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Abstract— An effective approach of quantum transport of Dirac 
carriers in mono- and bi-layer graphene structures and devices is 
presented. Initially based on the Green's function formalism to 
treat the Dirac Hamiltonian of massless particles in two-
dimensional mono-layer graphene, the model has been extended 
to to small bandgap materials and to bi-layer graphene with 
massive carriers. It is applied to investigate some transport 
problems as the minimum conductivity, the tunneling properties 
the spin-polarized transport through single-barrier structures, 
and the operation of graphene field-effect transistors. 

Keywords - graphene; Green's function, Dirac fermions 

I.  INTRODUCTION 
Though it is unsuitable for standard digital applications, the 

gapless character of graphene with chiral massless Dirac 
carriers gives to this material unusual and attractive transport 
properties which deserve to be considered carefully [1]. Some 
of the most remarkable transport properties are the finite 
minimum conductivity [2], the unconventional quantum Hall 
effect [3,4], and the Klein paradox [5]. Very high room-
temperature mobilities exceeding 15 000 cm2/Vs have been 
measured and values of 200 000 cm2/Vs have been shown to be 
achievable [6,7] with proper choice of substrate or by 
suspended graphene. Additionally, there are several ways of 
inducing bandgap in graphene, which still enlarge the possible 
fields of application. The first idea is to cut mono-layer 
graphene into nanoribbons to benefit from induced quantum 
confinement effect. Alternatively, the interaction with an SiC 
substrate can break the symmetry of the two sub-lattices 
forming the graphene crystal, which can open a bandgap of up 
to 0.26 eV [8]. A similar bandgap may be also induced in bi-
layer graphene by applying a vertical electric field [9,10].  

While most of graphene device simulations are based on 
the non-equilibrium Green's function (NEGF) formalism to 
treat an atomistic tight-binding Hamiltonian for small 
semiconducting nanoribbons (GNRs) [11-14], we use here an 
effective model for wide 2D graphene samples based on the 
Dirac Hamiltonian for relativistic-like massless carriers [15]. 
This model may be even extended to small bandgap materials 
and to bi-layer graphene [16]. Though not suitable for 
nanoribbons, it makes possible to study a wide variety of 
devices and transport problems on 2D graphene samples. In 
addition to the description of the model, we present here its 
application to some transport problems in mono-layer or bi-

layer graphene, such as the influence of impurity/vacancy on 
the conductivity, the specific tunneling properties of carriers 
through single barriers, the spin-polarized transport in graphene 
structures, and the simulation of graphene FETs. 

II. MODEL 
To describe the electronic structure of the honeycomb 

arrangement of carbon atoms in a graphene sheet, a simple 
nearest-neighbor tight-binding description can be conveniently 
used, with ac = 0.142 nm as carbon-carbon distance and 
t = 2.7 eV as integral overlap between pz orbitals. It leads to a 
unique band structure with two bands which touch at six 
points, the so-called Dirac or neutrality points, which means 
that graphene has zero bandgap. For symmetry reasons, these 
points are reduced to a pair of independent points, noted K and 
K'. The bands have a conical shape (Fig. 1) well described at 
first order by the linear dispersion 

 ( ) 2 2k F x yE v k k= ± +  (1) 

where 63 2 10 m/sF cv a t= ≈  is the Fermi velocity and 
( , )x yk k=k  is the 2D-wavevector of the particle. Carriers in 

graphene are thus massless. Moreover, the fact that the 
structure of graphene contains two sublattices, noted A and B, 
gives to the particle Hamiltonian the form of a relativistic Dirac 
Hamiltonian 

 ( ) ( ) 0F x x y yH v k k U xσ σ σ= + +  (2) 

where , ,x y zσ  are the Pauli matrices, 0σ  is the identity 
matrix and U stands for the external potential energy. In 
condensed matter, electrons and holes are usually described by 
separate Schrödinger equations. In contrast, electron and hole 
states in graphene are interconnected and have properties 
analogous to the charge conjugation symmetry in quantum 
electrodynamics. It is a consequence of the graphene's crystal 
symmetry, i.e., the equivalence of two carbon sublattices A and 
B. Therefore, graphene's quasi-particles are described by two 
component wave-functions, very similar to the spinor wave-
functions in quantum electrodynamics, but the "spin" index for 
graphene specifies the sublattice rather than the real spin of 
electrons and is called pseudospin σ. To include in the 
Hamiltonian (2) the bandgap opening possibly due to substrate 
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influence, we just have to add the mass term 
2
F zm v σ  

corresponding to the bandgap 22G FE m v= . 

