
VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1182

Genetic Algorithm Rule-Based Intrusion Detection System (GAIDS)
1 A.A. Ojugo, 2 A.O. Eboka, 3 O.E. Okonta, 4 R.E Yoro (Mrs), 5 F.O. Aghware

1Department of Mathematics /Computer Sci., Federal University of Petroleum Resources Effurun, Delta State
2,3 Department of Computer Science Education, Federal College of Education (Technical) Asaba, Delta State

4 Department of Computer Science, Delta State Polytechnic Ogwashi-Uku, Delta State
5 Department of Computer Science Educations, College of Education, Agbor, Delta State
1 ojugo_arnold@yahoo.com, 1 arnoldojugo@yahoo.com, 1 maryarnoldojugo@gmail.com

2 an_drey2k@yahoo.com, 3 okeyokonta@yahoo.com
4 rumerisky@yahoo.com, 5 aghwarefo@yahoo.com

ABSTRACT

This study examines the detection of attacks or network intrusion by users referred to as hackers (whose aim is to gain illegal
entry as well as access to a network system and resources. Network and data security has become a pertinent issue with the
advent of the Internet; though the Internet comes with a lot of merits on its own. Traditional used methods for data security
includes the use of passwords, cryptography to mention few. The approach considered here is Intrusion Detection System,
which is a software, driver or device used to prevent an unauthorized or illegal access to data in a networked system. Most of
the existing IDS are implemented via rule-based systems where new attacks are not detectable. This study thus, presents a
genetic algorithm based approach (with its driver implementation), which employs a set of classification rule derived from
network audit data and the support-confidence framework, utilized as fitness function to judge the quality of each rule. The
software implementation is aimed at improving system security in networked settings allowing for confidentiality, integrity and
availability of system resources.

Keywords: Soft computing, intrusion detection systems, network, security, genetic algorithm, attacks.

1. INTRODUCTION

 Our society’s dependence on digitally transmitted
data is ever-growing with an growing need to desuade
intruders – leading to advances in cryptography and data
security methods such as firewalls, application gateways etc.
Despite these, to ensure data integrity is still a herculean
task. Thus, attention drifts to intrusion detection system
(IDS), which monitors network traffic so as to identify
resources misuse, unauthorized use as well as its abuse.

 Artificial Intelligence aims to create intelligent

system capable of human reasoning; while Soft Computing
aims to merge AI with other fields, creating a synergy that
solve tasks by exploiting numeric data and human
knowledge via mathematical models and reasoning – to
yield a method tolerant to partial truth, imprecision and
noise in data via optimization process that assures users of a
solution guaranteed of high quality even with noise at its
data input. Pushing further the bounds of SC has led to
development of Evolutionary Programming Algorithms that
aims at quantitative (numeric) data processing so as to
ensure qualitative knowledge/experience in form of natural
languages – spanning across several branches inspired by
evolution and behavioural patterns in biological populations.
Example of SC and EPA includes Genetic Algorithm,
Neural Network etc. They simply mimics natural population
seeking food and space (Shi, 2004; Abarghouei, Ghanizadeh
and Shamsuddin, 2009), which have proven efficient in
complex, constraint satisfaction problems (Hu, Eberhart and
Kennedy, 2007; Sedighizadeh and Masehian, 2009). In its

attempt to explore dynamic processes, optimization has three
feats namely:

a. Robustness helps to estimate system’s

effectiveness even with noise implementation.
b. Continuous adaptation (yields a result void of

local minima with random immigrants of high
diversity to slow convergence in the space and
balances data exploitation and exploration, so that
in learning the feats of change, its solution is biased
accordingly).

c. Flexibility – decisions made based on uncertainty
has its impacts in a system’s state. Optimization
aims to predicts a system’s future with an algorithm
that focuses on both its objective function (to make
the system flexible) and facilitate adaptation (if
necessary, with the ease of system’s blackbox
integration).

 Genetic Algorithm (GA) is a search algorithm that
mimics the evolution process in solving various tasks. They
are considered an effective heuristic search technique
inspired by concepts of biology via evolutionary
computations (Vollmer, Alves-Foss and Manic, 2011). They
are based on the principles of natural selection and genetics.

 The study aims to generate signatures for a rule-

based IDS via GA that will hopefully, create better rules.

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1183

2. IDS AND SOFT-COMPUTING METHODS

 Intrusion is the set of actions that attempts to
compromise integrity, confidentiality or availability of
network resources; while an intruder is any user or group of
users who initiates such intrusive action (Olusegun,
Oluwatobi and Adewale, 2010). An IDS is engineered to
generate an alert when it observes potentially malicious
traffic (Kurose and Ross, 2010). It monitors packets from
network connections and determines if it is an intrusive
activity or not. Once an intrusion is detected, the IDS simply
performs one of the following actions: (a) Logs in a message
into system audit file to be later analyzed by network
security experts, (b) Send email alert to a network
administrators, and (c) Stops such connection to end an
intruder's attack (as placed under Intrusion Prevention
System) amongst many other functions.

 Security threats are initiated externally or

internally (Gong, Zulkernine, and Abolmaesumi, 2005;
Kandeeban and Rajesh, 2007) to result in two types of
intruders namely: (a) External Intruders with no authorized
access to network resources. Thus, they attack via various
penetration means, and (b) Internal Intruders who have
authorized access to network resources.

