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ABSTRACT 
 

This study examines the detection of attacks or network intrusion by users referred to as hackers (whose aim is to gain illegal 
entry as well as access to a network system and resources. Network and data security has become a pertinent issue with the 
advent of the Internet; though the Internet comes with a lot of merits on its own. Traditional used methods for data security 
includes the use of passwords, cryptography to mention few. The approach considered here is Intrusion Detection System, 
which is a software, driver or device used to prevent an unauthorized or illegal access to data in a networked system. Most of 
the existing IDS are implemented via rule-based systems where new attacks are not detectable. This study thus, presents a 
genetic algorithm based approach (with its driver implementation), which employs a set of classification rule derived from 
network audit data and the support-confidence framework, utilized as fitness function to judge the quality of each rule. The 
software implementation is aimed at improving system security in networked settings allowing for confidentiality, integrity and 
availability of system resources. 
 
Keywords: Soft computing, intrusion detection systems, network, security, genetic algorithm, attacks.
 
1.  INTRODUCTION 
 
 Our society’s dependence on digitally transmitted 
data is ever-growing with an growing need to desuade 
intruders – leading to advances in cryptography and data 
security methods such as firewalls, application gateways etc. 
Despite these, to ensure data integrity is still a herculean 
task. Thus, attention drifts to intrusion detection system 
(IDS), which monitors network traffic so as to identify 
resources misuse, unauthorized use as well as its abuse. 

 
 Artificial Intelligence aims to create intelligent 

system capable of human reasoning; while Soft Computing 
aims to merge AI with other fields, creating a synergy that 
solve tasks by exploiting numeric data and human 
knowledge via mathematical models and reasoning – to 
yield a method tolerant to partial truth, imprecision and 
noise in data via optimization process that assures users of a 
solution guaranteed of high quality even with noise at its 
data input. Pushing further the bounds of SC has led to 
development of Evolutionary Programming Algorithms that 
aims at quantitative (numeric) data processing so as to 
ensure qualitative knowledge/experience in form of natural 
languages – spanning across several branches inspired by 
evolution and behavioural patterns in biological populations. 
Example of SC and EPA includes Genetic Algorithm, 
Neural Network etc. They simply mimics natural population 
seeking food and space (Shi, 2004; Abarghouei, Ghanizadeh 
and Shamsuddin, 2009), which have proven efficient in 
complex, constraint satisfaction problems (Hu, Eberhart and 
Kennedy, 2007; Sedighizadeh and Masehian, 2009). In its 

attempt to explore dynamic processes, optimization has three 
feats namely:  

 
a. Robustness helps to estimate system’s 

effectiveness even with noise implementation. 
b. Continuous adaptation (yields a result void of 

local minima with random immigrants of high 
diversity to slow convergence in the space and 
balances data exploitation and exploration, so that 
in learning the feats of change, its solution is biased 
accordingly). 

c. Flexibility – decisions made based on uncertainty 
has its impacts in a system’s state. Optimization 
aims to predicts a system’s future with an algorithm 
that focuses on both its objective function (to make 
the system flexible) and facilitate adaptation (if 
necessary, with the ease of system’s blackbox 
integration). 

 
 Genetic Algorithm (GA) is a search algorithm that 
mimics the evolution process in solving various tasks. They 
are considered an effective heuristic search technique 
inspired by concepts of biology via evolutionary 
computations (Vollmer, Alves-Foss and Manic, 2011). They 
are based on the principles of natural selection and genetics.  

 
 The study aims to generate signatures for a rule-

based IDS via GA that will hopefully, create better rules. 
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2. IDS AND SOFT-COMPUTING METHODS 

 Intrusion is the set of actions that attempts to 
compromise integrity, confidentiality or availability of 
network resources; while an intruder is any user or group of 
users who initiates such intrusive action (Olusegun, 
Oluwatobi and Adewale, 2010). An IDS is engineered to 
generate an alert when it observes potentially malicious 
traffic (Kurose and Ross, 2010). It monitors packets from 
network connections and determines if it is an intrusive 
activity or not. Once an intrusion is detected, the IDS simply 
performs one of the following actions: (a) Logs in a message 
into system audit file to be later analyzed by network 
security experts, (b) Send email alert to a network 
administrators, and (c) Stops such connection to end an 
intruder's attack (as placed under Intrusion Prevention 
System) amongst many other functions. 

 
 Security threats are initiated externally or 

internally (Gong, Zulkernine, and Abolmaesumi, 2005; 
Kandeeban and Rajesh, 2007) to result in two types of 
intruders namely: (a) External Intruders with no authorized 
access to network resources. Thus, they attack via various 
penetration means, and (b) Internal Intruders who have 
authorized access to network resources. 

