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Crystal electron binding energy and surface work function control of tin dioxide
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The work function of a material is commonly used as an intrinsic reference for band alignment; however, it is
notoriously susceptible to extrinsic conditions. Following the classification of Bardeen we calculate values for the
bulk binding energy of electrons in rutile-structured SnO2 and the effect of the surface on the work function, thus
highlighting the role of the surface in determining the energy levels of a material. Furthermore we demonstrate
how, through the use of ultrathin heteroepitaxial oxide layers (SiO2, TiO2, PbO2) at the surface, the work function
can be tuned to achieve energy levels commensurate with important technological materials. This approach can
be extended from transparent conducting oxides to other semiconducting materials.
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I. INTRODUCTION

The work function (φ) of a material is a critical parameter
for determining the efficiency of charge transfer. As introduced
by Bardeen, the work function depends on two independent
quantities: (i) the binding energy of an electron in the bulk
solid, sometimes termed the Galvani potential and (ii) the
energy required to move the electron through an electrostatic
double layer at the material surface [1]. The first is largely due
to the electrostatic and bonding properties of the bulk material;
the second is sensitive to surface structure, composition,
and environment [2]. Understanding and controlling both
contributions are important issues from technological and
fundamental perspectives.

Transparent conducting oxides (TCOs) are a class of
materials which are becoming ever more technologically
relevant in a number of optoelectronic contexts [3–5], due
to their combination of optical transparency and electrical
conductivity. To date the choice of TCO for incorporation into
device architectures has been dictated primarily by the bulk
properties of the TCO. However, it is becoming increasingly
apparent that rational design and optimization of novel devices
must also consider the alignment of electronic energy levels at
interfaces, e.g., in organic photovoltaics a high work function
material is generally required for optimal performance.

Fermi level and band edge engineering in oxide materials,
through doping and defect manipulation, is a well established
process and computational modeling has been highly success-
ful in the prediction of new doping strategies, in particular
for SnO2 [6–16]. The manipulation of the absolute electron
energies (with respect to all other materials) is less well
understood. The addition of dielectric layers and nanodots
have been shown to improve performance and characteristics
in several applications [17,18]; however, no consensus has
emerged regarding the reasons for their success [19]. Several
mechanisms have been put forward. It has been proposed that
the layer can block metal induced gap states normally present
at metal/semiconductor junctions [20,21]; alternatively, it has
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been suggested that multipoles or fixed charges in the interface
region result in a potential change across the interface,
lowering the band offset [22,23].

Work functions and ionization potentials of oxide materials
are extremely difficult to determine experimentally: Surface
dipoles affect local vacuum levels, doping levels determine
the Fermi energy, and the presence of defects alters both. The
work function of SnO2 is extremely surface sensitive [24]
and has recently been shown to vary between 4.1 and 5.7
eV, depending on surface conditions and bulk doping [25].
Several theoretical schemes have been proposed for predicting
the electronic energy level offsets of materials, from heuristic
models, based on chemical electronegativities [26,27], to
alignment of energy levels based on vacuum electrostatic
potentials, determined from quantum mechanical calculations
of two-dimensional (2D) slabs of the material [28–31], to
explicit supercell simulation of materials interfaces [32,33].

In this work we investigate the fundamental factors which
contribute to the binding energy of electrons in SnO2. Through
the application of a recently developed multiscale modeling
technique [34], as well as density functional theory (DFT), we
are able to decouple the two quantities defined by Bardeen, i.e.,
the bulk electron binding energy and the surface contribution.
This allows us to estimate the extent to which the surface
controls and determines the work function. Furthermore, we
resolve the surface effect into two additional categories: (i) a
contribution from the crystal termination which affects energy
levels in the bulk material and (ii) a contribution which is
strictly confined to the surface region. By isolating these
contributions we are able to place the SnO2 electron energy
levels on an absolute scale, allowing for their alignment
with the energy levels of other technologically important
materials, not including interface-specific effects. We explain
the aforementioned reports of improved device performance
through the inclusion of thin films and nanodots; moreover,
we demonstrate the possibility of tuning energy levels through
the inclusion of ultrathin films, similar to modifications using
organic monolayers [35]. We consider a number of prototype
situations of heteroepitaxial rutile capping layers on the SnO2

(100) surface.
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FIG. 1. (Color online) Graphical representation of the three types of ionization potential calculated in this study for a stoichiometric crystal
with no free carriers. Left: the reference ionization potential (IP) excluding the effect of surface double layers. The DFT model is embedded in
a region represented by classical potentials, which is, in turn, embedded in point charges. Center: The work function including the effects of a
surface double layer and surface states (IPslab and IPsurf ), simulated by a 2D slab calculation of the material, resulting in a surface multipolar
shift (Ds). Right: the modified work function, achieved by changing the surface double layer, through the inclusion of a capping heterolayer,
resulting in an additional shift (�Ds).