The tight binding model can be easily extended to bi-layer 
graphene (Fig. 2) by considering the hopping energy between 
atoms A1 and A2 of the two layers. After first order expansion 
close to the K-points, the energy dispersion writes 

 ( ) ( )
2 2 4

2 2 2 2 2 2 2 2 2

2 4 4F FE v k v kγ γγΔ
= + + ± + Δ +k  (3) 

where Δ stands for the difference of potential between the 
graphene layers. Now carriers have a finite effective mass. If 
Δ = 0 and Fv k γ<< , the energy dispersion may simplify in 

 ( ) 2 2 2E k m= ±k  (4) 

with the effective mass 2
02 0.045Fm v mγ= ≈ . For finite 

values of Δ a bandgap between conduction and valence band 
opens as 

 2 2
GE γ γ= Δ Δ +  (5) 

In case of strong asymmetry γΔ >> , the bandgap reaches 
the limit value GE γ≈  and for weak asymmetry, we have 

GE ≈ Δ , which suggests that a bandgap may be simply 
obtained by applying an electric field between the layers [9,10]. 

 
Figure 1.  Full energy dispersion of the graphene honeycomb lattice and 

zoom in showing a low-energy Dirac cone close to a Dirac point. 

For bi-layer graphene the Hamiltonian (2) writes 
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where the sub-matrix τ describes the coupling between the 
layers and Δ = U2 – U1.  
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Figure 2.  Lattice structure of bilayer graphen with hopping energies τ and γ 

between nearest neighbor atoms of the same and of different layers 

An efficient calculation method based on the NEGF 
formalism has been developed to solve the Dirac equation by 
rewriting the Hamiltonians (2) or (6) within a tight-binding 
formulation in a new basis { },n yx k  using the arbitrary 
mesh spacing a = xn – xn-1 = 0.2 nm [15-17]. The device Green's 
function is defined as 

 ( ) [ ] 1
L R SG E E i Hη −= + − − Σ − Σ − Σ  (7) 

where LΣ  and RΣ  are the self-energy coupling the device 
to left and right contacts, respectively, and SΣ  stands for the 
self-energy describing any possible scattering mechanism. The 
local density of states and the transmission coefficient are 
defined as 

( ) [ ],
1, Im ( )n n nx E G Eρ
π

= −  and ( ) †
L RT E Tr G G⎡ ⎤= Γ Γ⎣ ⎦  (8) 

where the tunneling rate at the left (right) contact is defined 
as ( )†

( ) ( ) ( )L R L R L RiΓ = Σ − Σ . The current density is given by 

 ( ) ( ) ( )2 ,y y L R
eJ dE dk T E k f E f E
hπ

+∞

−∞
= −⎡ ⎤⎣ ⎦∫  (9) 

where ( )L Rf  is the Fermi function in the left (right) contact. 
Finally, for device of length Lx the conductivity is defined in 
the low-temperature limit as 

 ( ) ( )
24 1 ,

3
x

F y F y
c

e LE dE T E E
h a t

σ
π

= ∫  (10) 

where the transverse energy is defined as y F yE v k= . 

III. MINIMUM CONDUCTIVITY IN MONO-LAYER GRAPHENE 
Because of linear energy-dependence of the density of 

states ( ) ( )2/ FE E vρ π= , graphene was not expected to 
conduct electrical current in the neutral state. However, many 
experiments have demonstrated unambiguously the existence 
of a finite value of conductivity σmin at the Dirac neutrality 



points (DNPs) [2,17]. In spite of significant spreading from 
sample to sample, experimental data of σmin converge to an 
order of magnitude of e2

 / h [17]. From the theoretical point of 
view the finite value σmin = 4 e2

 / π h, i.e. π times smaller than 
the value initially reported in the early stages of graphene 
research [2]. Great efforts have been made to explain this 
apparent mystery missing of π and the spreading of 
experimental data, possibly due to the effect of disorder and 
charged impurities (see [18] for a review of this problem).  