 
IDS can be classified into four namely:  
 
i. Rule-Based/Signature-based IDS – maintains an 

extensive database of attack signatures. A signature 
or rule may be a list of characteristics about a single 
packet (e.g. source/destination port numbers, 
protocol type, specific string bits in a packet 
payload, or series of packets) – normally created by 
a network security experts. This IDS sniffs each 
packet passing through, compares them against its 
signature database – so that if a packet(s) match, it 
generates an alert; otherwise, it proceeds (Kurose 
et.al, 2010). As the most widely used IDS – its 
demerits are: (a) it requires previous knowledge of 
the attack to generate an accurate signature and 
thus, is completely oblivious/blind to new attacks 
yet to be recorded by it, (b) if signatures match, it 
may be false alarm from a number of other feats 
and not a result of an attack, and (c) each packet 
must be compared against an extensive signature 
set – that may overwhelm the IDS with processing 
so that it fails to actually detect many malicious 
packets (consider a network where gigabits of 
packet flow in per seconds, the rule-based IDS may 
find it difficult to compare all packets against its 
gigantic database). 

 
ii. Anomaly-IDS creates traffic profile via aiming for 

statistically unusual, packet streams like inordinate 
percentage of Internet Control Message Protocol 
(ICMP), ping sweeps and/or the port scan’s sudden 

exponential growth. It does not rely on previous 
knowledge about existing attacks and can 
potentially detect new, undocumented attacks. 
Also, it is very challenging to distinguish between 
normal traffic and statistically unusual traffic 
(Kurose et.al, 2010). 

 
iii. Host-IDS monitors file and process activities 

related to a software environment associated with a 
specific host and listens to network traffic to 
identify attacks to host – as data from a host is used 
to detect signs of intrusion as packets enters/exits a 
host (Li, 2004). 
 

iv. Network-IDS identifies intrusive acts via 
monitoring traffic through network devices. 

 
 Diaz-Gomez and Hougen (2005) notes that IDS has 
three main components namely: 
 

• Sensors/Network Probe tracks network traffic, 
system behavior and log files. It then translates raw 
data into events usable by an IDS monitors and taps 
in to access all the network connections. 

• Analysis Console takes sensor output (network 
connections) as input, analyze them looking for 
signs of intrusion. It is the most critical component 
as it decides whether or not, a connection is an 
intrusion. 

• Policy Control/Response generates reactions 
based on analysis engine’s outcome. If the Analysis 
Console flags a network connection as an intrusion, 
this control performs several actions depending on 
the set policy by the network administrator. 
Examples includes actions as simple as Logging a 
particular network connection, or sending alert to 
administrator's e-mail etc. It also handles what 
action(s) to be taken when an intrusion is detected. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 GENERTIC ALGORITHM 

 GA is a search method that finds an approximate 
solution to an optimization task – inspired from biological, 
evolution process and natural genetics and proposed by 
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Fig 1: A Generalized Framework 
f  IDS 
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Holland (1975). GA uses hill climbing method from an 
arbitrary selected number of genes. GA has four operators: 
initialization, selection, crossover and mutation.  

 
 The system starts with randomly-initialized 

population that evolves, where each chromosome represents 
a solution in the space. Each chromosome has a number of 
genes, whose quality is a measured of its fitness function and 
the quantitative representation of each rule’s adaptation 
(Kandeeban et.al, 2010). These three (seelction, crossover 
and mutation) operators are applied to the pool to gradually 
improve the quality of each chromosome. Competition for 
food and space allows evolves the population, as stronger 
genes dominate weaker ones – a desired improvement over 
various iterations. Chromosomes with better fitness value 
are more likely to reproduce offspring. Thus, only the fittest 
genes survive and reproduce. Its reproductive process 
creates diversity in the pool via evolution (combination of 
two individual chromosomes) as new genes are created from 
previous ones to generate a new pool. The exchange of 
genetic material between two parent chromosomes results in 
a crossover and creation of a better, fitter individual. 
Repeated selection (survival of fittest) and crossover causes 
continuous evolution of a generation that will better survive 
in a competitive state. Mutation causes the genes’ sporadic 
and random alteration as well as helps regenerate lost 
genetic materials (Srinivas and Patnaik, 1994). If the newly 
generated pool contains an output close enough to the 
desired value, the solution is found; Else, the new pool goes 
through the same process and continues until a solution is 
reached, or until a certain number of generations have been 
produced.  

 
 GA’s strength resides in parallel transversing of a 

system by proposing solutions whose initial population is 
randomly generated and are continuously evaluated via a 
fitness function (Diaz-Gomez and Hougen, 2005). GAs have 
successfully been applied in areas like AI, Biology, 
Engineering, Hydrology, to mention a few with variants 
developed to suit the nature of the task at hand – to yield 
new generation of strings via genetic operators (crossover 
and mutation) with its cycle or iterations repeated until a 
termination state is reached (Back, 1996). The algorithm is 
thus:  

 
Genetic Algorithm() { initialize population via randomness; 

 evaluate randomness of population; 
WHILE termination conditions not met do 

select solutions for next population; 
perform crossover and mutation; 
evaluate population; 

END while }; 

2.2 GA and IDS (GAIDS) 

 Gong et al (2005) notes that GA has been applied to 
IDS directly to derive classification rules or via SC methods 

(GA used to select appropriate network connection features 
or determine the optimal parameters of some functions for 
the acquisition of rules). 

 
 Early effort in using GAs for IDS dates back to 

1995, as applied in multiple agent technology and Genetic 
Programming (GP) to detect network anomalies. Each agent 
monitors one network parameter of the audit data, and 
Genetic Programming (GP) is used to find a set of agents 
that collectively determine network behavior anomalies. Its 
merit was in using many small autonomous agents, but, they 
had communication defect and its training was time-
consuming, if agents were not appropriately initialized. The 
method is obsolete and unapplicable to current research 
(Chittur, 2001; Crosbie and Spafford, 1995). 

