC
percentage achieved is 83.33% which is higher than the previously computed two M<C/DC
percentages. The total detected independent clauses are ten.

We can observe that there are number of entries in the extended truth table for a single
condition. To prove a condition as independent a single pair of test case is also sufficient.
So, we have developed a test case minimization approach based upon the redundant
and non-essential test data removal strategy. The graphical user interface developed of
minimization is shown in Figure 4.16. We can observe that, for the given program the

33

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package hybrid_testing1;
import java.util.Scanner;
public class GradeCalculation {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int marks = in.nextInt();
try{
System.out.print("Please enter your Marks (between 0 to 100) >> ");
if(marks<0)
{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if(marks==0)
{System.out.println("You got Zero Marks: Go to ZOO");}
else if (marks>100)
{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}
else if ((marks>=35) && (marks <50))
{System.out.println("YYour grade is C");}
else if ((marks>=50) && (marks <60))
{System.out.println("Your grade is C+");
}else if ((marks>=60) && (marks <70))
{System.out.println("Your grade is B");}
else if ((marks>=70) && (marks <80))
{System.out.println("Your grade is B+");}
else if((marks>=80) && (marks <90))
{System.out.println("Your grade is A ");}
else if (marks>=90){System.out.println("Your grade is A+");}
}catch (Exception e){
System.out.println("Invalid entry for marks:");}
}}

Figure 4.3: Original Java program

34

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.4: Graphical User Interface of Syntax_Converter

total number of combined test cases is 182. After applying the minimization technique,
the test cases are reduced upto a very large extent. Now, the number of essential condition
is only eighteen and other remaining test cases are non-essential. We have gain verified the
MC/DC% with the help of these minimized test cases. We have achieved same MC/DC
value i.e. 83.33%. There is no change in MC/DC. The graphical interface developed for
COPECA is shown in Figure 4.15.

4.4.4 Result Analysis

Table 4.1 deals with the characteristics of different target Java programs. Column 3 shows the
size of programs in Lines of codes (LOCs). Columns 4,5,6, show the Predicates, Conditions,
and Variables respectively.

Table 4.2 shows the statistics of results on execution of RANDOOP and jCUTE tool.
Column 3 deals with the total test cases generated. Column 4 presents the reduced number
of test cases. Column 5 presents the total execution time of RANDOOP (Time_1) in seconds.
Here, we have set the time 100 sec for all programs.

Table 4.3 shows the statistics of results on execution of jCUTE. Column 3 detects the
total number of branches covered. jCUTE explores the unexplored paths. Column 4 shows
the total number of paths covered. jCUTE finds the errors after executing the Java program.

35

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package tests;
import cute.Cute;
public class GradeCalculation {
public static void main(String[] args) {
int marks;
marks= Cute.input.Integer();
try{
System.out.print("Please enter your Marks (between 0 to 100) >> ");
if(marks<0)
{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if(marks==0)
{System.out.println("You got Zero Marks: Go to ZOO");}
else if (marks>100)
{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}
else if ((marks>=35) && (marks <50))
{System.out.println("YYour grade is C");}
else if ((marks>=50) && (marks <60))
{System.out.println("Your grade is C+");
}else if ((marks>=60) && (marks <70))
{System.out.println("Your grade is B");}
else if ((marks>=70) && (marks <80))
{System.out.println("Your grade is B+");}
else if((marks>=80) && (marks <90))
{System.out.println("Your grade is A ");}
else if (marks>=90){System.out.println("Your grade is A+");}
}catch (Exception e){
System.out.println("Invalid entry for marks:");}
}}

Figure 4.5: Java program in jCUTE executable format

36

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

package hybrid_testing;
import java.util.Scanner;
public class GradeCalculation {
public void function(int marks){
try{
System.out.print("Please enter your Marks (between 0 to 100) >> ");
if(marks<0)
{System.out.println("Marks can not be negative: Your entry= "+ marks);}
else if(marks==0)
{System.out.println("You got Zero Marks: Go to ZOO");}
else if (marks>100)
{System.out.println("Marks can not be more than 100:"+ marks);}
else if ((marks>0) && (marks<35))
{System.out.println("Failed");}
else if ((marks>=35) && (marks <50))
{System.out.println("YYour grade is C");}
else if ((marks>=50) && (marks <60))
{System.out.println("Your grade is C+");
}else if ((marks>=60) && (marks <70))
{System.out.println("Your grade is B");}
else if ((marks>=70) && (marks <80))
{System.out.println("Your grade is B+");}
else if((marks>=80) && (marks <90))
{System.out.println("Your grade is A ");}
else if (marks>=90){System.out.println("Your grade is A+");}}
catch (Exception e)
{System.out.println("Invalid entry for marks:");}}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int marks = in.nextInt();
GradeCalculation gc =new GradeCalculation();
gc.function(marks);
}}

Figure 4.6: Java program in RANDOOP executable format

37

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.7: Test data generation from RANDOOP framework

Figure 4.8: Successful execution of total test cases

38

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.9: RandoopTest.java program contains information about all the generated test case
files

Figure 4.10: Test Cases present in a single test data file

39

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.11: Test data generation from jCUTE tool

Figure 4.12: Different parameter computation using jCUTE

40

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.13: Test Cases generated by jCUTE

41

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.14: Graphical User Interface of Java-HCT

42

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.15: Graphical User Interface of COPECA (Coverage Percentage Calculator)

Figure 4.16: Graphical User Interface of Minimizer

43

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Column 5 deals with the total errors detected. jCUTE produces test cases automatically.
Column 6 presents total number of test cases generated. Column 7 presents the total
execution time of jCUTE (Time_2).

Table 4.4 presents the generated test cases and MC/DC% for RANDOOP, jCUTE,
and Java-HCT. Figure 4.17 shows the comparison of generated Test Cases. In Figure
4.17, X-axis shows the Sl. No. of programs and Y-axis shows the total number of test
cases. Column 3 shows the test cases generated by Feedback-Directed Random Tetsing.
RANDOOP is the tool that generates these test cases. Column 4 presents the test cases
generated by Java Concolic Unit Testing Engine (jCUTE). Column 5 shows the total number
of test cases of RANDOOP and jCUTE. TCs Minimizer accepts these total test cases and
only selects the essential test cases according to MC/DC criterion. Column 6 presents
the minimized test cases. Columns 7,8,9 deal with the MC/DC percentages according to
RANDOOP, jCUTE, and Java-HCT. Figure 4.18 shows the comparison of all three MC/DC
percentages. In Figure 4.18, X-axis shows the programs and Y-axis shows the computed
MC/DC percentage. These percentages are defined below:

Definition 4.1MC/DC_1%: This MC/DC percentage is computed through RANDOOP and
COPECA.

Definition 4.2 MC/DC_2%: This MC/DC percentage is computed through jCUTE
and COPECA.

Definition 4.3 MC/DC_3%: This MC/DC percentage is computed through RANDOOP,
jCUTE and COPECA or Java-HCT.

Column 10 and 11 deal with the increase in MC/DC. Column 10 is named as Inc_1
and shows the difference between MC/DC_1% and MC/DC_3% as shows in Eq.4.2,
whereas Column 11 named as Inc_2 shows the difference between MC/DC_2% and
MC/DC_3% as shown in Eq.4.3.

Inc_1 = MC/DC_3% - MC/DC_1% (4.2)

Inc_2 = MC/DC_3% - MC/DC_2% (4.3)

We have experimented for forty Java programs. On an average we computed the values of
Inc_1 and Inc_2 which are 29.91% and 16.26% respectively. According to the observation
of our experimental study, Java-HCT achieved better MC/DC by × 1.62 as compared to
RANDOOP and by × 1.26 as compared to jCUTE. Figure 4.19 shows the line graph of
Increase in MC/DC for forty Java programs. In Figure 4.19, X-axis shows the programs and

44

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Y-axis shows the differences of MC/DC percentages i.e. Increase in MC/DC.

4.5 Threats to validity

• Since, we compute MC/DC percentage, therefore programs without predicates are not
useful to our experimental study.

• We combine two different testing techniques, so there may be chance of duplications,
that we resolved by using TCs. Minimizer.

• The third threat to validity concerns with string value operations used by the target
programs, that are not supported by our developed tool COPECA.

4.6 Comparison with related works

In this section, we present the comparison of proposed technique with some of the existing
similar approaches.

Godefroid et al. [44] proposed an improved random testing technique by providing
Directed fashion (Systematic way) combined with symbolic execution to generate test input
values. They have merged the improved concrete and static symbolic testing and developed
a new test test data generated strategy and named it as DART (Directed Automated Random
Testing.) In our proposed work, we used feedback-directed random testing instead of only
directed because feedback-directed provides better code coverage. We have combined
feedback-directed random testing with concolic testing in order to explore more number of
paths. According to Pacheco et al. [38] RANDOOP is better in completeness and scalability.
So, we have combine jCUTE [45] and RANDOOP to implement the hybridization approach.