Recently, our Green's function approach allowed us to 
show some effects of metallic electrodes and impurities on the 
transport properties of graphene sheets deposited onto a 
substrate. Indeed, previous investigations of the effect of 
contacts have suggested that the metallic electrode-graphene 
contact are in practice in the limit of strong coupling which 
governs the asymmetric V-shape curve of the conductivity 
versus the charge carrier density with a single minimum value 
of the order of e2/h [19]. Importantly, it has been also shown 
that contact-induced states may deeply penetrate into the 
graphene active region between the electrodes and thus 
enhance the density of states (DOS) at the charge neutrality 
point (NP). Consequently the conductivity minimum occurring 
at NP can rise up to the range of experimental data, i.e., 
4e2/π h-12 e2/π h [20]. In practice, graphene samples however 
usually have a long active region, in the micrometer scale, and 
the penetration effect of contacted-induced states therefore may 
be expected to be negligible. In this case, the role of impurities 
adsorbed onto the graphene surface appears to be dominant. 
Let us consider a typical short-range impurity scattering 
potential in the form ( ) ( )i iV U δ− = ⋅ −r R r R . It should be 
noted that to include properly the DOS enhancement effect at 
NP, the self-consistent T-matrix calculation scheme should be 
used to account for the effect of multiple scattering on a single 
impurity. In this approximation the self-energy associated with 
the considered scattering process under is given by 

( )
( )

12

21 ln 1
2

imp c
imp

impF

U E EN U
Evπ

−
⎧ ⎫⎡ ⎤− Σ ⎛ ⎞⎪ ⎪⎢ ⎥Σ = + −⎨ ⎬⎜ ⎟− Σ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (11) 

where N is the impurity density and Ec is an energy cutoff. As 
expected, this equation results in the self-energy with a peak of 
the imaginary part at the Dirac point E = 0 [20]. As a 
consequence the density of states is enhanced to finite values 
around this point. 

The conductivity calculated for 100 nm-long structures in the 
limit of large U is plotted in Fig. 3 for several values of the 
impurity density. In the range 0-3×1010 cm-2, we observe a 
continuous increase of σmin from one to five times of 4 e2

 / π h. 
However, it does not mean that raising further the impurity 
density will monotonically increase the value of σmin since not 
only the imaginary part but also the real part of the self-energy 
increase. Consequently, at higher density the electrostatic 
potential can change dramatically and thus localize electronic 
states. To illustrate this point we additionally show in Fig. 3 the 
red dashed curve of the conductivity extracted for 
N = 1011 cm-2, which exhibits a minimum point lower than that 

of 4 e2
 / π h. This detailed analysis of impurity scattering using 

appropriate self-energy is very consistent with experimental 
investigations and explain the large spreading in measured 
conductivity data. 
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Figure 3.  Conductivity in 100 nm-long graphene structures for different 

values of impurity density. 

IV. TRANSPORT IN SINGLE-BARRIER GRAPHENE 
STRUCTURES 

We now apply the Green's function approach of Dirac's 
equation to the investigation of charge transport properties in a 
rectangular single-barrier graphene structure. Though simple, 
this structure may highlight some fundamental microscopic 
features of charges in graphene, e.g., the charge-conjugation 
symmetry, the chirality of particles and the Klein tunnelling. 
An electron with energy E propagating in the positive direction 
originates from the same branch of the electronic spectrum as 
the hole of energy -E propagating in the opposite direction. 
This yields the important consequence that electrons and holes 
of the same branch have the pseudospin σ in the same 
direction, which is parallel to the momentum for electrons and 
antiparallel for holes. This feature may be seen as the chirality 
character of quasi-particles in graphene. 

In Fig. 4 we display the local density of states and the 
transmission coefficient T for a structure of barrier width W 
and height U0 of 20 nm and 0.55 eV, respectively, for a 
transverse energy Ey = 50 meV and a bias voltage Vb = 0.3 V, to 
highlight the chiral property of transport. At finite values of Ey 
the transmission coefficient exhibits an energy valley of width 
2Ey, centered on the U0 value. This valley separates the 
transmission coefficient into three parts, called here TN and TK, 
corresponding to the energy ranges [U0 + |Ey| - eVb /2, +∞] above 
the barrier and [|Ey|, U0- |Ey|- eVb /2] through the barrier, 
respectively. In contrast to the case of ordinary 
semiconductors, the transmission does not exponentially decay 
through the barrier but exhibits oscillations with resonant-like 
subpeaks reaching the value of 1. The appearance of such 
peaks is essentially due to the resonance or the good matching 
of electron states and hole states outside/inside the barrier 
region, respectively. The corresponding tunneling regime is 
called chiral or Klein tunneling. An additional tunneling 
regime appears at negative energy, separated from the chiral 
tunneling by a gap of width 2Ey. It is the band-to-band 
tunneling from the valence to the conduction band. 



