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Using the nonequilibrium Green’s functions formalism in a tight binding model, the spin-dependent
transport in armchair graphene nanoribbons controlled by a ferromagnetic gate is investigated.
Beyond the oscillatory behavior of conductance and spin polarization with respect to the barrier
height, which can be tuned by the gate voltage, we especially analyze the effects of width-dependent
band gap and of the nature of contacts. The oscillation of spin polarization in graphene nanoribbons
with a large band gap is strong in comparison with that in infinite graphene sheets. Very high spin
polarization (close to 100%) is observed in normal-conductor/graphene/normal-conductor junctions.
Moreover, we find that the difference in electronic structure between normal conductor and
graphene generates confined states which have a strong influence on the transport properties of the
device. This study suggests that the device should be carefully designed to obtain a high
controllability of spin-polarized current. © 2009 American Institute of Physics.

[doi:10.1063/1.3212984]

I. INTRODUCTION

Graphene, a monolayer of carbon atoms packed into a
two dimensional honeycomb lattice, has attracted much at-
tention from both experimental and theoretical points of
view (see the recent review' and references therein) since it
was isolated and demonstrated to be stable.”” It is a basic
building block for graphite materials of all other dimension-
alities, e.g., it can be wrapped up into zero-dimensional
fullerenes, rolled into one-dimensional (1D) nanotubes, or
stacked into three-dimensional graphite. Due to its unique
electronic properties, i.e., the massless Dirac-like behavior of
low-energy excitations,”* a lot of interesting phenomena
such as the finite conductance at zero concentration,3 the
unusual half integer quantum Hall effect,* and the Klein
tunneling5 have been widely observed and theoretically dis-
cussed in detail

When graphene is patterned into a narrow ribbon, the
carriers are confined to a quasi-1D system, which is often
referred to as a graphene nanoribbon (GNR). Actually, GNR
is one of the most simple and fundamental fragments of the
sp? network that has been very extensively studied due to its
potential applicabilityj_12 The electronic properties of GNRs
depend strongly on the shape of edges, e.g., it can be zigzag
or armchair. It was shown by Fujita et al.®® that, in the
framework of the nearest neighbor tight binding (NNTB)
model, the zigzag GNRs are always metallic, while the arm-
chair ones may be either semiconducting or metallic depend-
ing on their width. In particular, zigzag GNRs exhibit a spe-
cial edge state that makes the energy band almost flat near
the Fermi energy [E=0], and therefore the group velocity of
conduction electrons becomes close to zero. The transport
properties of these structures are then dominated by the edge
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states."” No such edge state appears in armchair GNRs,
which are predicted having an energy band with either finite
or zero gap. In general, the group velocity of conduction
electrons in armchair GNRs is high, e.g., it is equal to about
10° m/s (Ref. 3) for metallic armchair GNRs. Note that the
scanning tunneling microscopy measurements,'*'® while
clearly demonstrating the existence of edge states in zigzag
GNRs, prove that, in practice, zigzag edges are much smaller
in length than armchair ones and less frequently observed.'”
This observation and the fact that armchair GNRs may ex-
hibit semiconducting behavior motivate us to study just these
structures in the present work."*

Along with unusual charge transport properties, due to
very weak spin orbit interaction," leading to a long spin flip
length (~1 ,L,Lm),16 the graphene-based structures also offer
a high potential for spin-polarized electronics. In fact,
graphene is not a natural ferromagnet. However, recent
works have shown that ferromagnetism and spin-polarized
states can be introduced in graphene, e.g., by doping or
defects'”"? and even by applying an external electric field.”
Especially, Haugen et al.” suggested that the ferromagnetic
correlations can be created in graphene by the so-called
proximity effect. The exchange splitting induced by deposit-
ing a ferromagnetic insulator EuO on the graphene was then
roughly estimated to be about 5 meV. Motivated by this sug-
gestion, a possibility of controlling the spin-polarized current
in graphene sheets using ferromagnetic gates has just pre-
dicted and in detail discussed in a number of works.”>* The
spin-polarized current was found to be an oscillatory func-
tion of the potential barrier, which can be tuned by the gate
voltage, and its amplitude is never damped by increasing the
width as well as the height of barrier.”> However, the spin
polarization predicted is not so high, i.e., its maximum value
is just about 30%. This may limit the possible applications of
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graphene-based devices in spintronics. By the way, some
other spin-dependent properties of graphene such as spin
field effect transistor,25 spin Hall effects,15 26 and spin valve
effects”’ > are also extensively discussed. In particular, very
interesting spin-transport phenomena in GNRs, e.g., the giant
magnetoresistancezg’30 and the high spin-polarized current’’
(close to 100%), have been just predicted.