Majumdar et al. [37] presented a hybrid concolic testing for C programs, whereas we
have implemented hybrid concolic testing for Java programs. They have implemented their
algorithm on top of CUTE tool and random tester. We have implemented the technique with
jCUTE and RANDOOP testing tools. They have worked for branch coverage, whereas we
have targeted forMC/DC. They obtained×4 branch coverage and×2 branch coverage using
hybrid technique over random testing and concolic testing respectively. We have improved
MC/DC by ×1.62 and by ×1.26 for feedback-directed random testing and concolic testing
respectively using hybridization.

45

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Table 4.1: Characteristics of different target programs
Sl. Program LOC # of # of # of
No. Name Predicates Conditions Variables
1 SwitchTest 84 1 2 2
2 StringBuffer 1369 5 10 3
3 ScopeCheck 148 8 18 8
4 MyQuickSort 87 1 2 3
5 MathCall1 190 13 26 4
6 MyInsertionSort 70 2 6 4
7 Condition 60 4 9 3
8 FruitSales 267 23 69 4
9 InsertionSort 163 7 14 6
10 Comparison1 128 17 43 4
11 DSort1 136 10 20 2
12 GradeCalculation 103 6 12 1
13 MarketSales1 179 8 17 4
14 FruitBasket1 209 12 38 2
15 BSTree 307 6 13 3
16 SwitchTest2 104 6 16 5
17 AssertTest 75 3 7 3
18 BubbleSort 142 6 14 7
19 DSort_BST 305 3 7 3
20 CAssume 63 3 7 3
21 Demo1 76 3 8 2
22 MarketSales2 230 24 49 7
23 MathCall2 160 7 14 4
24 Selection_Sort 163 7 14 6
25 Sorting_algo 336 25 50 9
26 SwitchTest3 80 2 2 1
27 StringBuffer1 485 5 15 4
28 StudentGrades 67 5 10 1
29 Testy 53 3 6 1
30 Weight 39 1 3 3
31 Weight_Exp1 114 10 22 3
32 Weight_Exp2 77 5 13 3
33 Wildlife1 17 9 28 3
34 Wildlife2 199 13 40 3
35 Zodiac 104 18 84 10
36 WBS 321 5 10 3
37 AssertTest2 91 7 21 7
38 HelloWorld 44 2 4 2
39 IFExample 82 2 4 2
40 IFSample 95 6 12 3

46

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Table 4.2: Statistics of results on execution of RANDOOP
Sl. Program Test Cases Reduced TCs Time_R
No. Name (TCs_R) (Sec)
1 SwitchTest 31173 20 100
2 StringBuffer 12866 12 100
3 ScopeCheck 56174 20 100
4 MyQuickSort 4112 5 100
5 MathCall1 32731 70 100
6 MyInsertionSort 9008 13 100
7 Condition 12013 26 100
8 FruitSales 131201 114 100
9 InsertionSort 28011 28 100
10 Comparison1 47813 93 100
11 DSort1 30132 39 100
12 GradeCalculation 27613 23 100
13 MarketSales1 31031 43 100
14 FruitBasket1 53131 271 100
15 BSTree 21941 86 100
16 SwitchTest2 31217 29 100
17 AssertTest 9017 31 100
18 BubbleSort 18106 43 100
19 DSort_BST 2017 36 100
20 CAssume 7362 73 100
21 Demo1 9894 44 100
22 MarketSales2 50136 313 100
23 MathCall2 31014 38 100
24 Selection_Sort 35814 53 100
25 Sorting_algo 71313 343 100
26 SwitchTest3 2015 5 100
27 StringBuffer1 30131 15 100
28 StudentGrades 17012 103 100
29 Testy 17134 19 100
30 Weight 6893 10 100
31 Weight_Exp1 2013 25 100
32 Weight_Exp2 33134 26 100
33 Wildlife1 51013 40 100
34 Wildlife2 46813 50 100
35 Zodiac 96001 190 100
36 WBS 12813 20 100
37 AssertTest2 19315 42 100
38 HelloWorld 6814 10 100
39 IFExample 7969 12 100
40 IFSample 8981 24 100

47

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Table 4.3: Statistics of results on execution of jCUTE
Sl. Program Branches Paths Errors Test Cases Time_J
No. Name Covered Covered Found (TCs_J) (milli sec)
1 SwitchTest 18 101 0 8 20640
2 StringBuffer 32 131 42 9 28895
3 ScopeCheck 53 346 0 22 77311
4 MyQuickSort 15 1 0 5 957
5 MathCall1 41 313 0 10 90911
6 MyInsertionSort 20 32 0 6 12366
7 Condition 27 83 0 7 23546
8 FruitSales 81 470 75 12 140154
9 InsertionSort 45 225 0 10 21900
10 Comparison1 91 1000 0 27 237689
11 DSort1 52 250 3 4 68551
12 GradeCalculation 8 66 0 5 17484
13 MarketSales1 35 139 0 8 39810
14 FruitBasket1 44 150 0 8 326767
15 BSTree 41 6 1 5 2580
16 SwitchTest2 42 684 0 14 159575
17 AssertTest 14 11 11 7 15174
18 BubbleSort 39 132 0 8 218288
19 DSort_BST 19 12 3 8 2986
20 CAssume 10 181 0 6 49683
21 Demo1 9 73 0 4 26663
22 MarketSales2 71 38 0 11 12664
23 MathCall2 32 159 0 11 45596
24 Selection_Sort 45 114 0 9 38443
25 Sorting_algo 114 224 0 9 122434
26 SwitchTest3 234 75 0 11 18350
27 StringBuffer1 41 7 0 7 4321
28 StudentGrades 18 41 1 8 6894
29 Testy 4 13 0 3 514
30 Weight 39 35 0 4 1041
31 Weight_Exp1 114 142 0 10 6692
32 Weight_Exp2 77 133 0 8 5318
33 Wildlife1 176 173 0 6 2070
34 Wildlife2 199 234 0 10 4227
35 Zodiac 104 25 0 63 14028
36 WBS 321 63 0 7 23634
37 AssertTest2 91 100 120 13 170047
38 HelloWorld 44 121 0 5 1937
39 IFExample 82 7 1 7 3174
40 IFSample 95 11 6 13 13519

48

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Ta
bl
e
4.
4:
R
es
ul
ts
on

ex
ec
ut
io
n
of
C
O
PE

C
A

Sl
.

Pr
og
ra
m

R
A
N
D
O
O
P

jC
U
TE

To
ta
lT

C
s

M
in
im
iz
ed

M
C
/D
C
_1
%

M
C
/D
C
_2
%

M
C
/D
C
_3
%

In
c_
1

In
c_
2

N
o.