 
 Chittur (2001) in his rule-based IDS set the goal to 

test if GA was feasible for model generation, designed to 
replace/reinforce rule–based IDSs. He notes that network 
connection and its related behaviour can be translated to 
represent a rule – so that the set of rules are used to judge 
whether or not, a real-time connection is intrusive. The rules 
are modeled as chromosomes, so that the generated rule set 
becomes knowledge to judge whether a network connection 
is a potential intrusion. Fitness value is dependent on how 
many connections are grouped as attacks and how many 
attacks were correctly detected. The fitness value for each 
chromosome is evaluated in a closed range of [- 1, 1], with -
1 as the poorest value and 1 is the ideal fitness. A threshold 
value was established and any certainty value exceeding this 
threshold value was classified as a malicious attack.  

 
 GA was then tested using data from raw TCP dump 

data from US Air Force DARPA dataset. It returned 
impressive results with its best rule having fitness value 
close to 1. The system presented about 97% of attacks 
correctly detected and 0.69% of normal connections were 
incorrectly classified as attacks. There was a correlation 
between these two variables (higher correct attack detection 
rate and a higher false positive rate) – so that as more attacks 
were correctly detected, more normal connections were 
incorrectly classified as attacks. Its optimal solution noted 
386,703-of-396,743 attacks in its training data with 669-of-
97,276 normal connections that was falsely classified as 
attacks. Also, GA successfully evolved an individual’s 
model via randomized mutation so that the model generates 
a new pool over a subset data not previously known 
(retraining). Thus, GA ia able to generate a model with the 
desired characteristics of low false positive and high correct 
detection rates for an IDS. Its major bottleneck is difficulty 
in establishing a threshold value that may lead to detect 
novel or unknown attacks (Kandeeban et.al, 2010). 

 
 Li (2004) focused only on using GA to generate 

rules for the IDS knowledge-base – used to differentiate 
normal connections from intrusive attacks with rules in the 
form below. Condition is the matching of current network 
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connection to rules in the knowledge base, act refers to 
actions defined by security policies within an organization 
such as reporting alert to system administrator, stopping the 
connection, logging a message into system audit files, or all 
of the above. 

 
If {condition} then {act} 

For example, a rule can be defined as:  
 if {the connection has following information:  
     source IP address 124.12.5.18;  
    destination IP address: 130.18.206.55;  

   destination port number: 21;  
    connection time: 10.1 seconds}  
 then {stop the connection}  
 
 Explained as thus: if there exists a network 
connection request with source IP address 124.12.5.18, 
destination IP address 130.18.206.55, destination port 
number 21, and connection time 10.1 seconds, then stop the 
connection establishment – since IP address 124.12.5.18 is 
recognized by the IDS as a blacklisted IP address. Thus, 
service request initiated from it, is rejected. The rules are 
tested on historical connections and to filter new connections 
to find suspicious network traffic. In its implementation, the 
network traffic used for GA was pre-classified data set 
(DARPA dataset 1999) that differentiates normal network 
connections from intrusive ones. Chromosomes encoded for 
the GA in Li's research was based on nine network 
connection feats namely: (a) source IP, (b) destination IP, (c) 
source port, (d) destination port, (e) state, (f) duration, (g) 
protocol, (h) number of bytes sent by originator, and (i) 
number of bytes sent by responder.  

 
 Each attribute over a range is encoded into 

chromosome with 57-genes via integer representation; while 
IP addresses are encoded in HEX for simplicity. The 
population of the chromosomes randomly-initialized for rule 
selection, evolves via crossover and mutation operators. Its 
fitness is a function of the weighted sum model, in which 
weights were used to indicate the significance of each 
network feature. Some network connection feat had more 
weight than others, especially as it becomes a critical 
factor, depended upon to detect an intrusion. For practical 
implementation, additional methods like neural network, 
used to accurately determine the weights of network 
connections (Gong et. al, 2005). 

 
 Gong et. al (2005) and Li (2004) had similarities 

and also used the same dataset to train their algorithm – 
though Gong clearly stated two (2) areas where the research 
differs from Li's: (i) representation of rules and (ii) 
definition of fitness function. Gong notes that in rule 
representation, Li’s approach encodes only the “condition” 
part of the rules so that the method is only suitable for 
detecting network anomalies. However, Gong in their work 
encoded both “condition” and “outcome” – giving their 
work the precise benefit of detecting and classifying the 

types of network intrusion as well as detect network 
anomalies. Also, Li's work used nine network connection 
feats to encode chromosomes; where Gong used six feats 
from the same DARPA dataset, plus a classification of the 
attack type (manually added), making a total of seven (7) 
features. Network connection features encoded includes – 
destination IP, source IP, destination Port, source Port, 
duration, protocol, and finally attack type (manually added 
by experts). In fitness function, Gong shuns the weighted 
sum used by Li, but used the support – confidence 
framework that allowed the GA designed to generate rules 
used to detect anomalies or precisely classify various 
network types of network intrusions. Other works includes 
Kandeeban et.al, 2007; Al-Anni et al, 2009; Olusegun et.al, 
2010; Lavender, 2010 etc., These made slight variations to 
the studies of Li or Gong. 

 
 Vollmer et al (2011) presents a combined approach 

that uses GA and anomaly-based IDS to create rules for a 
signature-based IDS. The study retrieved network packets as 
training data for GA as with previous studies. Its main 
difference is rather than using network audit data logs, 
network packets originate from network traffic identified by 
anomaly based IDS as being anomalous. The study produced 
set of optimal rules (rule-based) for a specific, anomalous-
instance previously detected by an anomaly IDS. Thus, 
bridging rule and anomaly IDS. Its fitness function was 
defined for the study is the three part fitness function. The 
algorithm was demonstrated on anomalous ICMP network 
packets (input) and Snort rules (output of the algorithm). 
Output rules were sorted according to a fitness value and any 
duplicates were removed. The experimental results on ten 
test cases demonstrated a 100 percent rule alert rate. Out of 
33,804 test packets 3 produced false positives. 