IDS can be classified into four namely:

i. Rule-Based/Signature-based IDS – maintains an

extensive database of attack signatures. A signature
or rule may be a list of characteristics about a single
packet (e.g. source/destination port numbers,
protocol type, specific string bits in a packet
payload, or series of packets) – normally created by
a network security experts. This IDS sniffs each
packet passing through, compares them against its
signature database – so that if a packet(s) match, it
generates an alert; otherwise, it proceeds (Kurose
et.al, 2010). As the most widely used IDS – its
demerits are: (a) it requires previous knowledge of
the attack to generate an accurate signature and
thus, is completely oblivious/blind to new attacks
yet to be recorded by it, (b) if signatures match, it
may be false alarm from a number of other feats
and not a result of an attack, and (c) each packet
must be compared against an extensive signature
set – that may overwhelm the IDS with processing
so that it fails to actually detect many malicious
packets (consider a network where gigabits of
packet flow in per seconds, the rule-based IDS may
find it difficult to compare all packets against its
gigantic database).

ii. Anomaly-IDS creates traffic profile via aiming for

statistically unusual, packet streams like inordinate
percentage of Internet Control Message Protocol
(ICMP), ping sweeps and/or the port scan’s sudden

exponential growth. It does not rely on previous
knowledge about existing attacks and can
potentially detect new, undocumented attacks.
Also, it is very challenging to distinguish between
normal traffic and statistically unusual traffic
(Kurose et.al, 2010).

iii. Host-IDS monitors file and process activities

related to a software environment associated with a
specific host and listens to network traffic to
identify attacks to host – as data from a host is used
to detect signs of intrusion as packets enters/exits a
host (Li, 2004).

iv. Network-IDS identifies intrusive acts via
monitoring traffic through network devices.

 Diaz-Gomez and Hougen (2005) notes that IDS has
three main components namely:

• Sensors/Network Probe tracks network traffic,
system behavior and log files. It then translates raw
data into events usable by an IDS monitors and taps
in to access all the network connections.

• Analysis Console takes sensor output (network
connections) as input, analyze them looking for
signs of intrusion. It is the most critical component
as it decides whether or not, a connection is an
intrusion.

• Policy Control/Response generates reactions
based on analysis engine’s outcome. If the Analysis
Console flags a network connection as an intrusion,
this control performs several actions depending on
the set policy by the network administrator.
Examples includes actions as simple as Logging a
particular network connection, or sending alert to
administrator's e-mail etc. It also handles what
action(s) to be taken when an intrusion is detected.

2.1 GENERTIC ALGORITHM

 GA is a search method that finds an approximate
solution to an optimization task – inspired from biological,
evolution process and natural genetics and proposed by

SENSOR

ANALYSIS
CONSOLE

POLICY
CONTROL

IDS

Fig 1: A Generalized Framework
f IDS

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1184

Holland (1975). GA uses hill climbing method from an
arbitrary selected number of genes. GA has four operators:
initialization, selection, crossover and mutation.

 The system starts with randomly-initialized

population that evolves, where each chromosome represents
a solution in the space. Each chromosome has a number of
genes, whose quality is a measured of its fitness function and
the quantitative representation of each rule’s adaptation
(Kandeeban et.al, 2010). These three (seelction, crossover
and mutation) operators are applied to the pool to gradually
improve the quality of each chromosome. Competition for
food and space allows evolves the population, as stronger
genes dominate weaker ones – a desired improvement over
various iterations. Chromosomes with better fitness value
are more likely to reproduce offspring. Thus, only the fittest
genes survive and reproduce. Its reproductive process
creates diversity in the pool via evolution (combination of
two individual chromosomes) as new genes are created from
previous ones to generate a new pool. The exchange of
genetic material between two parent chromosomes results in
a crossover and creation of a better, fitter individual.
Repeated selection (survival of fittest) and crossover causes
continuous evolution of a generation that will better survive
in a competitive state. Mutation causes the genes’ sporadic
and random alteration as well as helps regenerate lost
genetic materials (Srinivas and Patnaik, 1994). If the newly
generated pool contains an output close enough to the
desired value, the solution is found; Else, the new pool goes
through the same process and continues until a solution is
reached, or until a certain number of generations have been
produced.

 GA’s strength resides in parallel transversing of a

system by proposing solutions whose initial population is
randomly generated and are continuously evaluated via a
fitness function (Diaz-Gomez and Hougen, 2005). GAs have
successfully been applied in areas like AI, Biology,
Engineering, Hydrology, to mention a few with variants
developed to suit the nature of the task at hand – to yield
new generation of strings via genetic operators (crossover
and mutation) with its cycle or iterations repeated until a
termination state is reached (Back, 1996). The algorithm is
thus:

Genetic Algorithm() { initialize population via randomness;

 evaluate randomness of population;
WHILE termination conditions not met do

select solutions for next population;
perform crossover and mutation;
evaluate population;

END while };

2.2 GA and IDS (GAIDS)

 Gong et al (2005) notes that GA has been applied to
IDS directly to derive classification rules or via SC methods

(GA used to select appropriate network connection features
or determine the optimal parameters of some functions for
the acquisition of rules).

 Early effort in using GAs for IDS dates back to

1995, as applied in multiple agent technology and Genetic
Programming (GP) to detect network anomalies. Each agent
monitors one network parameter of the audit data, and
Genetic Programming (GP) is used to find a set of agents
that collectively determine network behavior anomalies. Its
merit was in using many small autonomous agents, but, they
had communication defect and its training was time-
consuming, if agents were not appropriately initialized. The
method is obsolete and unapplicable to current research
(Chittur, 2001; Crosbie and Spafford, 1995).

 Chittur (2001) in his rule-based IDS set the goal to

test if GA was feasible for model generation, designed to
replace/reinforce rule–based IDSs. He notes that network
connection and its related behaviour can be translated to
represent a rule – so that the set of rules are used to judge
whether or not, a real-time connection is intrusive. The rules
are modeled as chromosomes, so that the generated rule set
becomes knowledge to judge whether a network connection
is a potential intrusion. Fitness value is dependent on how
many connections are grouped as attacks and how many
attacks were correctly detected. The fitness value for each
chromosome is evaluated in a closed range of [- 1, 1], with -
1 as the poorest value and 1 is the ideal fitness. A threshold
value was established and any certainty value exceeding this
threshold value was classified as a malicious attack.