N
am

e
TC

s
TC

s
TC

s
1

Sw
itc
hT
es
t

20
8

28
4

50
50

10
00

50
50

2
St
rin
gB

uf
fe
r

12
9

21
20

40
50

80
40

30
3

Sc
op
eC
he
ck

20
25

45
30

77
.7
7

83
.3
3

10
0

23
.2
3

16
.6
7

4
M
yQ

ui
ck
So
rt

5
5

10
3

10
0

10
0

10
0

0
0

5
M
at
hC

al
l1

70
10

80
45

16
.6
6

46
.1
5

69
.2
3

52
.5
7

23
.0
8

6
M
yI
ns
er
tio
nS
or
t

13
6

19
11

0
50

83
.3
3

83
.3
3

33
.3
3

7
C
on
di
tio
n

26
7

33
15

44
.4
4

66
.6
7

88
.8
8

44
.4
4

22
.2
1

8
Fr
ui
tS
al
es

11
4

12
12
6

11
2

31
.8
8

42
.0
2

56
.5
2

24
.6
4

14
.5

9
In
se
rti
on
So
rt

28
10

38
20

71
.4
2

78
.5
7

85
.7
1

14
.2
9

7.
14

10
C
om

pa
ris
on
1

93
27

12
0

81
27
.9
0

41
.8
6

58
.1
3

30
.2
3

16
.2
7

11
D
So
rt1

39
4

43
28

50
75

85
35

10
12

G
ra
de
C
al
cu
la
tio
n

23
5

28
18

33
.3
3

50
75

16
.7

25
13

M
ar
ke
tS
al
es
1

43
8

51
23

52
.9
4

64
.7
0

88
.2
3

35
.2
9

23
.5
3

14
Fr
ui
tB
as
ke
t1

27
1

8
27
9

59
39
.4
7

50
60
.5
2

21
.0
5

10
.5
2

15
B
ST

re
e

86
5

91
24

23
.0
7

69
.2
3

84
.6
1

61
.5
4

15
.3
8

16
Sw

itc
hT
es
t2

29
14

42
30

12
.5

18
.7
5

31
.2
5

18
.7
5

12
.5

17
A
ss
er
tT
es
t

31
7

38
9

57
.1
4

57
.1
4

10
0

42
.8
6

42
.8
6

18
B
ub
bl
eS
or
t

43
8

56
21

35
.7
1

42
.8
5

64
.2
8

28
.5
7

21
.4
3

19
D
So
rt_
B
ST

36
8

44
9

42
.8
5

28
.5
7

57
.1
4

14
.2
9

28
.5
7

20
C
A
ss
um

e
73

6
79

10
71
.4
2

85
.7
1

10
0

28
.5
8

14
.2
9

21
D
em

o1
44

4
48

12
62
.5

75
87
.5

25
12
.5

22
M
ar
ke
tS
al
es
2

31
3

11
32
4

78
69
.3
8

73
.4
6

73
.4
6

4.
08

0
23

M
at
hC

al
l2

38
11

49
20

57
.1
4

64
.2
8

71
.4
2

14
.2
8

7.
14

24
Se
le
ct
io
n_
So
rt

53
9

62
18

35
.7
1

42
.8
5

50
14
.2
9

7.
15

25
So
rti
ng
_a
lg
o

34
3

9
35
2

73
28

50
70

42
20

26
Sw

itc
hT
es
t3

5
11

16
4

50
10
0

10
0

50
0

27
St
rin
gB

uf
fe
r1

15
7

22
23

86
.6
6

86
.6
6

10
0

13
.3
4

13
.3
4

28
St
ud
en
tG
ra
de
s

10
3

8
11
1

20
30

50
80

50
30

29
Te
st
y

19
3

22
11

50
66
.6
6

83
.3
3

33
.3
3

16
.6
7

30
W
ei
gh
t

10
4

14
5

33
.3
3

33
.3
3

66
.6
6

33
.3
3

33
.3
3

31
W
ei
gh
t_
Ex
p1

25
10

35
33

95
.4
5

95
.4
5

95
.4
5

0
0

32
W
ei
gh
t_
Ex
p2

26
8

34
18

10
0

10
0

10
0

0
0

33
W
ild
lif
e1

40
6

46
32

7.
14

17
.8
5

53
.5
7

46
.4
3

35
.7
2

34
W
ild
lif
e2

50
10

60
59

10
40

50
40

10
35

Zo
di
ac

19
0

63
25
3

13
1

5.
95

16
.6
6

27
.8
6

21
.9
1

11
.2

36
W
B
S

20
7

27
18

0
20

30
30

10
37

A
ss
er
tT
es
t2

42
13

55
40

38
.0
9

66
.6
7

76
.1
9

38
.1

9.
52

38
H
el
lo
W
or
ld

10
5

15
5

10
0

10
0

10
0

0
0

39
IF
Ex
am

pl
e

12
7

19
7

50
10
0

10
0

50
0

40
IF
Sa
m
pl
e

24
13

37
5

75
83
.3
3

10
0

25
16
.6
7

49

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.17: Total number of Test Cases generated

4.7 Summary

We have proposed a hybrid technique of feedback-directed random testing and concolic
testing to improve the MC/DC% of input Java programs. We have explained the proposed
technique in detail with its schematic representation. We have shown the implementation
of the proposed algorithm with the help of an example Java program. We have stated
the assumptions taken. We have experimented with forty Java programs and found on
an average increase of 29.91% and 16.26%, when compared to feedback-directed random
testing and concolic testing respectively. We have improvedMC/DC by×1.62 and by×1.26
in comparison to feedback-directed random testing and concolic testing respectively. In the
next chapter, we propose an approach to compute MC/DC% at design phase using UML
sequence diagram.

50

Chapter 4 Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing

Figure 4.18: Computed MC/DC percentages

Figure 4.19: Increase in MC/DC percentages

51

Chapter 5

Measuring MC/DC at Design Phase
using UML Sequence Diagram

In this chapter, we present our proposed approach fo measuring MC/DC at design phase
using UML sequence diagrams. We describe the proposed approach in detail with the
algorithmic description and implementation using a sample sequence diagram. We also
present our experimental analysis of the proposed approach.

Now-a-days, testing starts from requirements gathering onwards. As early we start the
testing of the given system, the chances of failure reduces. We know that, Object-oriented
programs are much more difficult and require more efficient techniques for designing and
testing as compared to procedural programs. For procedural programs, we use to draw
data flow diagrams (DFD). But, DFDs have manly limitations. They do not depict the
control flow information and many other relevant information. So, in order to resolve those
limitations, for object-oriented programs, UML diagrams are introduced. UML diagrams
contain different views of the software system with the help of different diagrams. We have
developed a technique to test UML sequence diagram. Testing at design phase helps to plan a
better program structure, increases the software reliability and also reduces the overall testing
cost. We measure MC/DC percentage of the given system using UML sequence diagram. It
also helps to understand the complexity of the given system.

5.1 Overview of proposed framework

Figure 5.1 shows the schematic representation of MC/DC Analyzer for UML Sequence
Diagram (MAUSD). MAUSD consists of four modules, which are as follows: ArgoUML 1,
JAXB, jCUTE 2, and COPECA. ArgoUML, JAXB, and jCUTE are open source modules,
whereas COPECA is our developed module. ArgoUML produces XML after designing
UML Sequence Diagram. Java Architecture for XML Binding (JAXB) converts the XML
code into Java code. Now, this converted Java code is prepared manually according to

1http://argouml.tigris.org/
2http://osl.cs.illinois.edu/software/jcute/

52

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.1: Schematic representation of MAUSD

the template of jCUTE tool. jCUTE accepts this Java program and generates test cases
automatically. Now, these test cases are supplied along with the Java program to compute
MC/DC%.

5.2 Description in detail

In this section, we discuss the flow of schematic representation of MAUSD. Also, we
describe each component of MAUSD.

5.2.1 ArgoUML

ArgoUML is an open source UML (Unified Modeling Language) tool with BSD license. It
supports all standard UML 1.4 diagrams. UML 1.4 diagrams are Class diagram, Activity
diagram (including Swimlanes), Statechart diagram, Use Case diagram, Deployment
diagram (includes Object and Component diagram in one), Collaboration diagram.
AlgoUML is running on Java platform. It is available in 10 different languages. It also
provides code generation for C++, Java, PHP4 and PHP5. Argo UML also supports the
reverse engineering from the Java source code (i.e. diagram generation from the source
code). Documentation of ArgoUML is available 3. ArgoUML also provides platform to
generate the database schema and it also allows to do code in other languages such as
Delphi or Ruby. ArgoUML generates .xmi file for each of the behavioral diagram. For
our proposed work of measuring MC/DC% of UML Sequence Diagram, we have used

3http://argouml.tigris.org/documentation/index.html

53

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

AgroUML to design the Sequence diagram. We have generated the .xmi file from the
sequence diagram using the same tool only. The .xmi file contains all the information
present in the sequence diagram. For each of the component present in the sequence
diagram, it generates an unique xmi:id. The main components of the .xmi file are as follows:

• Connector

• Message

• Lifeline

• Attribute

The .xmi file is a type of .xml file with few more information. In order to generate the
Java code we require XML file. So, we have used the .xmi code to generate the .xml file.
For this transformation, it requires only to change the extension of the file format.