3. STATEMENT OF THE PROBLEM 

 To ensure data integrity and privacy – security 
methods need be considered. The firewall’s demerit is in its 
faulty packet filtering methodology. Application gateway’s 
demerit is its cost and bottleneck caused as it slows down 
the network. Thus, IDS aims to provides a solution that tries 
to bridge existing network security technologies. 

4. PURPOSE/OBJECTIVES OF STUDY 

 The paper’s objective is to: (a) deploy a GA, Rule-
Based IDS that creates rule for IDS, and (b) testing 
generated signatures with exsiting IDS benchmarks. The 
purpose is to employ GA to speed up rule generation, 
counters new attacks, and proffer security via a rule-based 
IDS. The study will also potentially reduce human effort of 
rule generation for a rule-based IDS as identified by Vollmer 
(2010). Its frees security experts from rule-creation, and 
allows LAN administrators to generate customized rules for 
the specific attacks they face at that level. Generating these 
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new rules will hopefully detect new forms of attacks to a 
reasonable extent (its merits). 

5. GAIDS FRAMEWORK 

 To generate new rules, GA uses sample data to 
train and test the newly created.  

5.1 Training  

 Involves the following steps and a greater subset of 
the data is used evolve rules over a number of iterations as 
network feats are properly selected.  

Table 1: Chromosome Representation of a Rule 

S/no Feat Name Format Number of 
Genes 

1 Duration H:M:S 3 
2 Protocol Numeric 1 
3 Source Port Numeric 1 
4 Destination Port Numeric 1 
5 Source IP a.b.c.d 4 
6 Source IP a.b.c.d 4 

7 Attack Name and 
type String 1 

 
 Training data contains analyzed logs of cconnection 
such that it knows apriori, connections that are attacks. Feat 
selection is a major task in designing the rule-based IDS 
(Chou et al, 2008; Kayacık et al, 2005) as in table 1. Source 
IP originatees an intrusion; while Destination IP is its target. 
Destination port shows applications that the target system is 
running (e.g. FTP service runs on port 21). Some IPs are 
more probable targets for intrusions such as Military 
Domain IPs (Li, 2004).  

 
The training phase is further subdivided into these: 

 
1. Encoding Scheme – Training phase uses a subset 

of DARPA dataset, which contains all 7-feats so 
that a connection considered intrusive, has an attack 
name. The data analysis prior to its use notes that 
normal connection in the training data contains no 
attack name. Each chromosome is a rule within 
which the 7-feats are encoded via fixed length 
vector, and each feat encoded as one or more genes 
of different types as in table 1. Each rule uses an if-
then clause with a “condition” and “outcome” 

part. The first 6-feats are connected via logical 
AND to form “condition” part; while attack name 
is the “outcome” to show network record 
classification (during training) or connection 
(during intrusion detection) if a rule is matched. 
Below, a rule classified as port scan attack: 
IF (duration=“0:0:1” AND protocol=“telnet” AND 
source port=8982 AND destination port=23 AND 
source IP=“9.9.9.9” AND destination 
IP=“172.16.12.50”) then (attack name=“port-
scan”). In the above example, given that the 
numbers 1 and 2 represents protocol telnet and 
attack port-scan as: 
{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 012, 50, 
1} 

 
Wild-card are allowed and may be used to make the 
rules more general. In case a wildcard is used, then 
the corresponding gene is encoded as -1. Thus, our 
previous example is a generalized rule applicable to 
all packets originating from network 9.9.*.* as:  
{0, 0, 1, 2, 18982, 79, 9, 9, -1, -1, 172, 16, 112, 50, 
1} 

 
2. Fitness Function – Chromosomes are evaluated at 

training to determine its goodness (attacks 
detected). If the chromosome correctly classifies an 
attack, it is considered good; else, it is bad and not 
be selected for crossover to produce offspring. 
Thus, the more attacks a chromosome detects, the 
higher its fitness value. The fitness models adopted 
is: support and confidence model. If we have the 
rule:  

 
 If A then B, 
 support = |A and B| / N  
 confidence = |A and B| / |A|  
 fitness = w1 * support + w2 * confidence  
 N = Number of connections in training data 
 |A| = Number of connections matching condition A. 
 |A and B| = Connections matching rule if A and B 
 w1, w2 = Weights to balance/control the two terms. 
 

 A merit of using fitness function is that, by 
changing the weights w1 and w2, the approach is simply 
used for either identifying network intrusions or precisely 
classifying types of intrusions. In the latter, w1 is set to 0 
and w2 set to 1; while in the former, w1 is set to 1 and w2 is 
set to 0. Unlike other fitness functions, the selection criteria 
w1/w2 is not crucial factor to the performance of the 
approach. 
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Table 2: Workings of the Fitness Value Framework 

Duration Protocol S.Port D.Port S. IP D. IP Attk name 
0.0.11 ftp 1892 21 192.168.1.30 192.168.1.20 - 
0 .0 .0 smtp 1900 25 192.168.1.30 192.168.1.20 - 
0.0.2 rsh 1023 1021 192.168.1.30 192.168.1.20 Rcp 

0.0.23 telnet 1906 23 192.168.1.30 192.168.1.20 guess 
0.0.14 rlogin 1022 513 192.168.1.30 192.168.1.20 rlogin 
0.0.2 rsh 1022 1021 192.168.1.30 192.168.1.20 Rsh 

0.0. 15 ftp 43549 21 192.168.1.40 192.168.1.20 - 
 
 Table 2 is list of audit data with sample 
chromosomes to represent matching rules that identifies 
attack with each connection. Chromosomes match are seen 
in lines 3 and 6, to match attack type, rsh, only on line 6. 
Chromosome fitness is evaluated below if:  
 
 w1 = 0.2, w2 = 0.8, N = 10, |A| = 2, |A and B| = 1. 
 