 GA was then tested using data from raw TCP dump

data from US Air Force DARPA dataset. It returned
impressive results with its best rule having fitness value
close to 1. The system presented about 97% of attacks
correctly detected and 0.69% of normal connections were
incorrectly classified as attacks. There was a correlation
between these two variables (higher correct attack detection
rate and a higher false positive rate) – so that as more attacks
were correctly detected, more normal connections were
incorrectly classified as attacks. Its optimal solution noted
386,703-of-396,743 attacks in its training data with 669-of-
97,276 normal connections that was falsely classified as
attacks. Also, GA successfully evolved an individual’s
model via randomized mutation so that the model generates
a new pool over a subset data not previously known
(retraining). Thus, GA ia able to generate a model with the
desired characteristics of low false positive and high correct
detection rates for an IDS. Its major bottleneck is difficulty
in establishing a threshold value that may lead to detect
novel or unknown attacks (Kandeeban et.al, 2010).

 Li (2004) focused only on using GA to generate

rules for the IDS knowledge-base – used to differentiate
normal connections from intrusive attacks with rules in the
form below. Condition is the matching of current network

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1185

connection to rules in the knowledge base, act refers to
actions defined by security policies within an organization
such as reporting alert to system administrator, stopping the
connection, logging a message into system audit files, or all
of the above.

If {condition} then {act}

For example, a rule can be defined as:
 if {the connection has following information:
 source IP address 124.12.5.18;
 destination IP address: 130.18.206.55;

 destination port number: 21;
 connection time: 10.1 seconds}
 then {stop the connection}

 Explained as thus: if there exists a network
connection request with source IP address 124.12.5.18,
destination IP address 130.18.206.55, destination port
number 21, and connection time 10.1 seconds, then stop the
connection establishment – since IP address 124.12.5.18 is
recognized by the IDS as a blacklisted IP address. Thus,
service request initiated from it, is rejected. The rules are
tested on historical connections and to filter new connections
to find suspicious network traffic. In its implementation, the
network traffic used for GA was pre-classified data set
(DARPA dataset 1999) that differentiates normal network
connections from intrusive ones. Chromosomes encoded for
the GA in Li's research was based on nine network
connection feats namely: (a) source IP, (b) destination IP, (c)
source port, (d) destination port, (e) state, (f) duration, (g)
protocol, (h) number of bytes sent by originator, and (i)
number of bytes sent by responder.

 Each attribute over a range is encoded into

chromosome with 57-genes via integer representation; while
IP addresses are encoded in HEX for simplicity. The
population of the chromosomes randomly-initialized for rule
selection, evolves via crossover and mutation operators. Its
fitness is a function of the weighted sum model, in which
weights were used to indicate the significance of each
network feature. Some network connection feat had more
weight than others, especially as it becomes a critical
factor, depended upon to detect an intrusion. For practical
implementation, additional methods like neural network,
used to accurately determine the weights of network
connections (Gong et. al, 2005).

 Gong et. al (2005) and Li (2004) had similarities

and also used the same dataset to train their algorithm –
though Gong clearly stated two (2) areas where the research
differs from Li's: (i) representation of rules and (ii)
definition of fitness function. Gong notes that in rule
representation, Li’s approach encodes only the “condition”
part of the rules so that the method is only suitable for
detecting network anomalies. However, Gong in their work
encoded both “condition” and “outcome” – giving their
work the precise benefit of detecting and classifying the

types of network intrusion as well as detect network
anomalies. Also, Li's work used nine network connection
feats to encode chromosomes; where Gong used six feats
from the same DARPA dataset, plus a classification of the
attack type (manually added), making a total of seven (7)
features. Network connection features encoded includes –
destination IP, source IP, destination Port, source Port,
duration, protocol, and finally attack type (manually added
by experts). In fitness function, Gong shuns the weighted
sum used by Li, but used the support – confidence
framework that allowed the GA designed to generate rules
used to detect anomalies or precisely classify various
network types of network intrusions. Other works includes
Kandeeban et.al, 2007; Al-Anni et al, 2009; Olusegun et.al,
2010; Lavender, 2010 etc., These made slight variations to
the studies of Li or Gong.

 Vollmer et al (2011) presents a combined approach

that uses GA and anomaly-based IDS to create rules for a
signature-based IDS. The study retrieved network packets as
training data for GA as with previous studies. Its main
difference is rather than using network audit data logs,
network packets originate from network traffic identified by
anomaly based IDS as being anomalous. The study produced
set of optimal rules (rule-based) for a specific, anomalous-
instance previously detected by an anomaly IDS. Thus,
bridging rule and anomaly IDS. Its fitness function was
defined for the study is the three part fitness function. The
algorithm was demonstrated on anomalous ICMP network
packets (input) and Snort rules (output of the algorithm).
Output rules were sorted according to a fitness value and any
duplicates were removed. The experimental results on ten
test cases demonstrated a 100 percent rule alert rate. Out of
33,804 test packets 3 produced false positives.

3. STATEMENT OF THE PROBLEM

 To ensure data integrity and privacy – security
methods need be considered. The firewall’s demerit is in its
faulty packet filtering methodology. Application gateway’s
demerit is its cost and bottleneck caused as it slows down
the network. Thus, IDS aims to provides a solution that tries
to bridge existing network security technologies.

4. PURPOSE/OBJECTIVES OF STUDY

 The paper’s objective is to: (a) deploy a GA, Rule-
Based IDS that creates rule for IDS, and (b) testing
generated signatures with exsiting IDS benchmarks. The
purpose is to employ GA to speed up rule generation,
counters new attacks, and proffer security via a rule-based
IDS. The study will also potentially reduce human effort of
rule generation for a rule-based IDS as identified by Vollmer
(2010). Its frees security experts from rule-creation, and
allows LAN administrators to generate customized rules for
the specific attacks they face at that level. Generating these

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1186

new rules will hopefully detect new forms of attacks to a
reasonable extent (its merits).

5. GAIDS FRAMEWORK

 To generate new rules, GA uses sample data to
train and test the newly created.