5.2.2 JAXB

It stands for Java Architecture for XML Binding. It is an open source tool 4. It converts the
Java objects into XML and XML into Java Objects. It provides the facility to change the
Java objects into xml, the conversion process of xml to Java objects is known asmarshalling
(write). Similarly, it also converts the XML into Java objects. The vice-versa conversion
process is known as unmarshalling(read). The basic operation of JAXB is shown in Figure
5.2. Features of JAXB are as follows:

1. Annotation support

2. Additional Validation Capabilities

3. Small Runtime Library

4. Additional Validation Capabilities

5. Reduction of generated schema-derived classes

In the proposed approach, we have used JAXB to generate Java Objects from XML file
generated from the sequence diagram. The Java objects are present in a .java file. The
.java file is having structure of normal Java with some additional packages. The additional
packages are annotation packages. Such as javax.xml.bind.annotation.XmlAttribute;
javax.xml.bind.annotation.Xml Element; javax.xml.bind.annotation.XmlRootElement; etc.
The process of to Java object conversion is as follows:

4http://www.java2s.com/Code/Jar/j/Downloadjaxbapi22jar.htm

54

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.2: Fundamental working of JAXB

• Step 1: Create POJO or bind the schema and generate the classes

• Step 2: Create the JAXBContext object

• Step 3: Create the Unmarshaller objects

• Step 4: Call the unmarshal method

• Step 5: Use getter methods of POJO to access the data

5.2.3 jCUTE

It stands for Java Concolic Unit Test Engine. It is an open source tool available on Internet
5. It is an automated concolic testing tool which generates test cases for both simple and
multi-threaded Java programs. It also supports concurrent programs. Concolic testing
combines the concrete and symbolic testing techniques using a powerful constraint solver. It
discovers the deadlock and race conditions using schematic schedule explorations. jCUTE
uses vectorized clock to generate large number of test cases and to support the concurrent
programs. It creates execution tree for the program and tries to reach all the leaf nodes of the
tree. jCUTE supports three different types of search strategies i.e. Random Search strategy,
Depth First Search strategy and Quick Search strategy. In the Depth First Search strategy
we have to mention the maximum depth and in Quick Search strategy we have to mention
the threshold value. The first value chosen by jCUTE is a Random Number. Mostly the
value is taken from one the largest number supported by the variable data type for jCUTE.
It maintains log files and traces for each run. The search optimality is based upon the path
coverage and branch coverage.

5.2.4 COPECA

It stands for COverage PErcentage CAlculator. COPECA is developed by us. It measures
the MC/DC coverage of the given Java program using the test cases generated from
jCUTE. We have developed COPECA in Java. The working principle of COPECA is
based upon ETT(Extended Truth Table) creation. For each of the predicate present in the
program, COPECA creates the Truth Table and Extended Truth Table with the help of test

5http://osl.cs.illinois.edu/software/jcute/

55

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

cases generated by jCUTE tool. Using the extended truth table, it detects the number of
independent clauses present in that particular predicate. MC/DC % is computed using the
following formula:

MC/DC% =

∑n
i=1

∑m
j=1 Ij∑n

i=1

∑m
j=1Cj

∗ 100 ∀j Cj = 1 (5.1)

where, n is the total number of predicates present the program and for each predicate m
number of conditions present in the predicate i. The value of m varies clause, otherwise
Ij = 0. COPECA is a very robust tool. It can handle Java programs of any size.

5.3 Algorithmic Description

Algorithm 3MAUSD
Input: UML Sequence Diagram
Output: MC/DC%
1: Design a Sequence diagram for the given use cases using ArgoUML.
2: Generate the XMI code from the designed UML Sequence diagram using ArgoUML.
3: Execute JAXB using XMI code to produce an executable Java code.
4: Generate test cases for the executable Java code using jCUTE.
5: Taking the test cases and Java code as input, Compute MC/DC% using COPECA and

the formula given below:

MC/DC% = (I/C)× 100 (5.2)

where, the number of independently affected conditions is denoted by I and the total
number of simple conditions is denoted by C.

Algorithm 3 deals with the function of MC/DC Analyzer for UML Sequence Diagram
(MAUSD). Line 1 of Algorithm 3 shows the use of ArgoUML to design the UML Sequence
Diagram after understanding the concept of given use cases. Line 2 shows code-generation
of UML Sequence Diagram in the form of XMI using ArgoUML. Line 3 presents the code
conversion from XMI to executable Java code using JAXB. Line 4 shows the use of jCUTE
(Java concolic tester) to accepts the Java code to generate test cases. Line 5 deals with
COPECA execution. COPECA takes the test cases and Java code as input and computes the
MC/DC percentage as output.

5.4 Experimental Study

Here we discuss the details of tools, experimental setup required results of our experiment.

56

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

5.4.1 Experimental Setup

Our computer is configured by using dual core processor of Intel(R) Core(TM) i5 version.
The processing speed of CPU is 3.20 GHz. RAM is installed of 4 GB and operating system
is of 32 bit. We have used Windows 7 Professional as experimental platform. We have used
three open source tools and one is our developed tool. The open source tools are ArgoUML
(Argo Unified Modeling Language), JAXB (Java Architecture for XML Binding), jCUTE
(Java Concolic Unit Test Engine), and our developed tool is COPECA (Coverage Percentage
Calculator). JAXB is available as a plug-in for Eclipse. Remaining ArgoUML and jCUTE
are individual tools easily available on Internet.

5.4.2 Assumptions

In this section, we present the assumptions taken for the proposed technique.

• All the sequence diagrams are designed based upon the given requirement and designer
understandability. It can be varied from person to person.

• The program should contain at-least one predicate (two clauses). If value of Clauses
is “0” then MC/DC percentage will be undefined.

• We require at least two test cases to prove a condition as independent condition.

5.4.3 Implementation

In this section, we explain the proposed approach of MC/DC analysis at design level using
an example Sequence diagram.

Figure 5.3 shows Sequence diagram for a scenario where a job seeker is searching for
the information related to jobs. In this diagram the number of actors involved is 1 and the
number of objects involved is 2. total synchronous and asynchronous messages present is
3 and 3 respectively. The number of loops involved is 1. Figure 5.4 shows the .xml code
generated for the sequence diagram. After getting the .xml code, we supplied it to JAXB(Java
Architecture for XML Binding) to generate the compatible Java objects. The Java code
obtained by JAXB is shown in Figure 5.5. But, the Java file generated from JAXB is not
compatible with the concolic tester jCUTE. So, we have done some manual interpretation
in the Java code obtained from JAXB to make it compatible with jCUTE. After that the
compatible Java code is compiled and executed on Concolic tester jCUTE. Figure 5.6 shows
the compilation of Java code on jCUTE. Similarly Figure 5.7, Figure 5.8and Figure 5.9 show
the execution of jCUTE and the results obtained. The total number of branches covered,
paths covered are 65 and 10 respectively. The branch coverage percentage is the 62.5%
in the total execution time of 2069 ms. At last, we supplied the compatible Java code and
the test cases obtained by jCUTE to the COPECA (Coverage Percentage Calculator) and

57

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

computed the MC/DC percentage. The MC/DC percentage obtained for the Java program is
100%. Developed Graphical User Interface (GUI) for COPECA is shown in Figure 5.10.

Figure 5.3: Sequence diagram for Job searching

5.4.4 Result

Table 5.1 shows the experimental characteristics of the case studies under taken for our
experiment. We experimented with five case studies. Individual case study consists of
different number of use cases. So, according to the use cases, there exists different number
of corresponding sequence diagrams. In Table 5.1, Columns 2 and 3 show the case study
names and scenarios related to the use cases, respectively. Column 4 shows the total
number of actors involved. Column 5 presents the total number of objects created for
each sequence diagram. Columns 6 and 7 show the total number of synchronous messages
and asynchronous messages respectively. Column 8 shows the number of loop combine
fragments in the sequence diagram. Column 9 shows the number of Alternative combine
fragments. Column 10 shows the total number of conditions present.

Table 5.2 shows the results obtained on the execution of jCUTE (Java Concolic Test
Engine) tool for the Java program obtained from JAXB after some manual changes. Column
4 and 5 present the number of branches covered and number of paths covered. Column 6

58

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.4: XML code generated for the Sequence diagram shown in Figure 5.3

shows the achieved branch coverage percentage. Column 7 shows the total execution time
(in milliseconds) of jCUTE. jCUTE also generates the test cases. but we have kept the
test data information in an another table because of its comparison with MC/DC related
parameters. On an average for the five case study projects, we obtained 11.59 number of
branches covered, 8.11 number of paths covered, 73.12% percentage of branch coverage in
6095.22 ms of execution time.

Table 5.3 shows the result analysis of our experiment. Column 4 shows the total
number of test cases generated through jCUTE tool. Column 5 shows the total number
of independently affected conditions present in the Java code of each sequence diagram.
Column 6 shows the total number of simple conditions present in the Java code. The
entries in Columns 5 and 6 are computed using COPECA (Coverage percentage Calculator).
COPECA also computes MC/DC% which is presented in Column 7. Column 7 presents
the execution time of COPECA. On an average we have obtained (1.7 ≡ 2) number of
independent clause and (55.29 ≡ 55)%MC/DC for five case study projects with (3.85 ≡ 4)

number of average test cases. The average execution time of COPECA is (59.25 ≡ 59) ms.
We can also compute the test case generation speed of Concolic tester jCUTE using

Equation 5.3

Test Case Generation Speed =
Number of Test Cases

Test Case Generation T ime
(5.3)

Fig. 5.11 shows the total number of test cases generated for the number of conditions
present in the sequence diagram. Number of test cases generates is always greater than or
equal to the number of conditions present the program. Fig. 5.12 presents the comparison

59

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.5: Java code generated from JAXB for the XML code shown in Figure 5.4

Figure 5.6: Compilation on jCUTE

60

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.7: One complete execution on jCUTE

Figure 5.8: Results obtained by using jCUTE

61

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.9: Test Cases generated by jCUTE

Figure 5.10: MC/DC analysis using COPECA

62

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.11: Number of generated test cases vs. the number of conditions present in the
Sequence Diagrams.

between the total number of independently affected conditions and total number simple
conditions. Similarly, Figure 5.13 shows the comparison between the branch coverage
percentage and MC/DC percentage. We can observe that the MC/DC coverage is always
less than the branch coverage. The reason behind the lesser amount of MC/DC than branch
coverage is the subsumption relationship. MC/DC is a stronger coverage criteria than branch
coverage. In branch coverage, we have to satisfy the each atomic condition present in the
predicate but, in case of MC/DC coverage we have to satisfy the whole composite condition
relation in order to prove the independence of the unique clause.