Experimentally, electronic transport measurements
through a graphene device usually require contacts to metal
electrodes, e.g., as illustrated in Ref. 32. When tunneling
from metal reservoir to graphene occurs in a large area, the
contact becomes Ohmic and the area under the contact forms
a substance, which is a hybrid between graphene and normal
metal.* Depending on the nature of this substance, the sys-
tem can be appropriately considered as a graphene/graphene/
graphene (GGG) structure or a normal-conductor/graphene/
normal-conductor (NGN) junction whose contacts can be
modeled by honeycomb or square lattices, respectively. The
ballistic transport through the NGN junctions has been inves-
tigated systematically in Refs. 33-35.

The present work is focused on studying the electrical
controllability of the spin-polarized current in single ferro-
magnetic gate structures based on perfect armchair GNRs.
Examining device transport properties, we look for the pos-
sibilities of having a high tunable spin-polarized current. A
particular attention is drawn to the role of the ribbon’s energy
band gap and of the nature of contacts (graphitic or normal
conducting). For NGN junctions, when the strength of
device-to-contact coupling and the device length are the two
important parameters, the influence of these parameters on
controlling the spin-polarized current is also carefully inves-
tigated. The work is organized as follows. Section II is de-
voted to describing the model and introducing the main ex-
pressions based on the nonequilibrium Green’s function
(NEGF) formalism. In Sec. III, the numerical results are pre-
sented and discussed. Finally, a brief summary is given in
Sec. IV.

Il. MODEL AND FORMULATION

The considered structures consist of an armchair GNR
coupled with two semi-infinite leads, which may be de-
scribed as either graphitic [Fig. 1(a)] or normal conducting
[Fig. 1(b)]. In the simplest consideration, the normal-
conducting leads are modeled by square lattices.” > A fer-
romagnetic gate is assumed to create a potential barrier
which controls the Fermi level locally and to induce an ex-
change splitting into the device. To model the structures, we
use the single band tight binding Hamiltonian,

where H g are the Hamiltonians of the left and right leads,

respectively, ﬁD is the Hamiltonian of the device, and I:IC
describes the coupling of the device to the leads. The Hamil-
tonian terms in Eq. (1) can be written as
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FIG. 1. (Color online) Schematic illustration of the considered armchair
GNR structures with the number M of carbon chains between two edges: (a)
graphitic and (b) normal-conducting leads. The latter ones are modeled by
square lattices. A magnetic gated insulator is deposited to create a spin-
dependent potential barrier in the center of device.
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where the operators c; o (ci ) and afd’a (a; ) create (anni-

hilate) an electron with spin o in the electrode « and the
device region, respectively; ¢, t;, and . stand for the hopping
parameters in the device, the lead, and at the coupling inter-
face, respectively; €, is the on-site energy of the leads which
acts as a shift in energy. The sums over carbon atoms (i, )
are restricted to the nearest neighbor atoms. The device spin-
dependent on-site energy & o is modulated by the gate volt-
age,

Us—oh in gated region

Ei o= . (3)
& 0 otherwise.

Here, Ug; denotes the potential barrier height, & is the ex-
change splitting, and o= %1 describes the up/down spin
states.