For Ey = 0 the transmission coefficient is equal to 1 (not 
shown), which is nothing, but the manifestation of the so-called 
Klein’s paradox, which states that the potential barrier is 
transparent for zero-angle incident relativistic particles 
whatever the barrier height and width. It has been shown that 
chiral tunneling may give rise to a negative differential 
conductance in such a single barrier structure but this effect is 
actually severely limited by the occurring of band-to-band 
tunneling when increasing the bias voltage, as a consequence 
of zero bandgap [15].  

 
Figure 4.  LDOS and transmission coefficient in the single barrier mono-
layer graphene structure with finite bias Vb = 0.3 eV. Other parameters are 

Ey = 50 meV, U0 = 0.55 eV, and L = 20 nm. 

Monolayer structure, bilayer graphene share some 
similaruties but also have some differences. For instance, 
charge carriers in bilayer graphene have a parabolic gapless 
energy dispersion around the K points, which means they are 
massive quasi-particles with a finite density of states at zero 
energy, as in conventional materials. The origin of this unusual 
energy dispersion is in the lattice structure of bilayer graphene 
with four equivalent sublattices. However, these quasi-particles 
are still chiral and described by spinor wave-functions, similar 
to relativistic quasi-particles in monolayer graphene.  

Another striking difference appears in the transmission 
through a single barrier. While normal incident particles are all 
transmitted through a mono-layer barrier, they are all reflected 
by a bi-layer graphene barrier. For a finite Ey = 50 meV, the 
chiral transmission coefficient exhibits much higher and 
thinner resonant peaks than in the mono-layer case, as 
illustrated in the LDOS and transmission plotted in Fig. 5. 

These peaks originate some interesting features in the I-V 
characteristics, as in Fig. 6 where we plot the zero-temperature 
current density as a function of bias voltage for different barrier 
height and a barrier length of 20 nm. Some of the curves 
exhibit an NDC behavior, more pronounced than in the mono-
layer case, though still limited to a peak-to-valley ratio of about 
1.8. However, the most interesting feature is in the periodic 
oscillations of the current when tuning the barrier height, as a 
consequence of the sweeping of thin hole bound states in the 
barrier. It results in strong oscillations of the transconductance 
(Fig. 7) between negative and positive values, with phase shift 
depending bias voltage. It is worth noting that in psite of 
smearing effect, the oscillations of transconductance are 
persistent at finite temperature T = 77 K (blue circles) end even 
at room temperature (not shown). 

 
Figure 5.  LDOS and transmission coefficient in a single barrier bi-layer 
graphene structure under zero bias. Other parameters are Ey = 50 meV, 

U0 = 0.4 eV, and L = 20 nm. 

 
Figure 6.  Low temperature current as a function of bias voltage in a single 
barrier bi-layer graphene structure of barrier length L = 20 nm for different 

barrier heights.  

 
Figure 7.  Transconductance as a function of barrier height at zero 

temperature for Vb = 40 meV (black solid line) and Vb = 105 meV (dashed-
dotted line) for the same structure as in Fig. 6. Blue circles correspond to 

results at T = 77 K (Vb = 40 meV). 

We now consider the effect of bandgap opening induced by 
a vertical electric field applied normal to the double-gate bi-
layer structure. For a difference of potential Δ = U2 –U1 
between the two layers, a bandgap given by (5) appears at the 
top of the barrier, as illustrated in the local DOS and 
transmission coefficient displayed in Fig. 8. Below the 
bandgap, some hole bound states are still present, though the 
corresponding transmission peaks do not reach the value of 1. 



Though limited to a few hundreds of meV this bandgap is 
expected to offer the possibility of switching off the current, at 
least patially. It is illustrated in Fig. 9 where we plot the current 
at different temperatures as a function of Δ for Vb = 50 mV and 
Um = (U2 + U1)/2 = 75 meV = E. The current reaches its 
maximum value for Δ = 0 and rapidly decreases when the gap 
increases. Of course the slope of the curve reduces when 
increasing the temperature but persists at room temperature. 
Similar results have been obtained experimentally [21].  