Figure 5.12: Number of independently affected conditions vs. number of simple conditions.

63

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Figure 5.13: Branch Coverage percentage vs. Modified Condition/ Decision Coverage
percentage

5.5 Comparison with related work

Abdurazik et al. [49, 55] proposed an approach on the fault revealing capabilities of test sets
generated from StateChart and Sequence Diagram. In our proposed work we only considered
sequence diagram, in our future work we may consider both the diagram to achieve high
coverage.

Vadakkumacheril et al. [19] proposed a technique to generate Java code from XMI
representation of sequence diagram. They have used BOUML tool. In our proposed work,
we also generate Java code with the help of XMI representation through JAXB tool and
ArgoUML tool. Our work is more advanced than the work proposed by the Vadakkumacheril
et al. [19], since we generate test cases and measure code coverage for the produced Java
code.

Eriksson et al. [2] has developed a novel technique to measure logical coverage design
diagrams. They have chosen class diagram, first they have generated the structural code from
the diagram and then measured the logical coverage percentage. In our proposed technique,
we have taken sequence diagram to generate the code. They have worked in C++ language
whereas we have implemented our proposed approach using Java language.

64

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Ta
bl
e
5.
1:
C
ha
ra
ct
er
is
tic
so

fc
as
e
st
ud
ie
s

Sl
.

C
as
e

Sc
en
ar
io
s

#
of
ac
to
rs

#
of
ob
je
ct
s
#
of
Sy
nc
hr
on
ou
s
#
of
A
sy
nc
hr
on
ou
s
#
of
Lo
op
s
#
of
of
A
lte
rn
at
iv
es

#
of
C
on
di
tio
ns

N
o.

St
ud
ie
s

in
vo
lv
ed

in
vo
lv
ed

m
es
sa
ge
s

m
es
sa
ge
s

pr
es
en
t

in
vo
lv
ed

in
vo
lv
ed

1
W
B
A
M
S

lo
gi
n

1
3

5
1

0
2

3
2

W
B
A
M
S

pl
ac
e
or
de
r

2
4

5
1

0
0

0
3

W
B
A
M
S

re
ce
iv
e
or
de
r

2
4

2
3

0
1

2
4

W
B
A
M
S

m
an
ag
e
em

pl
oy
ee

de
ta
il

2
3

8
3

0
0

0
5

W
B
A
M
S

m
an
ag
e
pr
od
uc
t

1
3

5
1

0
0

0
6

W
B
A
M
S

re
po
rt
co
nt
ro
lle
r

1
3

3
1

0
0

0
7

W
B
A
M
S

de
al
da
ta
co
nt
ro
lle
r

1
3

3
1

0
0

0
8

W
B
A
M
S
su
pp
lie
rd
at
a
m
an
ag
em

en
t

1
3

3
1

0
0

0
9

W
B
A
M
S

m
an
ag
e
or
de
rc
on
tro
lle
r

3
7

13
7

0
2

3
10

PL
M
S

PL
M
S

2
4

4
2

0
1

2
11

R
A
S

lo
gi
n

2
4

4
0

0
1

2
12

R
A
S

m
en
u
ca
rd

2
6

7
1

0
1

2
13

R
A
S

pu
rc
ha
se
or
de
r

3
6

14
2

0
2

4
14

R
A
S

is
su
e
in
gr
ed
ie
nt
s

2
5

5
1

0
1

2
15

R
A
S

vi
ew

re
po
rt

2
3

5
0

1
3

7
16

R
R
S

co
nt
ro
lle
r

2
4

3
1

0
1

2
17

R
R
S

R
RT

Sc
le
rk

2
4

2
1

0
1

2
18

R
R
S

R
RT

Sm
ac
hi
ne

3
5

6
3

0
2

3
19

R
R
S

R
RT

Sr
ep
ai
r

3
5

3
2

0
1

2
20

R
R
S

R
RT

Sd
at
ab
as
e

2
3

2
1

0
1

2
21

R
R
S

re
pa
ir
re
qu
es
t

3
5

4
1

0
2

3
22

LM
S

st
ud
en
tl
og
in

2
4

4
0

0
1

2
23

LM
S

se
ar
ch

bo
ok

1
3

2
0

0
1

2
24

LM
S

is
su
e
bo
ok

1
3

2
0

0
1

2
25

LM
S

bo
ok

re
se
rv
at
io
n

2
3

4
1

0
2

3
26

LM
S

bo
ok

re
tu
rn

2
4

4
1

0
3

3
27

LM
S

de
le
te
un
us
ed

2
3

2
0

0
2

2

65

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Ta
bl
e
5.
2:
R
es
ul
ts
an
al
ys
is
of
jC
U
TE

Sl
.

C
as
e

Se
qu
en
ce

#
of
B
ra
nc
he
s

#
of
Pa
th
s

B
ra
nc
h

Ti
m
e

N
o.

St
ud
ie
s

D
ia
gr
am

co
ve
re
d

co
ve
re
d

C
ov
er
ag
e%

Ta
ke
n
(m
s)

1
W
B
A
M
S

lo
gi
n

12
8

90
78
63

2
W
B
A
M
S

pl
ac
e
or
de
r

14
11

85
58
55

3
W
B
A
M
S

re
ce
iv
e
or
de
r

15
13

10
0

36
71

4
W
B
A
M
S

m
an
ag
e
em

pl
oy
ee

de
ta
il

8
6

66
49
45

5
W
B
A
M
S

m
an
ag
e
pr
od
uc
t

7
4

10
10
10

6
W
B
A
M
S

re
po
rt
co
nt
ro
lle
r

9
6

48
.4
4

44
82

7
W
B
A
M
S

de
al
da
ta
co
nt
ro
lle
r

8
5

62
76
87

8
W
B
A
M
S

su
pp
lie
rd
at
a
m
an
ag
em

en
t

5
2

18
.3
2

34
83

9
W
B
A
M
S

m
an
ag
e
or
de
rc
on
tro
lle
r

8
5

40
.7
2

13
01
9

10
PL

M
S

PL
M
S

10
7

65
44
86

11
R
A
S

lo
gi
n

15
10

10
0

68
98

12
R
A
S

m
en
u
ca
rd

13
11

10
0

44
87

13
R
A
S

pu
rc
ha
se
or
de
r

13
8

80
73
71

14
R
A
S

is
su
e
in
gr
ed
ie
nt
s

17
8

75
10
01
5

15
R
A
S

vi
ew

re
po
rt

12
6

50
17
01
6

16
R
R
S

co
nt
ro
lle
r

14
11

10
0

40
93

17
R
R
S

R
RT

Sc
le
rk

15
8

75
50
72

18
R
R
S

R
RT

Sm
ac
hi
ne

10
4

38
70
77

19
R
R
S

R
RT

Sr
ep
ai
r

15
11

10
0

84
69

20
R
R
S

R
RT

Sd
at
ab
as
e

12
9

80
30
33

21
R
R
S

re
pa
ir
re
qu
es
t

16
7

77
.7
7

59
92

22
LM

S
st
ud
en
tl
og
in

12
6

63
34
81

23
LM

S
se
ar
ch

bo
ok

11
10

10
0

26
50

24
LM

S
is
su
e
bo
ok

8
7

72
76
15

25
LM

S
bo
ok

re
se
rv
at
io
n

4
7

78
65
28

26
LM

S
bo
ok

re
tu
rn

13
12

10
0

81
27

27
LM

S
de
le
te
un
us
ed

17
11

10
0

41
46

66

Chapter 5 Measuring MC/DC at Design Phase using UML Sequence Diagram

Ta
bl
e
5.
3:
R
es
ul
ta
na
ly
si
so

fC
O
PE

C
A

Sl
.

C
as
e

Se
qu
en
ce

#
of
Te
st

In
de
pe
nd
en
t

Si
m
pl
e

M
C
/D
C
%

Ex
ec
ut
io
n

N
o.