Since there is no spin flip process here, the Hamiltonian

A

(1) can be separated into two independent components H,,
and the transport can be easily considered using the NEGF
formalism. For each spin channel o, the retarded Green’s
function is defined as

G/(E)=[E+i0*—Hp,— 3 - 35T, 4)

where EA; describes the retarded self-energy matrices which
contain the information about the electronic structure of the
leads as well as the device-to-contact coupling. It can be
expressed as SA,:F .48 oTa.p» Where 7 is the hopping matrix
that couples the device to the leads. g, are the surface
Green’s functions of the uncoupled leads, i.e., the left or
right semi-infinite electrodes. The surface Green’s functions
and the device Green’s functions are calculated using the fast
iterative scheme® and the recursive algorithm,37 respec-
tively.
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Within the model described by Eq. (1), the transport is
considered ballistic and the conductance of the device can be
calculated using the Landauer formalism.”™ The spin-

dependent conductances G, at the Fermi energy E are re-
lated to the transmission function T (E) as

ez
ga’(EF) = ;TO'(EF)7 (5)
with
T,(E) =Ti[[', G, Tz G4]- (6)

Here, G%(=G"") denotes the advanced Green’s function. The

tunneling rate matrix r L(r) for the left (right) lead is obtained
from

fL/R = i[EAZ/R - 2A‘fZ/R]’ (7)

where 3%(=3"") is the advanced self-energy.
Finally, the spin polarization is determined by

G, -G,
P= .
g1+gl

In addition, the local density of states (LDOS) at site j can be
also directly extracted from the retarded Green’s function:

(8)

1

By using the recursive algorithm described in Ref. 37, the
size of the matrices above equals the number M of carbon
chains between two edges and therefore the cost of calcula-
tions is only linearly dependent on the device length.

lll. RESULTS AND DISCUSSION

Within the framework of the formalism described, we
investigate the spin-dependent transport in armchair GNRs
with different structure parameters. The hopping parameter ¢
is chosen to be 2.66 eV (Ref. 39) in the graphitic regions and
the study is restricted to the low-energy regime when E <t.

A. Gate-controlled spin-polarized current in GGG
structures

As mentioned above, the gate voltage creates a potential
barrier in the device. In the armchair GNRs, the electronic
properties of the structures with M # 3n+2 and M=3n+2 (n
is an integer) are significantly different, i.e., there is a finite
energy band gap in the former structures (“semiconducting”)
while it is negligible in the latter ones (“metallic”)." Respec-
tively, we display in Fig. 2(a) the conductance as a function
of barrier height U for the structures: semiconducting (M
=21, dashed line) and metallic (M =23, solid line). Here, the
gated region is assumed to be nonmagnetic, i.e., h=0 meV.
First, the obtained results show oscillatory behaviors of con-
ductance with respect to Ug. This phenomenon has been ob-
served in graphene sheets and explained as a consequence of
well-known Klein’s tunneling.6’22 In the framework of
Dirac’s description, the conductance peaks have been dem-
onstrated to be essentially due to the resonance or the good
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FIG. 2. (Color online) (a) Oscillation of conductance vs the barrier height
Ug in the GGG structures with different widths: M =21 (semiconducting,
dashed) and 23 (metallic, solid line). (b) illustrates the transmission coeffi-
cient calculated from Eq. (10) for different modes ;. Other parameters are
L;=42.5 nm, Ez=300 meV, and 7=0 meV.

matching of electron states and confined hole states outside/
inside the barrier region,23 respectively. These states, in the
model considered, correspond to states in positive and nega-
tive energy bands. Note that due to the finite ribbon width,
the transverse momentum is quantized into a set of discrete
values. Practically, the oscillation of conductance can be seen
clearly from the expression of the transmission coefficient
for a given transverse momentum mode ki (see the calcula-
tion in Ref. 40). In the limit of low energy, it can be rewritten
as

2 win
_ cos” 0; sin” ¢
cos? 0, sin® ¢ + (sin 0, + cos ¢)2sin2(kaG) ’

where 6j=tan‘1(k§,/kx) and sin ¢=[(t—vpk§)sin(3aki’/
2)1/(Us—E) with vp=3at/2, and a being the C-C bond
length; kx(k§) denotes the longitudinal (transverse) momen-
tum, which is the deviation of the momentum k from the zero
energy point, outside the barrier; k)bc is the longitudinal mo-
mentum inside the barrier. The energy dispersions outside/
inside the barrier are, respectively,