5.1 Training

 Involves the following steps and a greater subset of
the data is used evolve rules over a number of iterations as
network feats are properly selected.

Table 1: Chromosome Representation of a Rule

S/no Feat Name Format Number of
Genes

1 Duration H:M:S 3
2 Protocol Numeric 1
3 Source Port Numeric 1
4 Destination Port Numeric 1
5 Source IP a.b.c.d 4
6 Source IP a.b.c.d 4

7 Attack Name and
type String 1

 Training data contains analyzed logs of cconnection
such that it knows apriori, connections that are attacks. Feat
selection is a major task in designing the rule-based IDS
(Chou et al, 2008; Kayacık et al, 2005) as in table 1. Source
IP originatees an intrusion; while Destination IP is its target.
Destination port shows applications that the target system is
running (e.g. FTP service runs on port 21). Some IPs are
more probable targets for intrusions such as Military
Domain IPs (Li, 2004).

The training phase is further subdivided into these:

1. Encoding Scheme – Training phase uses a subset

of DARPA dataset, which contains all 7-feats so
that a connection considered intrusive, has an attack
name. The data analysis prior to its use notes that
normal connection in the training data contains no
attack name. Each chromosome is a rule within
which the 7-feats are encoded via fixed length
vector, and each feat encoded as one or more genes
of different types as in table 1. Each rule uses an if-
then clause with a “condition” and “outcome”

part. The first 6-feats are connected via logical
AND to form “condition” part; while attack name
is the “outcome” to show network record
classification (during training) or connection
(during intrusion detection) if a rule is matched.
Below, a rule classified as port scan attack:
IF (duration=“0:0:1” AND protocol=“telnet” AND
source port=8982 AND destination port=23 AND
source IP=“9.9.9.9” AND destination
IP=“172.16.12.50”) then (attack name=“port-
scan”). In the above example, given that the
numbers 1 and 2 represents protocol telnet and
attack port-scan as:
{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 012, 50,
1}

Wild-card are allowed and may be used to make the
rules more general. In case a wildcard is used, then
the corresponding gene is encoded as -1. Thus, our
previous example is a generalized rule applicable to
all packets originating from network 9.9.*.* as:
{0, 0, 1, 2, 18982, 79, 9, 9, -1, -1, 172, 16, 112, 50,
1}

2. Fitness Function – Chromosomes are evaluated at

training to determine its goodness (attacks
detected). If the chromosome correctly classifies an
attack, it is considered good; else, it is bad and not
be selected for crossover to produce offspring.
Thus, the more attacks a chromosome detects, the
higher its fitness value. The fitness models adopted
is: support and confidence model. If we have the
rule:

 If A then B,
 support = |A and B| / N
 confidence = |A and B| / |A|
 fitness = w1 * support + w2 * confidence
 N = Number of connections in training data
 |A| = Number of connections matching condition A.
 |A and B| = Connections matching rule if A and B
 w1, w2 = Weights to balance/control the two terms.

 A merit of using fitness function is that, by
changing the weights w1 and w2, the approach is simply
used for either identifying network intrusions or precisely
classifying types of intrusions. In the latter, w1 is set to 0
and w2 set to 1; while in the former, w1 is set to 1 and w2 is
set to 0. Unlike other fitness functions, the selection criteria
w1/w2 is not crucial factor to the performance of the
approach.

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1187

Table 2: Workings of the Fitness Value Framework

Duration Protocol S.Port D.Port S. IP D. IP Attk name
0.0.11 ftp 1892 21 192.168.1.30 192.168.1.20 -
0 .0 .0 smtp 1900 25 192.168.1.30 192.168.1.20 -
0.0.2 rsh 1023 1021 192.168.1.30 192.168.1.20 Rcp

0.0.23 telnet 1906 23 192.168.1.30 192.168.1.20 guess
0.0.14 rlogin 1022 513 192.168.1.30 192.168.1.20 rlogin
0.0.2 rsh 1022 1021 192.168.1.30 192.168.1.20 Rsh

0.0. 15 ftp 43549 21 192.168.1.40 192.168.1.20 -

 Table 2 is list of audit data with sample
chromosomes to represent matching rules that identifies
attack with each connection. Chromosomes match are seen
in lines 3 and 6, to match attack type, rsh, only on line 6.
Chromosome fitness is evaluated below if:

 w1 = 0.2, w2 = 0.8, N = 10, |A| = 2, |A and B| = 1.

Thus, Fitness = w1 * support + w2 * confidence

 Support = | A and B | / N = 1 / 10 = 0.1
 Confidence = |A and B | / A = 1 /2 = 0.5
 Fitness = (0.2 x 0.1) + (0.5 x 0.8) = 0.42

3. Selection – The study adopts tournament
selection in which, chromosomes are randomly
chosen from current generation – so that with next
iteration, a lesser number is chosen. This continues
until one is chosen from the last two/three
chromosome, to be parents that creates the new
offspring. This scheme is selected based on its
reputation of maintaining population diversity and
we recall, the goal of this study is not to create a

best rule (global optimum), but to create bunch of
rules that are good enough to detect intrusion (local
optimums). Thus, population diversity needs to be
maintained. The algorithm is:

Algorithm: Tournament Selection {}

 Input: Population of chromosome
 Output: Selected Chromosome for crossover

a. Randomly select 3-chromosomes from pool
b. Pick best 2-chromosome based on fitness value
c. Return the selected two chromosomes
d. Apply Crossover | Select best chromosome to

be parent

4. Crossover – algorithm chooses two random cross
section points from the chromosome as in table 3,
and exchanges the midsection between the parents

as in lines 1 and 2, to form two new children seen
in lines 3 and 4. This is a two point crossover in
GA.