St
ud
ie
s

D
ia
gr
am

C
as
es

co
nd
iti
on
s(
I)

co
nd
iti
on
s(
C
)

Ti
m
e
(m
s)

1
W
B
A
M
S

lo
gi
n

7
4

5
80
%

54
2

W
B
A
M
S

pl
ac
e
or
de
r

3
3

4
75
%

38
3

W
B
A
M
S

re
ce
iv
e
or
de
r

3
2

2
10
0%

26
4

W
B
A
M
S

m
an
ag
e
em

pl
oy
ee

de
ta
il

5
2

3
66
.6
6%

33
5

W
B
A
M
S

m
an
ag
e
pr
od
uc
t

3
0

0
0%

19
6

W
B
A
M
S

re
po
rt
co
nt
ro
lle
r

3
1

3
33
.3
3%

63
7

W
B
A
M
S

de
al
da
ta
co
nt
ro
lle
r

2
2

4
50
%

12
3

8
W
B
A
M
S

su
pp
lie
rd
at
a
m
an
ag
em

en
t

1
0

0
0%

47
9

W
B
A
M
S

m
an
ag
e
or
de
rc
on
tro
lle
r

4
1

3
33
.3
3%

23
10

PL
M
S

PL
M
S

3
1

2
50
%

58
11

R
A
S

lo
gi
n

3
2

2
10
0%

75
12

R
A
S

m
en
u
ca
rd

4
2

2
10
0%

56
13

R
A
S

pu
rc
ha
se
or
de
r

5
2

4
50
%

61
14

R
A
S

is
su
e
in
gr
ed
ie
nt
s

3
1

2
50
%

13
6

15
R
A
S

vi
ew

re
po
rt

16
3

7
42
.8
5%

12
1

16
R
R
S

co
nt
ro
lle
r

3
2

2
10
0%

16
17

R
R
S

R
RT

Sc
le
rk

3
1

2
50
%

54
18

R
R
S

R
RT

Sm
ac
hi
ne

5
1

3
33
.3
3%

68
19

R
R
S

R
RT

Sr
ep
ai
r

7
2

2
10
0%

92
20

R
R
S

R
RT

Sd
at
ab
as
e

4
1

2
50
%

43
21

R
R
S

re
pa
ir
re
qu
es
t

4
2

3
66
.6
6%

26
22

LM
S

st
ud
en
tl
og
in

3
1

2
50
%

84
23

LM
S

se
ar
ch

bo
ok

3
2

2
10
0%

45
24

LM
S

is
su
e
bo
ok

3
1

2
50
%

33
25

LM
S

bo
ok

re
se
rv
at
io
n

5
2

3
66
.6
6%

72
26

LM
S

bo
ok

re
tu
rn

5
3

3
10
0%

12
1

27
LM

S
de
le
te
un
us
ed

4
2

2
10
0%

43

67

5.6 Threats to Validity

• We have only considered, UML Sequence diagram using ArgoUMl. We can’t assure
for the higher version and other existing tools.

• We have manually change the Java Object code into jCUTE executable .java program.

• We are not able to compute the total execution time of MAUSD, because the execution
time of ArgoUML depends on individual software designer. Also, we are not able to
record the execution time of JAXB. But, we have computed the total time taken by
jCUTE and COPECA.

5.7 Summary

We have developed an approach to measure the MC/DC% using sequence diagram. We
explained the proposed technique in detail using block diagram. We have explained
each module used in detail. We have explained the flow of execution using an example
sequence diagram. We have experimented for five case studies. These case studies include
twenty-seven sequence diagrams. On an average, we have achieved 55.29% of MC/DC in
59 ms.

Chapter 6

Conclusions and Future Work

This thesis is mainly focused on automating the MC/DC analysis of object oriented systems.
We have developed techniques to measure MC/DC percentage both at design level and
coding level.

In this chapter, we summarize the major contribution made in this thesis. Subsequently,
we present some suggestions for the extension of proposed techniques.

6.1 Contributions

In this section we present the major contributions. There are two main contributions,
Java-HCT, and MAUSD.

6.1.1 Java-HCT

To improve existing concolic testing and obtain highModified Condition/Decision Coverage
(MC/DC), we proposed a novel technique called Java-Hybrid Concolic Testing (Java- HCT).
This technique is called hybrid because it is the combination of two testing techniques i.e.
Feedback-directed Random Testing and Concolic Testing. We experimented Java- HCT for
forty Java programs and found on an average increase of 29.91% and 16.26%MC/DC, when
compared to feedback-directed random testing and concolic testing respectively. We have
improvedMC/DC by×1.62 and by×1.26 for feedback-directed random testing and concolic
testing respectively

6.1.2 MAUSD

We proposed an automated technique to measure MC/DC percentage for UML Sequence
Diagram using concolic testing. We experimented five case studies and worked on twenty
seven Sequence diagrams. On an average, for the twenty-seven sequence diagrams, we
achieved 55.29% MC/DC.

69

6.2 Future Work

In this section, we present some of the possible extensions to our proposed techniques.

• We can extend the hybrid concolic testing in distributed environment to enhance the
useful test data generation in less amount of time.

• We will develop new code transformation techniques to increase theMC/DC% of Java
programs.

• We can make more robust and develop a dynamic version of the present MC/DC
analyzer i.e. COPECA.

• We will compute some more coverage metrics for some other UML behavioral
diagrams such as Statechart diagram, Activity diagram etc.

• We will merge the test cases generated from various UML diagrams to test complete
behavioral aspect of the systems.

• We will develop some efficient test case prioritization techniques for procedural and
object-oriented software.

Dissemination

Internationally indexed journals (Web of Science, SCI, Scopus, etc.)1

1. Arpita Dutta, Sangharatna Godboley, and Durga Prasad Mohapatra, HiRSA:
Computing Hit Ratio for SOA applications through Tcases, International Journal of
Computational Systems Engineering (IJCSYSE), Inderscience. 2017. (Accepted)

2. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall.
GECOJAP: A novel source-code preprocessing technique to improve code coverage.
Computer Standards & Interfaces, Elsevier. 2017.(Accepted) (SCI)

3. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall. J3

Model: A novel framework for Improved Modified Condition/Decision Coverage
Analysis. Computer Standards & Interfaces, Elsevier, Volume 50, pages 1-17, 2016.
(SCI)

4. Sangharatna Godboley, Subhrakanta Panda, Arpita Dutta, and Durga Prasad
Mohapatra. AnAutomatedAnalysis of the BranchCoverage and EnergyConsumption
Using Concolic Testing, Arabian Journal for Science and Engineering. 2016.
DOI:10.1007/s13369-016-2284-2. (SCI)

5. Sangharatna Godboley,Arpita Dutta, Avijit Das, Durga Prasad Mohapatra, and Rajib
Mall.Making a concolic tester achieve increased MC/DC, Innovations Systems and
Software Engineering, 12(4), 319-332, 2016. DOI:10.1007/s11334-016-0284-8.

6. Sangharatna Godboley,Arpita Dutta, and Durga PrasadMohapatra. Reduced Energy
Consumption for MC/DC Testing, International Journal of Business Information
Systems (IJBIS), Inderscience. (In press)

7. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra , and Rajib Mall.
Green J3 Model: A novel approach to measure Energy Consumption of Modified
Condition/ Decision Coverage using Concolic Testing, CSI Transactions on ICT,
pages 1-17, Springer, 2016. DOI 10.1007/s40012-017-0157-9.

1Articles already published, in press, or formally accepted for publication.

71

Dissemination

8. Sangharatna Godboley, Arpita Dutta, and Durga Prasad Mohapatra.
Green-DRCT:Measuring Energy Consumption of an enhanced Branch Coverage and
Modified Condition/Decision Coverage Technique, IGI Global. (Accepted)

International Conferences

1. Arpita Dutta, Sangharatna Godboley andDurga PrasadMohapatra, COLT: Extending
CONCOLIC Testing to measure LCSAJ Coverage, 30th IEEE TENCON-16,
Singapore, pp.373-378, 2016. DOI: 10.1109/TENCON.2016.7848024.