Thus, Fitness = w1 * support + w2 * confidence  
 
 Support = | A and B | / N =  1 / 10 = 0.1  
 Confidence = |A and B | / A = 1 /2 = 0.5  
 Fitness = (0.2 x 0.1) + (0.5 x 0.8) = 0.42 
 

3. Selection – The study adopts tournament 
selection in which, chromosomes are randomly 
chosen from current generation – so that with next 
iteration, a lesser number is chosen. This continues 
until one is chosen from the last two/three 
chromosome, to be parents that creates the new 
offspring. This scheme is selected based on its 
reputation of maintaining population diversity and 
we recall, the goal of this study is not to create a  
 
 

 
best rule (global optimum), but to create bunch of 
rules that are good enough to detect intrusion (local 
optimums). Thus, population diversity needs to be 
maintained. The algorithm is:  
 

Algorithm: Tournament Selection {} 
  
 Input: Population of chromosome 
 Output: Selected Chromosome for crossover 
 

a. Randomly select 3-chromosomes from pool 
b. Pick best 2-chromosome based on fitness value 
c. Return the selected two chromosomes 
d. Apply Crossover | Select best chromosome to 

be parent 
 

4. Crossover – algorithm chooses two random cross 
section points from the chromosome as in table 3, 
and exchanges the midsection between the parents  
 
as in lines 1 and 2, to form two new children seen 
in lines 3 and 4. This is a two point crossover in 
GA.  

 

Table 3: 2 point Crossover in GA from parent to children 
 

Duration Protocol S.Port D.Port S. IP D. IP Attk name 
0.-1.-1 rsh -1 1021 192.168.-1.-1 192.168.0.-1 Rsh 

0.0.5 tel- net 2020 23 9.9.9.9 172.16.112.5
0 Port scan 

 
       

0.-1.-1 rsh -1 1021 192.9.9.9 172.16.112.-
1 Rsh 

0.0.5 telnet 2020 23 9.168.-1.-1 192.168.0.50 Port scan 
 
 
 
 

 
 
 
 

Crossover 
Points 
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5. Mutation: Each gene in a chromosome may or 
may not change depending on the probability of 
mutation rate. Mutation improves population 
diversity needed in this work, and its algorithm is 
as thus: 

 
Algorithm: Mutation of rules (chromosome) 
  Input: A chromosome rule 
  Output: Same or Mutated chrom,., a fns of 
  mutation rate 

1. Set mutation threshold (between 0 and 1) 
2. For each network attribute in chromosome 
3. Generate a random number between 0 and 1 
4.  If random number > mutation threshold then 
5. Generate random value w.r.t data properties 
6. Set chromosome attribute value with  
    generated attribute value 
7. End if 
8. End For Each 

 
 Thus, the complete training phase algorithm is as 
thus: 
 
Algorithm Rule set Generation via GA-Training 
 Input: Audit data, generations and population size.  
 Output: A set of classification rules.  
 

1. Randomly Initial they created chromosome 
population. 

2. Set w1 = 0.2, w2 = 0.8, Max Generations  = 
400 (epoch) 

3. Set N = total number of record in training set 
4. Set generation Counter  = 0 
5. For each chromosome in population 
6. Set A = 0, AB = 0 
7. For Each record in training set 
8. If record matches chromosome 
9. AB = AB + 1   //AB++ 
10. End If 
11. If record matches only condition part 
12.  A = A+1  //A++ 
13.  End if 
14.  End For Each record 
15.  End For Each Chromosome 
16.  Select 30-best fitted chromosome into new 

pool 
17.  For each chromosome in new pool/population 
18.  Select chromosome for breeding 
19.  Apply crossover and mutation to new  

offspring 
20. Place newly created chromosome into 

population 
21. End For each 
22. Kill old pool, new pool now current pool 
23. Increment generation Counter by 1 
24. If generation Counter < Max Generation then 
25. Goto line 5 

26. Else goto line 27 
27. End  

5.2 Testing Phase 

 The generated rules are used to evaluate the 
remaining dataset, and the aim of testing is to gather 
information of how well the rules created, can detect attacks. 
Two methods are used for testing namely: (a) use existing 
rules in the rule-based IDS, and/or (b) build tailored rule-
based IDS. The proposed design requires tailored rules in 
that rules created from here are fed back into the IDS for 
detection purpose as the remaining part of the DARPA 
dataset are used as incoming connection to see if generated 
rules can distinguish between normal and intrusive 
connections. If they can, it means the GA, ruled based IDS 
can detect possibly new intrusions using previous knowledge 
of existing ones. Its algorithm is thus: 
 
Algorithm: Intrusion Detection 
  
 Input: Inflowing network connection  
 Output: Decision if connection is intrusive or not 
 

1.  Loop Forever {fetch incoming packet 
(network probe)} 

2.  For each rule in base 
3.   Match rule to network connection (analysis 

console) 
4.   If rules match then 
5.     Mark connection as intrusion (policy control) 
6.   End if 
7.  End For Each 
8.  End Loop Forever 

6. METHODS AND MATERIALS 

 The training and testing data-set used for the study 
is the DARPA (Defense Advanced Research Project 
Agency) dataset as in Appendix A1 and A2.  
 