II. ELECTRON BINDING ENERGY IN THE BULK

To determine the absolute binding energy or ioniza-
tion potential (IP) of an electron in bulk SnO2, excluding
surface-specific effects, we employ a hybrid quantum me-
chanical/molecular mechanical (QM/MM) embedded cluster
approach (see Fig. 1) [34]. The central cluster is treated at a QM
level of theory using the PBE0 hybrid functional [36,37] and
a correlation-consistent polarized valence-only double-zeta
Gaussian basis set [38,39]. The value was also calculated
with the metahybrid BBK1 functional, yielding a value within
0.1 eV of the PBE0 value, demonstrating the robustness of
the methodology with respect to functional choice. The QM
cluster is embedded within an external potential, provided
by a larger cluster treated at an MM level of theory and a
surrounding layer of point charges, fitted to reproduce the
Madelung potential of the infinite crystal, which represents
the system remainder [40,41]. The MM model is designed
to reproduce accurately the structural, elastic, and dielectric
properties of bulk SnO2 (see the appendix for details on the
force field). At the interface between the QM and MM regions,
specially tailored effective-core pseudopotentials (ECPs) are
placed on cationic sites to prevent spillage of electronic density
into the MM region, and eliminate surface or interface effects
[42] (see the appendix for further details).

The IP of the bulk material is determined from the total
energy difference between the system in the neutral and
positive charge states, allowing all electronic degrees of
freedom to relax within a specified cut-off radius, beyond
which long range polarization effects are accounted for [40].
Using different QM region cluster sizes (from 17 to 89 ions),
we determine the IP to be 8.04 eV. In order to equate this
quantity to the first contribution to Bardeen’s definition of the
work function [1], the bulk binding energy of an electron, it is

necessary to define a reference average electrostatic potential
in the material. We define this value as zero; it is equivalent
to the potential in the region denoted “frozen potentials”
in Fig. 1.

III. ELECTRON BINDING ENERGY AT THE SURFACE

We now calculate the ionization potentials in the presence of
(110) and (100) surfaces, relative to a reference vacuum level
(plateau in the Hartree potential), with a slab representation
of the material, repeating periodically in two dimensions and
terminating to a vacuum in the third. Here the IP is equivalent
to the work function (the Fermi level is located at the top of
the valence band); although, it should be noted that undoped
SnO2 is usually n type due to oxygen substoichiometry and
hence the Fermi level will be found close to the conduction
band.

Slab structures were created from bulk SnO2 with cell
parameters and ion positions relaxed (energy difference
<0.001 eV) using the PBEsol functional [43], projector
augmented pseudopotentials [44], and a cutoff energy of
500 eV, with k-point sampling defined as an evenly spaced
grid in reciprocal space with a density scaled to the unit cell
size to achieve uniform sampling with a target length cutoff
of 10 Å, as described by Moreno and Soler [45]. All slab
calculations were performed using the VASP code [46]. The
surfaces chosen have been studied previously [47,48] and are
known to be the two most stable surfaces in rutile SnO2.

The IPs were determined by hybrid functional calculations
using 25% screened exact exchange [49]. The Hartree potential
profile was plotted using a freely available code [50] based on
the MATPLOTLIB package [51].

Capped surfaces were generated by replacing the Sn atoms
in the uppermost layer of the (100) surface with a series of
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isovalent metal atoms, which also form rutile oxides (M = Si,
Ti, Pb). The capping layer was generated on both surfaces
of the 2D slab, to ensure electrostatic symmetry and to
avoid the formation of a macroscopic dipole. The slab and
vacuum layer widths were increased for each system until the
Hartree potential in vacuum was fully converged. The use of
a monolayer capping oxide means that the surface layer is
below the critical thickness for reconstruction or formation of
dislocations.