2. Arpita Dutta, Sangharatna Godboley and Durga Prasad Mohapatra, Measuring
Branch Coverage for the SOA based Application using Concolic Testing, International
Conference on Advances in Computing and Data Sciences (ICACDS-16), Springer,
Krishna Engineering College, Ghaziabad (UP) India, 2016. (Presented)

3. Arpita Dutta, Sangharatna Godboley and Durga Prasad Mohapatra, Measuring Hit
Ratio metric for SOA based Application using Black-box testing, 3rd International
Conference on Computational Intelligence in Data Mining (ICCIDM-16), Springer,
KIIT, Bhubaneswar, 2016. (Presented)

4. Durga Prasad Mohapatra, Sangharatna Godboley and Arpita Dutta, Measuring
Hit ratio of Software Systems using UML Sequence Diagram, 58th Technical
Annual Session by The Institute of Engineers (India), 2016. (Received SANDEEP
MOHAPATRA MEMORIAL MEDAL)

5. Sangharatna Godboley, Arpita Dutta, Avijit Das, and Durga Prasad Mohapatra,
Measuring MC/DC at Design Phase using UML Sequence Diagram and Concolic
Testing, 13th International IEEE India Conference INDICON, IISC, Bengaluru, India,
pp. 1-6, 2016. DOI: 10.1109/INDICON.2016.7839079.

6. Sangharatna Godboley, Arpita Dutta, and Durga Prasad Mohapatra. Java-HCT: An
approach to increase MC/DC using Hybrid Concolic Testing for Java programs. In
proceedings of the 15th Federated Conference on Computer Science and Information
Systems (36th IEEE Software Engineering Workshop), Gdansk University of
Technology, Gdansk, Poland,Annals of Computer Science and Information Systems,
Volume 8, pages 1709-1713, 2016.

7. Sangharatna Godboley, Arpita Dutta, Bhagyashree Besra and Durga Prasad
Mohapatra, Green-JEXJ: A new tool to measure energy consumption of improved
concolic testing, 2015 International Conference on Green Computing and Internet of
Things (ICGCIoT), Noida, pp. 36-41. 2015. DOI: 10.1109/ICGCIoT.2015.7380424.
(Best Paper Award)

72

Article under preparation 2

1. Arpita Dutta, Sangharatna Godboley, and Durga Prasad Mohapatra, Driving Tcases
to compute Hit Ratio for UML 1.X Sequence Diagram, International Journal of System
Assurance Engineering and Management, Springer (Scopus). (Major Revision)

2. Sangharatna Godboley, Arpita Dutta, Durga Prasad Mohapatra, and Rajib Mall,
DRCT: A New Transformation Technique to Achieve Increase in MC/DC, IET
Software (SCI). (Under Revision)

3. Sangharatna Godboley,Arpita Dutta, Durga Prasad Mohapatra, Avijit Das, and Rajib
Mall, Scaling Modified Condition / Decision Coverage using Distributed Concolic
Testing for Java programs, Computer Standards & Interfaces, Elsevier (SCI). (Under
Review)

4. Sangharatna Godboley, Arpita Dutta, Devang Swami, Durga Prasad Mohapatra,
Towards Green Software Testing: A promising approach to compute CO2 Emission
and Cost Analysis of Software Testing Tools, Sustainable Computing, Elsevier
(SCIE). (Under Revision)

2Articles under review, communicated, or to be communicated.

Bibliography

[1] Son, H.S., Park, Y.B. and Kim, R.Y.C., 2016. MCCFG: an MOF-based multiple
condition control flow graph for automatic test case generation. Cluster Computing,
Springer, pp.1-10.

[2] Eriksson, A. and Lindström, B., 2016. UML Associations: Reducing the gap in test
coverage between model and code. In proceedings of 4th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD), February
19-21, Rome, Italy, Vol. (1), pp. 589-599. SciTePress.

[3] Dhok, M., Ramanathan, M.K. and Sinha, N., 2016, May. Type-aware concolic testing
of JavaScript programs. In proceedings of the 38th International Conference on
Software Engineering,ACM. pp. 168-179.

[4] Han, D., Xing, J., Yang, Q., Wang, H. and Zhang, X., 2016. Formal Sequence:
Extending UML Sequence Diagram for Behavior Description and Formal Verification.
In proceedings of IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), Vol. (2), pp. 474-481.

[5] Godboley, S., Mohapatra, D.P., Das, A., and Mall, R., 2016. An improved
distributed concolic testing approach. Software: Practice and Experience,Wiley, DOI:
10.1002/spe.2405.

[6] Godboley, S., Dutta, A., Mohapatra, D.P., Das, A., and Mall, R., 2016. Making
A Concolic Tester Achieve Increased MC/DC, Innovations in systems and software
engineering, Springer, DOI:10.1007/s11334-016-0284-8.

[7] Godboley, S., Dutta, A., Mohapatra, D.P., and Mall, R., 2016. J3 Model: A novel
framework for improved Modified Condition/Decision Coverage analysis,Computer
Standards and Interfaces, Elsevier,Vol.(50), pp. 1-17, DOI: 10.1016/j.csi.2016.09.006.

[8] Chen, J., Kuo, F.C., Chen, T.Y., Towey, D., Su, C. and Huang, R., 2016. A Similarity
Metric for the Inputs of OO Programs and Its Application in Adaptive Random Testing.
IEEE Transactions on Reliability.

74

Dissemination

[9] Godboley, S., Panda, S., Dutta, A. and Mohapatra, D.P., 2016. An Automated Analysis
of the Branch Coverage and Energy Consumption Using Concolic Testing. Arabian
Journal for Science and Engineering, pp.1-19.

[10] Sen, K., Necula, G., Gong, L. and Choi, W., 2015, August. MultiSE: Multi-path
symbolic execution using value summaries. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ACM., pp. 842-853.

[11] Noh, S. and Shortle, J.F., 2015. Sensitivity analysis of event sequence diagrams for
aircraft accident scenarios. In proceedings of 34th Conference on Digital Avionics
Systems (DASC), IEEE/AIAA, pp. 3E2-1.

[12] Li, Y., Li, You., Wang, L., and Chen, G., 2014. Automatic XACML requests generation
for testing access control policies. In proceedings of SEKE-14, Hyatt Regency,
Vancouver, Canada, pp. 217–222.

[13] Saito, H., Takada, S., Tanno, H., and Oinuma, M., 2014. Test Data Generation for
Web Applications: A Constraint and Knowledge-based Approach. In proceedings of
SEKE-14, Hyatt Regency, Vancouver, Canada. pp. 110–114.

[14] Mall, R., 2014. Fundamentals of software engineering. PHI Learning Pvt. Ltd.

[15] Das, A., and Mall, R., 2013. Automatic Generation of MC/DC Test Data. International
Journal of Software Engineering, Acta Press, 2(1).

[16] Godboley, S., and Mohapatra, D.P., Time Analysis of Evaluating Coverage Percentage
for C Program using Advanced Program Code Transformer In proceedings 7th CSI
International Conference on Software Engineering Vol. 11, Chennai, India, pp. 91-97.

[17] Godboley, S., Prashanth, G.S., Mohapatra, D.P., and Majhi, B., 2013. Enhanced
modified condition/decision coverage using exclusive-nor code transformer.
In proceedings of International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing (iMac4s), IEEE, Kottayam, Kerala,
India, pp. 524-531.

[18] Godboley, S., Prashanth, G.S., Mohapatra, D.P., and Majhi, B., Increase in Modified
Condition/Decision Coverage using program code transformer. In proceedings of
IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad, Indiapp,
1400-1407.

[19] Vadakkumcheril, T., Mythily, M., and Valarmathi, ML., 2013. A Simple
Implementation of UML Sequence Diagram to Java Code Generation through
XMI Representation. International Journal of Emerging Technology and Advanced
Engineering, 2 (12).

75

Dissemination

[20] Tillman, N., Jamrozik, K., Fraser, G.,and Halleux, J., 2013. Generating test suites with
augmented dynamic symbolic execution. In proceedings of International Conference
on Tests and Proofs, Springer, Berlin, pp. 152-167.

[21] Kim, M., Kim, Y., and Rothermel, G., 2012. A Scalable Distributed Concolic Testing
Approach: An Empirical Evaluation. In proceedings of Fifth IEEE International
Conference on Software Testing, Verification and Validation (ICST), IEEE, Downtown
Montreal Montreal, QC, Canada pp. 340-349.

[22] Das, A., 2012. Automatic Generation of MC/DC Test Data. Master Thesis, Computer
Science & Engineering, Indian Institute of Technology, Kharagpur, India.

[23] Chartchai, D., 2011. Generation of Software Test Data from the Design Specification
Using Heuristic Techniques. Thesis (Ph.D.) Department of Computing University of
Bradford.

[24] Claessen, K., and Hughes, J., 2011. QuickCheck: a lightweight tool for random testing
of Haskell programs. Acm sigplan notices, 46(4), pp. 53-64.

[25] RTCA Inc. 2011. DO-178C: Software Considerations in Airborne Systems and
Equipment Certification, Washington, D.C.

[26] Kähkönen, K., Launiainen, T., Saarikivi, O., Kauttio, J., Heljanko, K., and Niemelä, I.,
2011. LCT: An open source concolic testing tool for Java programs. In proceedings of
the 6th Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE), pp. 75-80.