Table 3: 2 point Crossover in GA from parent to children

Duration Protocol S.Port D.Port S. IP D. IP Attk name
0.-1.-1 rsh -1 1021 192.168.-1.-1 192.168.0.-1 Rsh

0.0.5 tel- net 2020 23 9.9.9.9 172.16.112.5
0 Port scan

0.-1.-1 rsh -1 1021 192.9.9.9 172.16.112.-
1 Rsh

0.0.5 telnet 2020 23 9.168.-1.-1 192.168.0.50 Port scan

Crossover
Points

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1188

5. Mutation: Each gene in a chromosome may or
may not change depending on the probability of
mutation rate. Mutation improves population
diversity needed in this work, and its algorithm is
as thus:

Algorithm: Mutation of rules (chromosome)
 Input: A chromosome rule
 Output: Same or Mutated chrom,., a fns of
 mutation rate

1. Set mutation threshold (between 0 and 1)
2. For each network attribute in chromosome
3. Generate a random number between 0 and 1
4. If random number > mutation threshold then
5. Generate random value w.r.t data properties
6. Set chromosome attribute value with
 generated attribute value
7. End if
8. End For Each

 Thus, the complete training phase algorithm is as
thus:

Algorithm Rule set Generation via GA-Training
 Input: Audit data, generations and population size.
 Output: A set of classification rules.

1. Randomly Initial they created chromosome
population.

2. Set w1 = 0.2, w2 = 0.8, Max Generations =
400 (epoch)

3. Set N = total number of record in training set
4. Set generation Counter = 0
5. For each chromosome in population
6. Set A = 0, AB = 0
7. For Each record in training set
8. If record matches chromosome
9. AB = AB + 1 //AB++
10. End If
11. If record matches only condition part
12. A = A+1 //A++
13. End if
14. End For Each record
15. End For Each Chromosome
16. Select 30-best fitted chromosome into new

pool
17. For each chromosome in new pool/population
18. Select chromosome for breeding
19. Apply crossover and mutation to new

offspring
20. Place newly created chromosome into

population
21. End For each
22. Kill old pool, new pool now current pool
23. Increment generation Counter by 1
24. If generation Counter < Max Generation then
25. Goto line 5

26. Else goto line 27
27. End

5.2 Testing Phase

 The generated rules are used to evaluate the
remaining dataset, and the aim of testing is to gather
information of how well the rules created, can detect attacks.
Two methods are used for testing namely: (a) use existing
rules in the rule-based IDS, and/or (b) build tailored rule-
based IDS. The proposed design requires tailored rules in
that rules created from here are fed back into the IDS for
detection purpose as the remaining part of the DARPA
dataset are used as incoming connection to see if generated
rules can distinguish between normal and intrusive
connections. If they can, it means the GA, ruled based IDS
can detect possibly new intrusions using previous knowledge
of existing ones. Its algorithm is thus:

Algorithm: Intrusion Detection

 Input: Inflowing network connection
 Output: Decision if connection is intrusive or not

1. Loop Forever {fetch incoming packet
(network probe)}

2. For each rule in base
3. Match rule to network connection (analysis

console)
4. If rules match then
5. Mark connection as intrusion (policy control)
6. End if
7. End For Each
8. End Loop Forever

6. METHODS AND MATERIALS

 The training and testing data-set used for the study
is the DARPA (Defense Advanced Research Project
Agency) dataset as in Appendix A1 and A2.

7. FINDINGS AND DISCUSSION

 From Appendix A3, the top rules havee almost
same fitness range [0.8, 0.8065]. Thus, the rules are
estimated 80% good to be used in detection. This result also
shows that the achievement of generating a bunch of good
rules, rather than a single optimum rule – is better in
intrusion detection. 10-out-of-22 rules have destination port
as -1, so that the rules looks out for cconnections from any
destination port. This increasees the chances of detecting
intrusion on any port in the network and improves the
generality of rules. The rule generator used a population of
400, w1 = 0.2, w2 = 0.8, 5000 (epochs) evolutions and 0.05
probability of a gene to be mutated respectively.

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1189

At testing, the rule are used as thus:

 TCP: 192.168.1.30:1754 192.168.0.20:23

 (test data network connection)
 duration hours 0 minutes 0 seconds 23(connection
 duration)
 rule hours -1 minutes 0 seconds 23 (rule duration)
 Src Rule IP 192.168.1.30 (source ip address for
 rule)
 Src Test IP 192.168.1.30 (source ip for net-
 connection)
 Dst Rule IP 192.168.0.20 (destination IP for rule)
 Dst Test IP 192.168.0.20 (destination IP for
 connection)
 Src Rule Port -1 (source port number for rule)
 Src Test Port 1754 (source port for net-connection)
 Dst Rule Port 23 (destination port number for rule)
 Dst Test Port 23 (destination port for net-
 connection)
 An Intrusion Is Detected <<<

8. SUMMARY AND CONCLUSION

 The study implements a GA, Ruled-based IDS used
to generate a set of classification rules from network audit
data with 7-network features when encoding such rules. A
simple, efficient and flexible fitness function (support-
confidence) was used to evaluate ggoodness of each rule
(chromosome). Depending on the selection of fitness
function weight values (w1 and w2), the generated rules can
be used to either generally detect network intrusions or
precisely classify the types of intrusions.

 The training and testing data set as in used was the

DARPA 1998 MIT Lincoln laboratory. It became the first
standard corpora for evaluation, training and testing IDS.
The system’s architecture was divided into to two namely
training and testing the IDS via GA. The study implemented
GAIDS using C (programming language) in Linux operating
system platform. The choice of C was due to its interaction
as a system programming language, simplicity and speed of
code execution, which are all critical factors in IDS. An IDS
goes through millions of network connection each day, and
it is expected that it inspect each one of them in order to
determine which is an intrusion and which is not, hence the
need for speed.

 The implemented system was able to detect

intrusion during testing phase – proving the capability of GA
to generate rules via a training data. However, some
limitations of the method are also observed. First, the
generated rules were biased to the training data set. This was
resolved by carefully selecting either the number of
generations during training so as not to overtrain or the
number of top best-fit rules so as not to overfit at intrusion
detection phase. Secondly, the support-confidence
framework may be simple to implement and provide

improved accuracy to final rules, it requires the whole
training data to be loaded into memory before any
computation. For large training datasets, it is neither
efficient nor feasible. Thus, system requires enough cache
memory to hold the data.