7. FINDINGS AND DISCUSSION 

 From Appendix A3, the top rules havee almost 
same fitness range [0.8, 0.8065]. Thus, the rules are 
estimated 80% good to be used in detection. This result also 
shows that the achievement of generating a bunch of good 
rules, rather than a single optimum rule – is better in 
intrusion detection. 10-out-of-22 rules have destination port 
as -1, so that the rules looks out for cconnections from any 
destination port. This increasees the chances of detecting 
intrusion on any port in the network and improves the 
generality of rules. The rule generator used a population of 
400, w1 = 0.2, w2 = 0.8, 5000 (epochs) evolutions and 0.05 
probability of a gene to be mutated respectively. 
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At testing, the rule are used as thus: 
 
 TCP: 192.168.1.30:1754     192.168.0.20:23 

      (test data network connection) 
 duration hours 0 minutes 0 seconds 23(connection 
 duration) 
 rule hours -1 minutes 0 seconds 23 (rule duration) 
 Src Rule IP 192.168.1.30 (source ip address for 
 rule) 
 Src Test IP 192.168.1.30 (source ip for net-
 connection) 
 Dst Rule IP 192.168.0.20 (destination IP for rule) 
 Dst Test IP 192.168.0.20 (destination IP for 
 connection) 
 Src Rule Port -1 (source port number for rule) 
 Src Test Port 1754 (source port for net-connection) 
 Dst Rule Port 23 (destination port number for rule) 
 Dst Test Port 23 (destination port for net-
 connection) 
 An Intrusion Is Detected <<<                                                                                    

8. SUMMARY AND CONCLUSION 

 The study implements a GA, Ruled-based IDS used 
to generate a set of classification rules from network audit 
data with 7-network features when encoding such rules. A 
simple, efficient and flexible fitness function (support-
confidence) was used to evaluate ggoodness of each rule 
(chromosome). Depending on the selection of fitness 
function weight values (w1 and w2), the generated rules can 
be used to either generally detect network intrusions or 
precisely classify the types of intrusions. 

 
 The training and testing data set as in used was the 

DARPA 1998 MIT Lincoln laboratory. It became the first 
standard corpora for evaluation, training and testing IDS. 
The system’s architecture was divided into to two namely 
training and testing the IDS via GA. The study implemented 
GAIDS using C (programming language) in Linux operating 
system platform. The choice of C was due to its interaction 
as a system programming language, simplicity and speed of 
code execution, which are all critical factors in IDS. An IDS 
goes through millions of network connection each day, and 
it is expected that it inspect each one of them in order to 
determine which is an intrusion and which is not, hence the 
need for speed. 

 
 The implemented system was able to detect 

intrusion during testing phase – proving the capability of GA 
to generate rules via a training data. However, some 
limitations of the method are also observed. First, the 
generated rules were biased to the training data set. This was 
resolved by carefully selecting either the number of 
generations during training so as not to overtrain or the 
number of top best-fit rules so as not to overfit at intrusion 
detection phase. Secondly, the support-confidence 
framework may be simple to implement and provide 

improved accuracy to final rules, it requires the whole 
training data to be loaded into memory before any 
computation. For large training datasets, it is neither 
efficient nor feasible. Thus, system requires enough cache 
memory to hold the data. 

9. RECOMMENDATIONS 

The following recommendations were made: 
 
 For the DARPA dataset, attack planning and 

verification were performed by hand due to parameter 
selection. These tasks proved to be very time intensive 
and hindered the timely completion of the evaluation. In 
the future, this process should be automated. All that 
should be required of the human operator is to supply a 
database of attacks and their variants. Once this 
database has been collected, an automated system 
should be able to plan out a schedule. Another approach 
to dataset building might be combining knowledge from 
different security sensors into a standard rule base is 
another promising area in this work.  

 As a future work, other learning algorithms suitable for 
optimization can be implemented in a bid to achieve a 
secured environment for distributed computing. As 
there will always be the need to share resources, the 
issue of intrusion is unavoidable and as such the 
security of such systems becomes an important issue. 
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APPENDIX A 

 
Table A1: shows the DARPA Dataset used for Training 

 

S/No Duration 
(h:m:s) Protocol Source 

Port 
Dest 
Port Source IP Dest IP Attack Type 

1 0:01:26 telnet 1754 23 192.168.1.30 192.168.0.20 - 
2 0:00:14 ftp 1755 21 192.168.1.30 192.168.0.20 - 
3 0:01:00 telnet 1769 23 192.168.1.30 192.168.0.20 - 
4 0:00:03 finger 1772 79 192.168.1.30 192.168.0.20 - 
5 0:00:03 smtp 1778 25 192.168.1.30 192.168.0.20 - 
6 0:00:03 smtp 1783 25 192.168.1.30 192.168.0.20 - 
7 0:01:11 telnet 43496 23 192.168.0.40 192.168.0.20 - 
8 0:00:19 ftp 43497 21 192.168.0.40 192.168.0.20 - 
9 0:00:12 ftp 1787 21 192.168.1.30 192.168.0.20 - 