E=vp\k; + k] (11)

(10)

and

A 3ak” ;
Ug-E= \/4t(t—v,;,~k§,)sin2 2 £ 4 vrki?, (12)

with E<Ug. Accordingly, the transmission and then the con-
ductance have their maximum (or minimum) values when
k'L is equal to mr [or (m+1/2) ] with m being an integer.
In the limit of E<Ug;<<t, Eq. (12) can be rewritten as Ug
—E%ka)bc and the period of oscillation is defined by Up
=vpm/Lg, which coincides with that in Refs. 22 and 23. In
the case when the relation between U; and k is nonlinear,
this period can be approximately expressed as Up=v,m/Lg,
in which v, =<vy and decreases gradually with increasing Uy;.
For instance, v,~0.74v (M =21) and 0.89v (M =23) in the
energy range considered in Fig. 2(a).

As a consequence of the difference in band structure,
Fig. 2(a) also shows that the conductance in the case of M
=21 (finite band gap) oscillates strongly in comparison with
the case of M=23 (negligible band gap). This can be easily
understood by considering the behavior of transmission co-
efficient for different band gaps, E,=2v|k]| [or 2E|sin 6]
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FIG. 3. (Color online) (a) Spin polarization as a function of the barrier
height Ug; for the same structures as in Fig. 2(a). (b) shows an example of
the effects of the different ribbon widths on the spin polarization: M=21
(dashed), 27 (dashed-dotted), and 33 (solid line). Everywhere Lg
=42.5 nm, Ez=300 meV, and 7=10 meV.

with 6 e (-m/2,m/2)]. They are enlarged when increasing
k)] (or [6)]). Practically, when the band gap is larger, the
oscillation of transmission is stronger [see in Eq. (10) and
Fig. 2(b)]. This leads to the different behaviors of conduc-
tance, as shown in Fig. 2(a). Similarly, the oscillation of
conductance in the structure with M =21 is also stronger than
that in graphene sheets [see in Fig. 2(a) of Ref. 22], where
the gap is truly zero.

In Egs. (10)—(12), the mode 6,=0 (or kg:O) corresponds
essentially to the normal incident mode whose energy disper-
sion is gapless and linear in infinite graphene sheets. When
considering the behavior of transmission coefficient, we find
an important feature: it is not uniformly equal to unity but a
function of the barrier height even in the case of 6= 6. This
differs from the prediction of Klein’s paradox observed in
graphene sheets by using the Dirac’s description6 as previ-
ously discussed in Ref. 41. In reality, the transmission coef-
ficient [Eq. (10)] approaches the simplified expression (4) in
Ref. 6 only in the limit of E<U;<t.

Now we investigate the behavior of spin-polarized cur-
rent in the ferromagnetic gate structures. The exchange split-
ting h is chosen to be 10 meV, which can be achieved
experimentally.IG’42 Since no spin flip process is considered,
the exchange splitting just shifts the conductance of each
spin channel relatively to the other. Therefore, the spin po-
larization behaves as an oscillatory function of Uy, as shown
in Fig. 3. Similar phenomena in graphene sheets have been
observed and discussed in Refs. 22-24. It was shown that the
oscillation of spin-polarized current is never damped by in-
creasing the width and the height of barrier. Thus, the spin
polarization can be reversed by changing the gate voltage.
Actually, the amplitude of P depends principally on the
phase coherence/decoherence of the oscillations of spin-
dependent conductance, i.e., it has the maximum/minimum
value when the gate length (or the barrier width) L; is equal
to a half-integer/integer of L;, with L,=v,/2h, respectively.
Hence, the gate control of spin-polarized current can be
modulated by changing L, i.e., it leads to the beating behav-
ior of P similar to that shown in Fig. 5(c) of Ref. 23. Fur-
thermore, as a consequence of the different behaviors of con-
ductance presented in Fig. 2(a), Fig. 3(a) also demonstrates
that the oscillation of spin polarization in the GNRs with a
large energy band gap is very strong in comparison with the
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others. For instance, the amplitude of P is about 65% for
M=21 (semiconducting), while it is only few percent for
M =23 (metallic) or has a maximum value of 30% in infinite
graphene sheets.”>** However, since the energy band gap
decreases, the oscillation of conductance and spin polariza-
tion weakens gradually when increasing the ribbon width. To
illustrate this point, we display in Fig. 3(b) an example of the
effect of different ribbon widths on the spin polarization in
the semiconducting GNR structures (M # 3n+2). Indeed,
when increasing the ribbon width, the amplitude of P de-
creases, i.e., it is only about 35% for M =33. In the limit of
infinite width, the transport quantities in the GNRs tend to
those in infinite graphene sheets [e.g., |P| ~20% as shown in
Fig. 5(b) of Ref. 23], where continuum Dirac’s description is
valid.