9. RECOMMENDATIONS

The following recommendations were made:

 For the DARPA dataset, attack planning and

verification were performed by hand due to parameter
selection. These tasks proved to be very time intensive
and hindered the timely completion of the evaluation. In
the future, this process should be automated. All that
should be required of the human operator is to supply a
database of attacks and their variants. Once this
database has been collected, an automated system
should be able to plan out a schedule. Another approach
to dataset building might be combining knowledge from
different security sensors into a standard rule base is
another promising area in this work.

 As a future work, other learning algorithms suitable for
optimization can be implemented in a bid to achieve a
secured environment for distributed computing. As
there will always be the need to share resources, the
issue of intrusion is unavoidable and as such the
security of such systems becomes an important issue.

REFERENCES

[1] Abarghouei, A., Ghanizadeh, A and Shamsuddin, S.,
(2009): Soft computing methods in edge detection, J
Soft Comp., 1(2), ISSN:2074-8523, PP.163-203.

[2] Al-Anni, M. K. and Sundararajan, V., (2009): Detecting
a denial of service via AI tools and GSA, Indian J. Sci.,
2(2), ISSN: 0974-6846, PP.16-21.

[3] Crosbie, M., and Spafford, G., (1995): Applying genetic
programming to intrusion detection,
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-
01/FS95-01-001.pdf.

[4] Chittur, A., (2001): Model generation for an intrusion
detection system via genetic algorithms,
http://www.hacktory.cs.columbia.edu/sites/default/files/
gaids-thesis01.pdf.

[5] Chou, T. S., Yen K. K. and Lou, J., (2008): Network
intrusion detection design using feature selection of soft
computing paradigms, World Academy of Science,
Engineering and Technology 47.

[6] Diaz-Gomez, P. and Hougen, D., (2005): Improved off-
line intrusion detection using a genetic algorithm,

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1190

http://cameron.edu/~pdiaz-go/Art_ICEIS.pdf.

[7] Fausett, L., (1994): Fundamentals of Neural Networks,
NJ: Prentice Hall, USA, 1st edition, ISBN-10:
0133341860.

[8] Gong, R. H., Zulkernine, M. and Abolmaesumi, P.,
(2005): A software implementation of GA based
approach to network intrusion detection,
http://www.cse.msu.edu/~cse848/2011/Student_papers/
Tavon_Pourboghrat.pdf.

[9] Kandeeban, S. S. and Rajesh, R. S., (2007): GA for
framing rules for intrusion detection, J. Comp. Sci and
Security., 7(11), ISSN:1738-7906, PP.285-290.

[10] Kandeeban, S. S. and Rajesh, R. S., (2010): Integrated
intrusion detection system using soft computing, J.
Network Security, 10(2), ISSN:1816-353X, PP.87–92.

[11] Kayacik, H. G., Zincir-Heywood, A. N. and Heywood
M. I., (2005): Selecting features for IDS: a feature
relevance analysis on KDD 99 IDS dataset,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.66.7574&rep=rep1&type=pdf.

[12] Kurose, J. F. and Ross, K. N., (2010): Computer
network a top down approach, Pearson publisher, ISBN-
10: 0-13-136548-7.

[13] Lavender, B. E., (2010): Implementation of GA into
IDS and integration into nprobe,
http://brie.com/brian/netga/Lavender_Report.pdf.

[14] Li, W., (2004): A GA approach to network IDS,

http://www.security.cse.msstate.edu/docs/Publications/
wli/DOECSG2004.pdf.

[15] Olusegun, F., Oluwatobi, O. A. and Adewale O. O.,
(2010): ID-SOMGA: A self organizing migrating
genetic algorithm-based solution for Intrusion
Detection, Computer and information science, (3)(4),
ISSN: 1913-8989, PP 80-92.

[16] Openshaw, W. R., (2003): Rainfall runoff processes: A
workbook to accompany online module,
http://www.engineering.usu.edu/dtarb/rrp.html.

[17] Schafer, J. D., (1985): Multiple objective optimization
with vector evaluated genetic algorithms,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.122.5689&rep=rep1&type=pdf.

[18] Shanmugam, B. and Idris, N. B., (2011): Hybrid
intrusion detection systems (HIDS) using fuzzy logic,
http://www.intechopen.com/download/pdf/14361.

[19] Sreedharan, S., (2012): EE04 804(B) soft computing
ver. 1.2,
http://sudhinpk.files.wordpress.com/2012/03/class-1-on-
21st-22nd-of-feb.pdf.

[20] Vollmer, T., Alves-Foss, J. and Manic, M., (2011):
Autonomous rule creation for intrusion detection,
http://www.inl.gov/technicalpublications/Documents/50
25964.pdf.

APPENDIX A

Table A1: shows the DARPA Dataset used for Training

S/No Duration
(h:m:s) Protocol Source

Port
Dest
Port Source IP Dest IP Attack Type

1 0:01:26 telnet 1754 23 192.168.1.30 192.168.0.20 -
2 0:00:14 ftp 1755 21 192.168.1.30 192.168.0.20 -
3 0:01:00 telnet 1769 23 192.168.1.30 192.168.0.20 -
4 0:00:03 finger 1772 79 192.168.1.30 192.168.0.20 -
5 0:00:03 smtp 1778 25 192.168.1.30 192.168.0.20 -
6 0:00:03 smtp 1783 25 192.168.1.30 192.168.0.20 -
7 0:01:11 telnet 43496 23 192.168.0.40 192.168.0.20 -
8 0:00:19 ftp 43497 21 192.168.0.40 192.168.0.20 -
9 0:00:12 ftp 1787 21 192.168.1.30 192.168.0.20 -