The effect of the surface on the band energies can be sepa-
rated into two contributions (Fig. 1): (i) surface electrostatics
(Ds) and (ii) intrinsic band bending due to the presence of
evanescent surface states or changes in ion coordination. The
first contribution arises because the electron density at a surface
penetrates into the vacuum, resulting in a reduction in electron
density immediately below the surface. The excess of electrons
in the vacuum and the deficit of electrons immediately below
the surface results in a multipolar layer, causing a potential step
across the interface, penetrating the bulk of the material. The
second contribution arises because the coordination of atoms
at the surface is different from the bulk, resulting in electronic
states characteristic of the surface (often within the band gap
of the material) and from shifts in the energy levels of atoms
close to the surface; the intrinsic band bending effect is strictly
a surface effect.

To estimate contribution of the surface to the ionization
potential we apply the following procedure:

(1) Calculate the energy gap between the O 1s eigenvalues
(εb

s ) and the valence band maximum (Eb
VBM) in bulk SnO2,

with no surface effects.
(2) Calculate the bulk IP, from a total energy difference in

QM/MM, as described previously.
(3) Calculate the O 1s eigenvalues at the center of the

slab (εs
s ) and the vacuum Hartree potential (V ) for the slab

configuration.
(4) Evaluate the valence band maximum of the slab, without

the influence of surface states, by comparison to the bulk
calculation in (i):

Es
VBM = Eb

VBM − �εs, (1)

where �εs is the core-level shift, which is the difference
between core s electrons in the bulk and the slab (εb

s − εs
s ).

(5) The slab IP excluding the influence of intrinsic band
bending is evaluated from

IPslab = V − Es
VBM. (2)

(6) The slab IP including the influence of intrinsic band
bending (IPsurf) is evaluated as the difference between V and
the highest occupied eigenstate of the slab (εh).

IPsurf = V − εh. (3)

(7) Finally the surface multipolar shift is evaluated as

Ds = IP − IPslab. (4)

The values of IP for both surfaces are given in Table I. The
value of 8.76 eV for IPsurf of the most stable (110) surface,
which contains band bending and surface electrostatic effects,
is within the experimental range of ∼7.9–8.9 eV [25].

The values presented in Table I demonstrate the extent to
which the surface determines the overall ionization potential,

TABLE I. Ionization potentials before and after being aligned to
the bulk core levels (IPsurf and IPslab, respectively), as well as local
band bending (BB) and surface multipole shift (DS). All values are
in eV.

System IPsurf IPslab BB DS

SnO2 (100) 9.49 9.99 0.50 1.95
SnO2 (110) 8.76 9.92 1.16 1.88
SnO2 (100)-PbO2 9.00 10.25 1.25 2.21
SnO2 (100)-SiO2 9.25 11.07 1.82 3.03
SnO2 (100)-TiO2 8.83 10.19 1.36 2.15

in the region of 20%. The band bending effect at the (110)
surface (1.15 eV) is significantly more pronounced than at
the (100) surface (0.50 eV). The structures of both surfaces
are depicted in Fig. 2. All Sn sites in the (100) surface
layer are equivalent and are coordinated to five nearest-
neighbor oxygens. The (110) surface consists of alternating
five and six coordinated Sn atoms. Although there are fewer
undercoordinated Sn sites at the (110) surface, the contribution
from surface-specific states to the band bending is greater.
This effect may be due to the greater structural flexibility at
the (100) surface; the nearest-neighbor O atoms at the (100)
surface can re-arrange to a greater degree than those bonded
to undercoordinated Sn at the (110) surface. Therefore, at
the (100) surface, O electron density can stabilize the lower
coordination environment more than at the (110) surface,
resulting in evanescent surface states with lower energy and
reduced intrinsic band bending at the (100) surface. The
electrostatic effects at both surfaces differ very little and the
value of the potential in the crystal bulk tends towards similar
values in the presence of both surfaces.