B. Effects of normal-conducting leads

In this section, we consider the spin-dependent transport
in the NGN junctions. Actually, the transport properties of
this structure are essentially due to the difference in the dis-
persion relation in two materials. Our calculations show that
a change in the ratio between the two lattice constants and in
the value of #; does not qualitatively affect the features ob-
served. This is in agreement with Ref. 35. Moreover, to en-
sure that the interfaces are ballistic (without tunneling barri-
ers) when t-=t, the hopping energy ¢, is chosen to be equal
to t. First, we focus on the possibilities of obtaining high
tunable spin-polarized current when replacing the graphitic
leads by the normal-conducting ones. Second, we analyze
the sensitivity of transport quantities to different parameters
as the device length and the Fermi energy.

In Ref. 34, comparing resistances of NGN contacts with
a zigzag interface and GGG ones, Schomerus found the du-
ality between doped graphitic leads and quantum wires. It
results in the same transport properties when the doping en-
ergies are suitably adjusted [i.e., Eq. (16) in Ref. 34]. The
difference between two structures is only quantitative. On
this basis, we display in Fig. 4(a) the conductance as a func-
tion of U in the NGN junction in comparison with the GGG
structure for the case of a device length Lp,=51 nm and a
Fermi energy Er=300 meV. Indeed, the obtained results are
in good agreement with the conclusions in Ref. 34. Qualita-
tively, Fig. 4(a) shows that the oscillation of conductance
seems to be unchanged in its phase and period when chang-
ing the leads. Quantitatively, the oscillation in the NGN junc-
tion is stronger than in the GGG structure. This can be ex-
plained clearly by the effect of replacing the graphitic leads
by the normal-conducting ones on the picture of bound states
in the barrier region. These states, in the framework of the
Dirac’s description, have been considered as confined hole
states in graphene sheets.”” In Fig. 4(b), we display the
LDOS (see the right axis for graphitic and the left axis for
normal-conducting leads) with respect to Uy at the first site
of barrier region. The peaks of LDOS occur when the Fermi
energy corresponds to any bound state. Obviously, the oscil-
lation of LDOS (or the quantization of bound states in the
barrier) in the NGN junction appears stronger (with higher
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FIG. 4. (Color online) Comparison of conductance (a) and LDOS (b) in
different structures: graphitic (dashed) and normal-conducting (solid lines,
tc=t) leads. Everywhere M =21, L,=51 nm, L;=42.5 nm, E;=300 meV,
and =0 meV.

peaks) than in the GGG structure. It is the essential origin of
the different behaviors of conductance, as shown in Fig. 4(a).

Now we turn to the behavior of spin-polarized current in
ferromagnetic gate NGN junctions where h=10 meV. In
Figs. 5(a) and 5(b), we show the comparison of spin polar-
ization in the NGN junctions and in the GGG structures. Due
to the different behaviors of conductance presented in Fig.
4(a), the amplitude of P in former structures is remarkably
larger than in the latter ones. Particularly, when changing the
leads, it increases from 65% to 81% [see Fig. 5(a)] and from
1% to 50% [see Fig. 5(b)] for M =21 and 23, respectively.