10 0:01:40 telnet 43501 23 192.168.0.40 192.168.0.20 -
11 0:00:12 ftp 43511 21 192.168.0.40 192.168.0.20 -
12 0:00:18 rlogin 1023 513 192.168.0.40 192.168.0.20 -

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1191

13 0:00:01 finger 1811 79 192.168.1.30 192.168.0.20 -
14 0:00:01 finger 1820 79 192.168.1.30 192.168.0.20 -
15 0:00:03 smtp 43517 25 192.168.0.40 192.168.0.20 -
16 0:00:03 smtp 43518 25 192.168.0.40 192.168.0.20 -
17 0:00:01 smtp 1826 25 192.168.1.30 192.168.0.20 -
18 0:00:03 smtp 1832 25 192.168.1.30 192.168.0.20 -
19 0:00:02 finger 1834 79 192.168.1.30 192.168.0.20 -
20 0:00:01 finger 1841 79 192.168.1.30 192.168.0.20 -
21 0:00:04 finger 1847 79 192.168.1.30 192.168.0.20 -
22 0:00:18 ftp 1850 21 192.168.1.30 192.168.0.20 -
23 0:00:01 finger 1855 79 192.168.1.30 192.168.0.20 -
24 0:00:22 telnet 1867 23 192.168.1.30 192.168.0.20 guess
25 0:00:03 smtp 43533 25 192.168.0.40 192.168.0.20 -
26 0:00:44 telnet 1876 23 192.168.1.30 192.168.0.20 -
27 0:00:00 smtp 43538 25 192.168.0.40 192.168.0.20 -
28 0:00:23 telnet 1884 23 192.168.1.30 192.168.0.20 guess
29 0:00:01 smtp 43541 25 192.168.0.40 192.168.0.20 -
30 0:01:40 telnet 1890 23 192.168.1.30 192.168.0.20 -
31 0:00:11 ftp 1892 21 192.168.1.30 192.168.0.20 -
32 0:00:00 smtp 1900 25 192.168.1.30 192.168.0.20 -
33 0:00:02 rsh 1023 1021 192.168.1.30 192.168.0.20 rcp
34 0:00:23 telnet 1906 23 192.168.1.30 192.168.0.20 guess
36 0:00:14 rlogin 1022 513 192.168.1.30 192.168.0.20 rlogin
36 0:00:02 rsh 1022 1021 192.168.1.30 192.168.0.20 rsh
37 0:00:15 ftp 43549 21 192.168.0.40 192.168.0.20 -
38 0:00:40 telnet 1914 23 192.168.1.30 192.168.0.20 guess
39 0:01:24 telnet 43560 23 192.168.0.40 192.168.0.20 -
40 0:00:13 ftp 43566 21 192.168.0.40 192.168.0.20 -
41 0:00:12 ftp 1932 21 192.168.1.30 192.168.0.20 -
42 0:00:02 finger 1933 79 192.168.1.30 192.168.0.20 -
43 0:00:02 finger 1939 79 192.168.1.30 192.168.0.20 -
44 0:00:01 finger 1946 79 192.168.1.30 192.168.0.20 -
45 0:00:20 ftp 43573 21 192.168.0.40 192.168.0.20 -
46 0:00:48 telnet 1959 23 192.168.1.30 192.168.0.20 -
47 0:00:53 telnet 1967 23 192.168.1.30 192.168.0.20 -
48 0:00:01 smtp 1976 25 192.168.1.30 192.168.0.20 -
49 0:00:11 ftp 43582 21 192.168.0.40 192.168.0.20 -
50 0:00:53 telnet 43587 23 192.168.0.40 192.168.0.20 -
51 0:00:36 telnet 1978 23 192.168.1.30 192.168.0.20 -
52 0:00:11 ftp 1984 21 192.168.1.30 192.168.0.20 -
53 0:00:57 telnet 43598 23 192.168.0.40 192.168.0.20 -
54 0:00:42 telnet 2016 23 192.168.1.30 192.168.0.20 -
55 0:00:34 telnet 43603 23 192.168.0.40 192.168.0.20 -

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1192

56 0:00:05 telnet 2020 23 192.168.1.30 192.168.0.20 port-scan
57 0:00:04 ftp 2022 21 192.168.1.30 192.168.0.20 port-scan
58 0:00:03 finger 2023 79 192.168.1.30 192.168.0.20 port-scan
59 0:00:04 rsh 2030 1021 192.168.1.30 192.168.0.20 port-scan
60 0:00:04 rlogin 2031 513 192.168.1.30 192.168.0.20 port-scan
61 0:00:05 exec 2032 512 192.168.1.30 192.168.0.20 port-scan
62 0:00:37 telnet 1042 23 192.168.1.30 192.168.0.20 -
63 0:00:01 smtp 1048 25 192.168.1.30 192.168.0.20 -
64 0:00:01 finger 1050 79 192.168.1.30 192.168.0.20 -

Table A2: DARPA Dataset for Testing

S/No Source IP Source Port Dest IP Dest Port Protocol Duration
1. 192.168.1.30 1754 192.168.0.20 23 ftp 0hour, 0min, 12secs
2. 192.168.0.20 20 192.168.1.30 1767 ftp 0hour, 0min, 2secs
3. 192.168.1.30 1767 192.168.0.20 20 ftp-data 0hour, 0min, 2secs
4. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 0min, 23secs
5. 192.168.0.40 43494 192.168.1.30 25 smtp 0hour, 0min, 5secs
6. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 12secs
7. 192.168.0.20 20 192.168.1.30 1767 ftp-data 0hour, 0min, 2secs
8. 192.168.1.30 1767 192.168.0.20 20 ftp-data 0hour, 0min, 2secs
9. 192.168.0.40 43494 192.168.1.30 25 smtp 0hour, 0min, 5secs