[27] Nayak, A., and Samanta, D., 2010. Automatic Test Data Synthesis using UML
Sequence Diagrams, Journal of Object Technology, 9(2), pp. 115–144.

[28] Swain, S.K., Mohapatra, D.P. and Mall, R., 2010. Test case generation based on
use case and sequence diagram. International Journal of Software Engineering, 3(2),
pp.21-52.

[29] Bokil, P., Darke, P., Shrotri, U., and Venkatesh, R., 2009. Automatic Test Data
Generation for C Programs. In proceedings of 3rd IEEE International Conference on
Secure Software Integration and Reliability Improvement, Washington, DC, USA, pp.
359-368.

[30] Jayaraman, K., Harvison, D., Ganesh, V., and Kiezun, A., 2009. jFuzz: A concolic
whitebox fuzzer for java, In proceedings of NASA Formal Methods, Springer, pp.
121-125.

76

Dissemination

[31] Awedikian, Z., Ayari, K., and Antoniol, G., 2009. MC/DC automatic test input data
generation. In proceedings of Genetic and Evolutionary Computation Conference
(GECCO), New York, USA, pp. 1657-1664.

[32] McMinn, P., Binkley, D. and Harman, M., 2009. Empirical evaluation of a nesting
testability transformation for evolutionary testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 18(3), pages 11.

[33] Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L. and Engler, D.R., 2008. EXE:
automatically generating inputs of death.ACMTransactions on Information and System
Security (TISSEC), pp. 322-335.

[34] Boonstoppel, P., Cadar, C. and Engler, D., 2008. RWset: Attacking path explosion in
constraint-based test generation. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer, Berlin, Heidelberg, pp.
351-366.

[35] Burnim, J., and Sen, K., 2008. Heuristics for scalable dynamic test generation. In
proceedings of Automated Software Engineering (ASE), pages 443-446, Washington,
D.C., USA.

[36] Csallner, C., Smaragdakis, Y., and Xie, T., 2008. Dsd-crasher: A hybrid analysis tool
for bug finding, ACM Transaction on Software Engineering and Methodology, 17(2),
pp. 8:1–8:37.

[37] Majumdar, R., and Sen, K., 2007. Hybrid concolic testing, In proceedings of 29th
International Conference on Software Engineering 2007, pp. 416–426.

[38] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T., 2007. Randoop:
Feedback-directed random test generation, In proceedings of 29th International
Conference on Software Engineering, 2007. ICSE 2007.

[39] Visser, W., Pǎsǎreanu, C. S., and Pelánek, R., Test input generation for java containers
using state matching, In proceedings of the 2006 International Symposium on Software
Testing and Analysis, ser. ISSTA, New York, NY, USA: ACM, pp. 37–48.

[40] Sen, K., and Agha, G., 2006. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In International Conference on Computer Aided Verification,
Springer Berlin Heidelberg, pp. 419-423.

[41] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T., 2006. Feedback-directed
random test generation, In Technical Report MSR-TR-2006-125, Microsoft Research,
pp. 75–84.

77

Dissemination

[42] Lei, Y., and Andrews, J. H., 2005. Minimization of randomized unit test cases.
In proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, 2005. ISSRE 2005, pp. 10 pp.–276.

[43] Pacheco, C. and Ernst, M. D., 2005. Eclat: Automatic Generation and Classification
of Test Inputs.In proceedings of ECOOP 2005 - Object-Oriented Programming: 19th
European Conference, Glasgow, UK, July 25-29, 2005. Heidelberg: Springer Berlin,
pp. 504–527.

[44] Godefroid, P., Klarlund, N., and Sen, K., 2005. DART: Directed automated random
testing. In proceedings of Programming Language Design and Implementation (PLDI),
New York, USA, pp. 75-84.

[45] Sen, K., Marinov, D., and Agha, G., 2005. CUTE: A concolic unit testing engine
for C. In proceedings of European Software Engineering Conference / Foundations
of Software Engineering (ESEC/FSE), Lisbon, Portugal, pp. 263-272.

[46] Rountev, A., Kagan, S., and Sawin, J., 2005. Coverage criteria for testing of
object interactions in sequence diagrams, In Fundamental Approaches to Software
Engineering, LNCS 3442, pap. 282–297.

[47] Lei, Y., and Andrews, J. H., 2005. Minimization of randomized unit test cases.
In proceedings of 16th IEEE International Symposium on Software Reliability
Engineering, 2005. ISSRE 2005, pp. 10.

[48] Csallner, C., and Smaragdakis, Y., 2004. Jcrasher: an automatic robustness tester for
java, Software: Practice and Experience, 34(11), pp. 1025–1050.

[49] Abdurazik, A., Offutt, J., and Baldini, A., 2004. A controlled experimental evaluation
of test cases generated from UML diagrams. Technical Report, ISE-TR-04-03. George
Mason University.

[50] Harman, M. , Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper,
M., 2004. Testability Transformation. IEEE Transactions on Software Engineering pp.
3-16.

[51] Cadar, C., Dunbar, D. and Engler, D.R., 2004. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In proceedings
of Operating Systems Design and Implementation (OSDI), San Francisco, CA, pp.
209-224.

[52] Fraikin, F. and Leonhardt, T., 2002. SeDiTeC-testing based on sequence diagrams.
In the proceedings of the 17th IEEE international conference on Automated Software
Engineering (ASE) 2002. Washington, DC, USA, pp. 261-266.

78

Dissemination

[53] Kelly, H. J., Dan, V. S., John, C. J., and Leanna, R.K., 2001. A practical tutorial on
modified condition/decision coverage, NASA Langley Technical Report .

[54] Ho, P.H., Shiple, T., Harer, K., Kukula, J., Damiano, R., Bertacco, V., Taylor,
J. and Long, J., 2000. November. Smart simulation using collaborative formal and
simulation engines. In proceedings of the 2000 IEEE/ACM international conference
on Computer-aided design, pp. 120-126.

[55] Abdurazik, A., Offutt, J., 2000. Using UML collaboration diagrams for static checking
and test generation. In proceedings of International Conference on the Unified
Modeling Language. pp. 383-395.

[56] Bush, W.R., Pincus, J.D., and Sielaff, D.J., 2000. A static analyzer for finding dynamic
programming errors. Software: Practice and Experience, 30(7), pp. 775-802.

[57] Kuhn R., 1999. Fault classes and error detection capability of specification-based
testing. In proceedings of ACM Transactions on Software Engineering Methodology,
8(4), New York, USA, pp. 411-424.

[58] Ganai, M.K. and Tech, B., 1998. Enhancing simulationwith BDDs andATPG (Master’s
thesis, University of Texas at Austin).

[59] Ferguson, R. and Korel, B., 1996. The chaining approach for software test data
generation. ACM Transactions on Software Engineering and Methodology (TOSEM),
5(1), pp.63-86.

[60] RTCA, Inc., 1992. RTCA/DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, Washington, D.C.

[61] Bird, D.L. and Munoz, C.U., 1983. Automatic generation of random self-checking test
cases. IBM systems journal, 22(3), pp.229-245.

[62] Clarke, L.A., 1976. A system to generate test data and symbolically execute programs.
IEEE Transactions on software engineering, (3), pp.215-222.

[63] King, J.C., 1976. Symbolic execution and program testing. Communications of the
ACM, 19(7), pp.385-394.

79

	Supervisor's Certificate
	Dedication
	Declaration of Originality
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objectives
	Thesis Organization

	Basic Concepts
	Some Relevant Definitions
	UML Diagrams
	Summary

	Literature Survey
	 Test Data Generation
	Random Testing
	Symbolic Testing
	Concolic Testing
	Hybrid Concolic Testing
	Other Related Works

	MC/DC (Modified Condition/ Decision Coverage) Testing
	Testing and coverage analysis using UML diagrams
	Summary

	Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing
	Overview of proposed framework
	Description in detail
	Syntax Converter
	RANDOOP
	jCUTE
	TCs Extractor
	Test Cases Combiner
	COPECA
	TCs Minimizer

	Algorithmic Description
	Experimental Study
	Experimental Setup
	Assumptions
	Implementation
	Result Analysis

	Threats to validity
	Comparison with related works
	Summary

	Measuring MC/DC at Design Phase using UML Sequence Diagram
	Overview of proposed framework
	Description in detail
	ArgoUML
	JAXB
	jCUTE
	COPECA

	Algorithmic Description
	Experimental Study
	Experimental Setup
	Assumptions
	Implementation
	Result

	Comparison with related work
	Threats to Validity
	Summary

	Conclusions and Future Work
	Contributions
	Java-HCT
	MAUSD

	Future Work

	Dissemination