Spin polarization

0.5

Spin polarization
o

(c) |,

-1
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Barrier height (meV) Barrier height (meV)

FIG. 5. (Color online) [(a) and (b)] Comparison of spin polarization in the
different structures: graphitic (dashed) and normal-conducting (solid lines,
te=t) leads. [(c) and (d)] The spin polarization in the latter one with differ-
ent coupling strengths: f-=1 (dashed), 0.8t (dashed-dotted), and 0.67 (solid
lines). The ribbon widths are M =21 [(a) and (c)] and 23 [(b) and (d)]. Other
parameters are Lp=51 nm, L;=42.5 nm, Ez=300 meV, and 7=10 meV.
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FIG. 6. (Color online) (a) LDOS illustrating the existence of confined states
in the device and (b) conductance in the NGN junctions as a function of the
Fermi energy for different device lengths: L,=51 nm (solid) and 102 nm
(dashed lines). (c) shows the dependence of energy spacing of confined
states on the inverse of device length. Everywhere M =21, L;=42.5 nm,
tc=0.8¢, and Ug=h=0 meV.

Moreover, in the NGN junctions, the possibility of obtaining
high tunable spin-polarized current is more impressive with
decreasing the strength of device-to-contact coupling, which
is characterized by the hopping energy ¢.. In Figs. 5(c) and
5(d), we display the obtained results for three values of
te:te=t (dotted), 0.8¢ (dashed), and 0.6¢ (solid lines). Actu-
ally, the transport in the structure depends strongly on the
properties of normal-conductor/graphene junctions and
therefore on 7. A smaller 7, corresponds to a higher contact
resistance.*® We find that the quantization of bound states in
the barrier region is stronger when decreasing 7. (not
shown), which leads to a stronger oscillation of the transport
quantities with respect to the barrier height. Indeed, even in
the case of M=23, the spin polarization can reach a very
high value of 86% for ¢-=0.6¢ [see Fig. 5(d)]. More impres-
sively, in the case of M =21, it can tend to 100% by reducing
tc [see Fig. 5(c)]. Some similar features such as giant
magnetoresistance and very high spin-polarized current’’
have been also observed in the GNR structures.

Practically, the features discussed above depend strongly
on the parameters of the NGN junctions, such as the device
length and/or the Fermi energy. It results from the fact that
the charge transport can be confined in the device by two
normal-conductor/graphene junctions. It leads to an addi-
tional resonant condition controlling the transport picture be-
side the transmission via the bound states in the barrier. In-
deed, the existence of such confined states is demonstrated
clearly from the behavior of LDOS shown in Fig. 6(a). In
this figure, to cancel the effects of bound states in the barrier,
the gate voltage is not applied to the device. The energy
spacing Eg of confined states is then estimated to be about
25.4 meV for Lp=51 nm and 12.6 meV for 102 nm. In fact,
E is inversely proportional to the device length, as illus-
trated in Fig. 6(c). This implies an unusual quantization of
charges in the graphene-based structures, which is essentially
different from the case of normal semiconductors wherein
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FIG. 7. (Color online) (a) Conductance and (b) spin polarization P in the
NGN structures as functions of the barrier height U for different device
lengths: 68 nm (solid), 74 nm (dashed), and 79 nm (dashed-dotted lines).
The oscillation of P vs the device length for different values of Ug; (c) [630
meV (solid), 655 meV (dashed-dotted), and 681 meV (dashed line)] and of
Er (d) [250 meV (dashed-dotted), 300 meV (solid), and 350 meV (dashed
line)]. Other parameters are M=21, L;=42.5 nm, Ez=300 meV [in (a)-
(©)], 1=0.8t, U5=630 meV [in (d)] and h=10 meV.