10 0:01:40 telnet 43501 23 192.168.0.40 192.168.0.20 - 
11 0:00:12 ftp 43511 21 192.168.0.40 192.168.0.20 - 
12 0:00:18 rlogin 1023 513 192.168.0.40 192.168.0.20 - 
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13 0:00:01 finger 1811 79 192.168.1.30 192.168.0.20 - 
14 0:00:01 finger 1820 79 192.168.1.30 192.168.0.20 - 
15 0:00:03 smtp 43517 25 192.168.0.40 192.168.0.20 - 
16 0:00:03 smtp 43518 25 192.168.0.40 192.168.0.20 - 
17 0:00:01 smtp 1826 25 192.168.1.30 192.168.0.20 - 
18 0:00:03 smtp 1832 25 192.168.1.30 192.168.0.20 - 
19 0:00:02 finger 1834 79 192.168.1.30 192.168.0.20 - 
20 0:00:01 finger 1841 79 192.168.1.30 192.168.0.20 - 
21 0:00:04 finger 1847 79 192.168.1.30 192.168.0.20 - 
22 0:00:18 ftp 1850 21 192.168.1.30 192.168.0.20 - 
23 0:00:01 finger 1855 79 192.168.1.30 192.168.0.20 - 
24 0:00:22 telnet 1867 23 192.168.1.30 192.168.0.20 guess 
25 0:00:03 smtp 43533 25 192.168.0.40 192.168.0.20 - 
26 0:00:44 telnet 1876 23 192.168.1.30 192.168.0.20 - 
27 0:00:00 smtp 43538 25 192.168.0.40 192.168.0.20 - 
28 0:00:23 telnet 1884 23 192.168.1.30 192.168.0.20 guess 
29 0:00:01 smtp 43541 25 192.168.0.40 192.168.0.20 - 
30 0:01:40 telnet 1890 23 192.168.1.30 192.168.0.20 - 
31 0:00:11 ftp 1892 21 192.168.1.30 192.168.0.20 - 
32 0:00:00 smtp 1900 25 192.168.1.30 192.168.0.20 - 
33 0:00:02 rsh 1023 1021 192.168.1.30 192.168.0.20 rcp 
34 0:00:23 telnet 1906 23 192.168.1.30 192.168.0.20 guess 
36 0:00:14 rlogin 1022 513 192.168.1.30 192.168.0.20 rlogin 
36 0:00:02 rsh 1022 1021 192.168.1.30 192.168.0.20 rsh 
37 0:00:15 ftp 43549 21 192.168.0.40 192.168.0.20 - 
38 0:00:40 telnet 1914 23 192.168.1.30 192.168.0.20 guess 
39 0:01:24 telnet 43560 23 192.168.0.40 192.168.0.20 - 
40 0:00:13 ftp 43566 21 192.168.0.40 192.168.0.20 - 
41 0:00:12 ftp 1932 21 192.168.1.30 192.168.0.20 - 
42 0:00:02 finger 1933 79 192.168.1.30 192.168.0.20 - 
43 0:00:02 finger 1939 79 192.168.1.30 192.168.0.20 - 
44 0:00:01 finger 1946 79 192.168.1.30 192.168.0.20 - 
45 0:00:20 ftp 43573 21 192.168.0.40 192.168.0.20 - 
46 0:00:48 telnet 1959 23 192.168.1.30 192.168.0.20 - 
47 0:00:53 telnet 1967 23 192.168.1.30 192.168.0.20 - 
48 0:00:01 smtp 1976 25 192.168.1.30 192.168.0.20 - 
49 0:00:11 ftp 43582 21 192.168.0.40 192.168.0.20 - 
50 0:00:53 telnet 43587 23 192.168.0.40 192.168.0.20 - 
51 0:00:36 telnet 1978 23 192.168.1.30 192.168.0.20 - 
52 0:00:11 ftp 1984 21 192.168.1.30 192.168.0.20 - 
53 0:00:57 telnet 43598 23 192.168.0.40 192.168.0.20 - 
54 0:00:42 telnet 2016 23 192.168.1.30 192.168.0.20 - 
55 0:00:34 telnet 43603 23 192.168.0.40 192.168.0.20 - 
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56 0:00:05 telnet 2020 23 192.168.1.30 192.168.0.20 port-scan 
57 0:00:04 ftp 2022 21 192.168.1.30 192.168.0.20 port-scan 
58 0:00:03 finger 2023 79 192.168.1.30 192.168.0.20 port-scan 
59 0:00:04 rsh 2030 1021 192.168.1.30 192.168.0.20 port-scan 
60 0:00:04 rlogin 2031 513 192.168.1.30 192.168.0.20 port-scan 
61 0:00:05 exec 2032 512 192.168.1.30 192.168.0.20 port-scan 
62 0:00:37 telnet 1042 23 192.168.1.30 192.168.0.20 - 
63 0:00:01 smtp 1048 25 192.168.1.30 192.168.0.20 - 
64 0:00:01 finger 1050 79 192.168.1.30 192.168.0.20 - 

 
 

Table A2: DARPA Dataset for Testing 
 

S/No Source IP Source Port Dest IP Dest Port Protocol Duration 
1. 192.168.1.30 1754 192.168.0.20 23 ftp 0hour, 0min, 12secs 
2. 192.168.0.20 20 192.168.1.30 1767 ftp 0hour, 0min, 2secs 
3. 192.168.1.30 1767 192.168.0.20 20 ftp-data 0hour, 0min, 2secs 
4. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 0min, 23secs 
5. 192.168.0.40 43494 192.168.1.30 25 smtp 0hour, 0min, 5secs 
6. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 12secs 
7. 192.168.0.20 20 192.168.1.30 1767 ftp-data 0hour,  0min,  2secs 
8. 192.168.1.30 1767 192.168.0.20 20 ftp-data 0hour, 0min, 2secs 
9. 192.168.0.40 43494 192.168.1.30 25 smtp 0hour, 0min, 5secs 