IV. SURFACE MODIFICATION WITH HETEROLAYERS

In light of the results for the bulk material and the pristine
surfaces, we now investigate how the surface contribution
may be harnessed to control the ionization potential of a
material. Ionization potentials and electrostatic potential shifts
in the presence of hetero-oxide capping layers are reported
in Table I. There is a significant change of the electron
energies relative to the clean slab. This finding explains the
aforementioned effect of ultra-thin dielectrics in improving
device performance. By realigning the contact energy levels,
the band offset at the interface can be tuned and reduced.
The results demonstrate how, despite the capping layers

FIG. 2. (Color online) The surface structures of (100) and (110)
rutile SnO2 (O: red smaller spheres; Sn: gray larger spheres).
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(a) (b)

(c) (d)

(e)

FIG. 3. (Color online) (a) Planar-averaged charge density of the
(100) surface of SnO2. Superimposed on the plot is a profile view
of the geometry of the surface. O: red (smaller spheres); Sn: gray
spheres; M: burgundy (dark larger sphere) (M = Sn, Pb, Si, Ti).
(b)–(d) Charge densities of the capped SnO2 surfaces (solid line),
superimposed on the density of the uncapped surface (shaded region).
Capping layers: (b) PbO2, (c) SiO2, and (d) TiO2. (e) Layer-by-
layer charge density differences between the capped surfaces and the
uncapped surface.

consisting of isovalent isostructural metal oxides, the effect
on the electron energies of the slab can vary by almost 1 eV.
The effects of a capping layer depend on both the ionic and
electronic structures, affecting both the local and long-range
band edge positions in the substrate.

Charge density profiles for the (100) and capped surfaces
are plotted in Fig. 3. The extension of charge density beyond
the surface into the vacuum results in a pronounced decrease
in the density at the surface O sites. The charge density close
to the crystal surface reconstructs in an attempt to smear out
the net positive charge remaining in the slab. In the density
profile of the (100) slab, the charge density below the surface
shows a reconstructed shape. The different capping layers
result in different arrangements of charge at the surface and,
consequently, different electrostatic fluctuations, as reported
in Table I.

SiO2 has the largest effect on the surface dipole shift
(∼1.1 eV), owing to both ionic and electronic rearrangements.

FIG. 4. (Color online) Alignment of conduction and valence
bands of the bare SnO2 (110) and (100) surfaces, and the (100)
surface modified with MO2 capping layers.

The large size mismatch between Si(IV) and Sn(IV) disrupts
the lattice structure and the Si electronic configuration (p6

valence shell) results in a large trough in the charge density
at the Si site [Figs. 3(c) and 3(e)]. Pb(IV) has the same d10

valence electronic configuration as Sn(IV), and the surface
charge density [Figs. 3(b) and 3(e)] is very similar to the
clean (100) slab; however, the greater electronegativity of
Pb, compared to Sn, results in a pronounced trough in the
electron density just below the surface. Ti(IV) has the same
oxidation state as Si(IV); however, it is significantly less
electronegative and also has a smaller size mismatch with
Sn(IV); therefore, the charge density, and surface dipole, are
less affected by the Ti layer; the changes for Ti and Pb are
∼0.3 eV.

The relative bulk band edges of the different systems
considered are shown in Fig. 4, demonstrating the prospect of
tuning the bulk energy levels of a material by the inclusion of a
thin capping layer. The systems calculated here already suggest
the application of such capping layers in organoelectronic
applications, where high IPs are required for contacting to
deep molecular levels [5]. Currently Sn-doped In2O3 (ITO) is
used as an electrical contact, due to its high work function. The
application of an SiO2 capping layer could be used to engineer
the band energies of fluorine doped tin oxide, making it a
sustainable replacement for ITO.

V. CONCLUSIONS

We have presented a methodology for estimating the surface
contribution to the crystal binding energies of electrons in
SnO2. Furthermore, the surface contribution is separated into
effects that are localized in the surface region and effects
which penetrate into the bulk of the material. The ability
to control the various components of the IP allows for the
engineering of band energies through surface modification, a
possibility demonstrated by the effects of ultrathin oxide films
on the energy levels of SnO2. The same procedure can be
extended, e.g., to include quasiparticle corrections to the band
structure. The design principles of applying ultrathin films
for ionization potential tuning described can be extended to
any semiconductor, facilitating rational design of materials for
optoelectronic applications.

115320-4



CRYSTAL ELECTRON BINDING ENERGY AND SURFACE . . . PHYSICAL REVIEW B 89, 115320 (2014)

ACKNOWLEDGMENTS

The authors acknowledge A. A. Sokol and A. L. Shluger for
constructive discussions. We also acknowledge support from
the EPSRC (Grants No. EP/J017361/1 and No. EP/I01330X/1)
and the Royal Society. The work benefited from the University
of Bath’s High Performance Computing Facility, and access to
the HECToR supercomputer through membership of the UK’s
HPC Materials Chemistry Consortium, which is funded by EP-
SRC (Grant No. EP/F067496). The authors acknowledge the
use of the IRIDIS High Performance Computing Facility, and
associated support services at the University of Southampton,
in the completion of this work.