10. 192.168.1.30 1762 192.168.0.20 20 ftp-data 0hour, 0min, 5secs
11. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 10secs
12. 192.168.1.30 1884 192.168.0.20 23 telnet 0hour, 0min, 5secs
13. 192.168.0.40 43493 192.168.1.30 25 smtp 0hour, 0min, 8secs
14. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 11secs
15. 192.168.1.30 1762 192.168.0.20 20 ftp-data 0hour, 0min, 5secs
16. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 10secs
17. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 2secs
18. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 18secs
19. 192.168.0.20 20 192.168.1.30 1762 ftp-data 0hour, 0min, 13secs
20. 192.168.1.30 1769 192.168.0.20 23 telnet 0hour, 0min, 7secs
21. 192.168.1.30 1755 192.168.0.20 21 ftp 0hour, 0min, 17secs
22. 192.168.1.30 1768 192.168.0.20 20 ftp-data 0hour, 0min, 6secs
23. 192.168.1.30 1770 192.168.0.20 20 ftp-data 0hour, 0min, 5secs
24. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 12secs
25. 192.168.1.30 1893 192.168.0.20 20 ftp-data 0hour, 0min, 23secs
26. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 6secs
27. 192.168.1.30 1900 192.168.0.20 25 smtp 0hour, 0min, 11secs
28. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 2secs
29. 192.168.1.30 1892 192.168.0.20 21 ftp 0hour, 0min, 27secs
30. 192.168.0.40 43546 192.168.1.30 21 ftp 0hour, 0min, 8secs

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1193

31. 192.168.1.30 21 192.168.0.40 43546 ftp 0hour, 0min, 8secs
32. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 0secs
33. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 3secs
34. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 1min, 4secs
35. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 5secs
36. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 1secs
37. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 1min, 6secs
38. 192.168.1.30 1884 192.168.0.20 23 telnet 0hour, 0min, 43secs
39. 192.168.0.20 20 192.168.1.30 1893 ftp-data 0hour, 0min, 25secs
40. 192.168.1.30 1892 192.168.0.20 21 ftp 0hour, 0min, 30secs
41. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 34secs
42. 192.168.0.20 20 192.168.1.30 1895 ftp-data 0hour, 0min, 20secs
43. 192.168.1.30 21 192.168.0.40 43555 ftp 0hour, 0min, 18secs
44. 192.168.1.30 1022 192.168.0.20 514 rsh 0hour, 0min, 7secs
45. 192.168.1.30 1908 192.168.0.40 80 http 0hour, 0min, 2secs
46. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 7secs
47. 192.168.0.40 43550 192.168.1.30 20 ftp-data 0hour, 0min, 23secs
48. 192.168.1.30 1867 192.168.0.20 23 telnet 0hour, 0min, 23secs
49. 192.168.0.40 43555 192.168.1.30 21 ftp 0hour, 0min, 18secs
50. 192.168.1.30 20 192.168.0.40 43548 ftp-data 0hour, 0min, 26secs
51. 192.168.1.30 1754 192.168.0.20 23 telnet 0hour, 0min, 8secs
52. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs
53. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs
54. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 3secs
55. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs
56. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 25secs
57. 192.168.0.20 1022 192.168.1.30 1021 rcp 0hour, 0min, 5secs
58. 192.168.1.30 1876 192.168.0.20 23 telnet 0hour, 0min, 5secs
59. 192.168.1.30 21 192.168.0.40 43546 ftp 0hour, 0min, 31secs
60. 192.168.1.30 20 192.168.0.40 43563 ftp-data 0hour, 0min, 9secs
61. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs
62. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs
63. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 5secs
64. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs
65. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 23secs
66. 192.168.1.30 1022 192.168.0.20 513 rlogin 0hour, 0min, 22secs
67. 192.168.1.30 1023 192.168.0.20 514 rsh 0hour, 0min, 18secs
68. 192.168.1.30 1890 192.168.0.20 23 telnet 0hour, 0min, 55secs
69. 192.168.1.30 1906 192.168.0.20 23 telnet 0hour, 0min, 25secs
70. 192.168.0.20 1022 192.168.1.30 1021 rcp 0hour, 0min, 5secs
71. 192.168.0.40 43546 192.168.1.30 21 ftp 0hour, 0min, 31secs

VOL. 3, NO. 8 Aug, 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

1194

Table A3: Result of Rules and Attack names implemented in Linux

.

S/no Duration
(h,m,s) Protocol Source

Port
Dest
Port Source IP Dest IP Attack Fitness

1 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063
2 -1,0,23 -1 -1 -1 192.168.1.30 192.-1.0.20 guess 0.8063
3 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063
4 0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 port-scan 0.8063
5 -1,0,23 telnet -1 23 192.-1.1.30 192.168.0.20 guess 0.8063
6 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063
7 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063
8 0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 port-scan 0.8063
9 0,0,23 telnet -1 -1 192.168.1.30 192.168.0.20 guess 0.8063

10 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063
11 0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 port-scan 0.8063
12 -1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 guess 0.8063
13 0,0,-1 -1 1023 1021 192.-1.1.30 -1.168.0.20 rcp 0.8031
14 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 rcp 0.8031
15 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031
16 0,0,14 -1 -1 513 192.168.1.30 192.168.0.20 rsh 0.8031
17 0,0,14 -1 -1 513 -1.168.1.30 192.168.0.20 rsh 0.8031
18 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031
19 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 rcp 0.8031
20 0,0,5 -1 -1 23 192.168.1.30 192.168.0.20 port-scan 0.8031
21 -1,0,-1 -1 1023 -1 192.168.1.30 192.168.-1.20 rcp 0.8031
22 0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 rsh 0.8031

Training Phase
Training

Data
Genetic

Algorithm
Generated Rules

Supply audit data to GA Evolve and generate rules

Store
In rule
B
 Testing Phase

Rule Base

Sensor Analysis
Component Policy Control

Inflowing
Connections

Analyze Connection
Connection is an

intrusion

Connection is not an
intrusion, let go

Get Incoming packet

Retrieve generated rules from rule base