 
Figure 8.  Field-effect bandgap opening in the LDOS and the transmission 
coefficient of a single barrier double-gate bi-layer graphene structure under 

zero bias (L = 40 nm, Ey = 50 meV, U0 = 0.4 eV) 

 
Figure 9.  Current as a function of potential difference Δ fot three 

temperatures a single barrier double-gate bi-layer graphene structure. Other 
parameters: Um = 75 meV = EF, L = 40 nm, Vb = 50 meV. 

V. SPIN-POLARIZED TRANSPORT IN GRAPHENE STRUCTURES 
Thanks to very weak spin-orbit interaction leading to spin 

flip length higher than 1.5 µm [22], graphene also offer a high 
potential for spintronics. Recent works have shown or 
suggested that magnetism can be introduced in graphene by 
doping or defect, by applying an external field, or by proximity 
effect of a ferromagnetic insulator [23]. It led us to consider the 
possibility of controlling the spin-polarized current in graphene 
sheets using a ferromagnetic gate. For such a study the model 
has been slightly modified by adding a Zeeman term hσ−  
where h is the exchange splitting energy and σ describes the 
up/down spin states. It means that the barrier height is spin-
dependent. 

For a monolayer graphene structure with a single 
ferromagnetic barrier, we see in Fig. 10 the oscillation behavior 

of the conductance of each spin channel and of the spin 
polarization ( ) ( )/P G G G G↑ ↓ ↑ ↓= − +  as a function of barrier 
height for h = 25 meV. The spin polarization reaches the 
maximum value of about 20% in monolayer graphene. This 
oscillation behavior obviously comes from the resonant 
tunneling of electron states through the hole bound states in the 
barrier. 

 
Figure 10.  (a) Spin up and spin down conductance and (b) spin polarization in 
a single ferromagnetic gate monolayer graphene structure as a function of the 

gate barrier height, for L = 20 nm, EF = 100 meV and h = 25 meV. 

 
Figure 11.  Spin polarization in a single ferromagnetic gate bilayer graphene 
structure as a function of the gate barrier height, for L = 20 nm, EF = 75 meV 

and h = 22.5 meV. 

Thanks to thinner resonant peaks in the chiral tunneling 
transmission, higher spin polarization may even be reached in 
bilayer structures, as shown in Fig. 11 with a nearly ideal value 
of 95%. Though experimental confirmation is still needed, such 
predictions open the way for spintronics application with high 
gate-controlled tunability of spin polarization. 

VI. GRAPHENE FIELD-EFFECT TRANSISTORS 
Now we consider the simulation of monolayer graphene 

based field-effect transistors (GFETs). In this purpose the 
transport model is here coupled with a 2D Poisson solver, as in 
Section III, to provide self-consistent results. The simulated 
transistor has a gate length LG = 15 nm and source/drain 
extensions LS = LD = 20 nm [24]. We consider both cases of 
gapless and finite bandgap possibly induced by interaction with 
SiC substrate [8]. 

In the case of massless electrons, the local DOS is shown in 
Fig. 12 with the self consistent potential for VGS = -1 V and 
VDS = 0.2V. We see again the hole bound states in the barrier 



likely to give rise to Klein tunneling in the regime of low gate 
voltage. However, in such transistors, band-to-band tunneling 
is likely to play a more important role than Klein tunneling. In 
particular it degrades strongly the current saturation in gapless 
FET (Fig. 13a). Clearly, the bandgap opening improves 
significantly the device operation, as shown in Fig. 13. The 
bandgap-induced suppression of band-to-band tunneling 
improves the current saturation at large VDS (Fig. 13a) and the 
on/off current ratio (Fig. 13b) which is known to very poor in 
gapless graphene transistors. It reaches about 100 for a 
bandgap EG = 260 meV. Though it is probably not high enough 
for digital applications, it opens the road for efficient 
transistors likely to operate in the THz regime, as recently 
demonstrated experimentally. 

 
Figure 12.  LDOS in the simulated transistor for Ey = 50 meV and self-

consistent potential (VGS = 1 V, VDS = 0.2 V). 

 
Figure 13.  Current density at T = 77 K as a function (a) of drain voltage for 

VGS = 1 V and (b) of gate voltage for VDS = 0.2 V and for for different values of 
energy bandgap. 

VII. CONCLUSION 
We have presented a powerful simulator of Dirac fermions 

transport in graphene structures suitable for mono- and bi-layer 
graphene and for both types of massless and massive particles. 
It includes all features of chiral particles. It has been applied 
here to study several transport problems, including the 
minimum conductivity in graphene, spin-polarized transport 
and graphene-based transistors. 
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