APPENDIX A: EMBEDDED CLUSTER—QM REGION

The GAMESS-UK [52] code was used to treat the QM region.
A correlation-consistent polarized valence-only double-zeta
Gaussian basis set was used for Sn and O ions, with 28 core
electron ECPs on Sn [38,39]. The PBE0 hybrid functional
[36,37] was used to model electron exchange and correlation.

APPENDIX B: EMBEDDED CLUSTER—MM REGION

We have fitted an interatomic potential model to treat the
MM region in the embedded crystal, based on the Born model
of ionic solids [53]. We simulate ion-ion interactions using a
sum of four two-body terms and a three-body term. The first
two-body term is a Coulomb sum:

UCoulomb
ij = qiqj

rij

, (B1)

where Uij is the energy of interaction and rij is the separation
between ions i and j , and qi is the charge on ion i; the second
is a Buckingham potential, of the form

UBuck
ij = A exp(rij /ρ), (B2)

where the parameters A and ρ depend on the species of i and
j . The third is a Lennard-Jones potential

UL-J
ij = B

r12
ij

− C

r6
ij

, (B3)

where B and C depend on the species of i and j . The fourth
is a Morse potential of the form

UMorse
ij = De({1 − exp[−a(rij − r0)]}2 − 1), (B4)

where De, a, and r0 depend on the species of i and j . The
three-body term is a Bcoscross-type potential of the form

U
3-body
ijk = kijk[1 + bijk cosm(nθ )]

(
rij − r0

ij

)(
rik − r0

ik

)
,

(B5)

where the parameters k, r0, m, and n depend on the species of
ions i, j , and k.

The polarizability of the ions is taken into account using the
shell model of Dick and Overhauser [54], where each ion is
separated into a core and shell, with the massless shell (charge
Y ) connected to the core by a spring. The total charge of the
core shell equals the formal charge of the ion. The energy is
given by

Uc−s = 1
2Kr2

c−s , (B6)

TABLE II. Interatomic two-body and three-body potential pa-
rameters for bulk SnO2, including shell polarizations on Sn and O
ions (e is the electronic charge).

Buckingham A (eV) ρ (Å)

Sn shell–Sn shell 1970.13 0.10
O shell–O shell 0.05 0.21
O core–O shell 934.00 0.09
Sn core–O shell 208.20 0.49

Lennard-Jones B (eV Å12) C (eV Å6)

Sn shell–Sn shell 10.00 3.33
O shell–O shell 10.00 25.10
Sn shell–O shell 10.00 11.79

Morse De (eV) a (Å−1) r0 (Å)

Sn shell–Sn shell − 0.49 0.68 4.93
Sn core–O shell 0.08 0.98 4.10
Sn core–O shell 0.28 0.54 1.93
O core–Sn shell 2.81 5.08 1.90
O shell–Sn shell − 13.73 2.97 1.29

Shell K (eV Å−2) Y (e)

Sn core–Sn shell 46.90 − 0.78
O core–O shell 54.25 − 2.13

Bcoscross k (eV Å−2) b m n r0
12 (Å) r0

13 (Å)

Sn shell–O shell–O − 0.75 − 3.81 2 1 2.05 2.05
shell

O shell–Sn shell–Sn − 1.71 3.16 2 1 2.05 2.05
shell

where K is the spring constant and rc−s is the distance between
the core and shell. The parameters used are given in Table II.

APPENDIX C: EMBEDDED
CLUSTER—INTERFACE REGION

To treat the interface between the QM and MM regions, a
specially designed local ECP was placed on Sn sites located
within a range of 5 Å from the edge of the QM region. The
ECP Up(r) has the form

r2Up(r) = A1r exp(−Z1r
2) + A2r

2 exp(−Z2r
2)

+A3r
2exp(−Z3r

2),

where the parameters Ai and Zi were fitted in order to
minimize the gradients on the ions in the QM and interface
region, and the spread of deep core levels in the energy
spectrum. The parameters are given in Table III.

TABLE III. ECP parameters (atomic units).

Ai Zi

1 − 57.3265 19.9219
2 12.4572 1.6448
3 0.6127 0.3347
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