10. 192.168.1.30 1762 192.168.0.20 20 ftp-data 0hour, 0min, 5secs 
11. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 10secs 
12. 192.168.1.30 1884 192.168.0.20 23 telnet 0hour,  0min, 5secs 
13. 192.168.0.40 43493 192.168.1.30 25 smtp 0hour, 0min, 8secs 
14. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 11secs 
15. 192.168.1.30 1762 192.168.0.20 20 ftp-data 0hour, 0min, 5secs 
16. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 10secs 
17. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 2secs 
18. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 18secs 
19. 192.168.0.20 20 192.168.1.30 1762 ftp-data 0hour, 0min, 13secs 
20. 192.168.1.30 1769 192.168.0.20 23 telnet 0hour, 0min, 7secs 
21. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 17secs 
22. 192.168.1.30 1768 192.168.0.20 20 ftp-data 0hour, 0min, 6secs 
23. 192.168.1.30 1770 192.168.0.20 20 ftp-data 0hour, 0min, 5secs 
24. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 12secs 
25. 192.168.1.30 1893 192.168.0.20 20 ftp-data 0hour, 0min, 23secs 
26. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 6secs 
27. 192.168.1.30 1900 192.168.0.20 25 smtp 0hour, 0min, 11secs 
28. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 2secs 
29. 192.168.1.30 1892 192.168.0.20 21 ftp 0hour, 0min, 27secs 
30. 192.168.0.40 43546 192.168.1.30 21 ftp 0hour, 0min, 8secs 
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31. 192.168.1.30 21 192.168.0.40 43546 ftp 0hour, 0min, 8secs 
32. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 0secs 
33. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 3secs 
34. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 1min, 4secs 
35. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 5secs 
36. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 1secs 
37. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 1min, 6secs 
38. 192.168.1.30 1884 192.168.0.20 23 telnet 0hour, 0min, 43secs 
39. 192.168.0.20 20 192.168.1.30 1893 ftp-data 0hour, 0min, 25secs 
40. 192.168.1.30 1892 192.168.0.20 21 ftp 0hour, 0min, 30secs 
41. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 34secs 
42. 192.168.0.20 20 192.168.1.30 1895 ftp-data 0hour, 0min, 20secs 
43. 192.168.1.30 21 192.168.0.40 43555 ftp 0hour, 0min, 18secs 
44. 192.168.1.30 1022 192.168.0.20 514 rsh 0hour, 0min, 7secs 
45. 192.168.1.30 1908 192.168.0.40 80 http 0hour, 0min, 2secs 
46. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 7secs 
47. 192.168.0.40 43550 192.168.1.30 20 ftp-data 0hour, 0min, 23secs 
48. 192.168.1.30 1867 192.168.0.20 23 telnet 0hour, 0min, 23secs 
49. 192.168.0.40 43555 192.168.1.30 21 ftp 0hour, 0min, 18secs 
50. 192.168.1.30 20 192.168.0.40 43548 ftp-data 0hour, 0min, 26secs 
51. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 8secs 
52. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs 
53. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs 
54. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 3secs 
55. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs 
56. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 25secs 
57. 192.168.0.20 1022 192.168.1.30 1021 rcp 0hour, 0min, 5secs 
58. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 0min, 5secs 
59. 192.168.1.30 21 192.168.0.40 43546 ftp 0hour, 0min, 31secs 
60. 192.168.1.30 20 192.168.0.40 43563 ftp-data 0hour, 0min, 9secs 
61. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs 
62. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs 
63. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 5secs 
64. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs 
65. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs 
66. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs 
67. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 18secs 
68. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs 
69. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 25secs 
70. 192.168.0.20 1022 192.168.1.30 1021 rcp 0hour, 0min, 5secs 
71. 192.168.0.40 43546 192.168.1.30 21 ftp 0hour, 0min, 31secs 
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Table A3: Result of Rules and Attack names implemented in Linux 
 

 
 
 

 
.  

 
   

S/no Duration 
(h,m,s) Protocol Source 

Port 
Dest 
Port Source IP Dest IP Attack Fitness 

1 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063 
2 -1,0,23 -1 -1 -1 192.168.1.30 192.-1.0.20 guess 0.8063 
3 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063 
4 0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 port-scan 0.8063 
5 -1,0,23 telnet -1 23 192.-1.1.30 192.168.0.20 guess 0.8063 
6 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063 
7 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063 
8 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063 
9 0,0,23 telnet -1 -1 192.168.1.30 192.168.0.20 guess 0.8063 

10 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063 
11 0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 port-scan 0.8063 
12 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063 
13 0,0,-1 -1 1023 1021 192.-1.1.30 -1.168.0.20 rcp 0.8031 
14 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 rcp 0.8031 
15 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031 
16 0,0,14 -1 -1 513 192.168.1.30 192.168.0.20 rsh 0.8031 
17 0,0,14 -1 -1 513 -1.168.1.30 192.168.0.20 rsh 0.8031 
18 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031 
19 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 rcp 0.8031 
20 0,0,5 -1 -1 23 192.168.1.30 192.168.0.20 port-scan 0.8031 
21 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.-1.20 rcp 0.8031 
22 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031 
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