E¢x1/ L% as previously discussed in Refs. 23 and 43. Due to
such confinement, the transport quantities, such as the con-
ductance and the spin polarization (not shown), have also an
oscillatory behavior with respect to the Fermi energy in the
considered region [see Fig. 6(b)]. Therefore, when a gate
voltage is applied, there is a coexistence of bound states in
the barrier and confined states in the device. They together
respond for the resonant transport conditions of the structure.

On the other hand, the gate controllability of spin-
polarized current is principally due to the picture of bound
states in the barrier (or Klein’s tunneling).23 It arises a ques-
tion about how the confined states in the device affect that
picture. As shown in Figs. 4 and 5, the replacement of the
graphitic leads (infinite L) by normal-conducting ones (fi-
nite Lj,) does not affect the period but the amplitude of the
oscillations. It suggests that, in the NGN junctions, the oscil-
lation of conductance and spin polarization can be modulated
in its amplitude while its period is unchanged when changing
the device length. To examine this statement, we display the
conductance in Fig. 7(a) and the spin polarization in Fig.
7(b) as a function of barrier height for different device
lengths. From Fig. 7(a), we see that while the period (Up
=v,m/Lg) is determined only by the gate length, the ampli-
tude of conductance oscillation is modified when changing
Lp, i.e., it is strong or weak when L,=68 (and 79) or 74 nm,
respectively. Consequently, the amplitude of spin polariza-
tion is dependent on Lp, i.e., it is about 95% for L
=68 nm, 15% for 74 nm, and 86% for 79 nm [see Fig. 7(b)].
This feature is exhibited more clearly in Fig. 7(c) by three
curves of spin polarization versus L, for different barrier
heights: U;=630 meV (dashed), 655 meV (dashed-dotted),
and 681.5 meV (solid line). It is shown that P has an oscil-
latory behavior and is suppressed completely at certain val-
ues of Lp. Obviously, this demonstrates that the amplitude of
spin polarization shown in Fig. 7(b) is also an oscillatory
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function of the device length. Moreover, its period seems to
be inversely proportional to the Fermi energy, i.e., it is about
27.8 nm for Ez=250 meV, 18.3 nm for 300 meV, and 13.4
nm for 350 meV [see Fig. 7(d)]. It is nothing but a conse-
quence of the resonant transport due to the confined states in
the device. Hence, the gate control of spin-polarized current
in the NGN junction can be modulated not only by the gate
length L; (discussed in the Sec. III A) but also by the device
length Lj, and/or the Fermi energy Ef. This implies that the
structure should be carefully designed to obtain high control-
lability of spin-polarized current.

IV. CONCLUSIONS

Using the NEGF method for quantum transport simula-
tion within the NNTB model, we have considered the spin-
dependent transport in single ferromagnetic gate armchair
GNRs. The leads are modeled as either graphitic or normal-
conducting.

In the case of graphitic leads, it is shown that the con-
ductance and the spin-polarized current behave as an oscil-
latory function of barrier height, which can be tuned by the
gate voltage. The oscillation of spin polarization in the rib-
bon structures with a large energy band gap is strong in
comparison with infinite graphene sheets. Especially, the
study has demonstrated that a very high spin polarization can
be observed in the NGN junctions. It is resulted from the fact
that the quantization of bound states in the barrier (gated)
region when using the normal-conducting leads may be
stronger than in the case of graphitic ones. In these junctions,
it is shown that the spin polarization increases and can tend
to 100% by decreasing the strength of the device-to-contact
coupling. Moreover, we have also found the existence of
confined states in the device by normal-conductor/graphene
junctions. This confinement responds for an additional reso-
nant condition beside the transmission via the bound states in
the barrier. As a result, the gate control of spin-polarized
current in the NGN junctions can be modulated not only by
the gate length but also by the device length and/or the Fermi
energy.

Obtained results can be helpful for designing efficient
spintronics devices based on the perfect armchair GNRs.
However, some disorder effects, e.g., due to edge roughness,
have been demonstrated experimentally7 and may affect the
transport properties12 of the GNR structures. Further work is
needed to assess their influence on the spin-polarized prop-
erties discussed in this article.
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