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Summary

Introduction

Allergy and asthma are complex diseases influenced by
many genes and molecular mechanisms. Recently a num-
ber of genome-wide association studies (GWAS) have in-
vestigated asthma- and allergy-related phenotypes. Results
suggest the existence of sub phenotypes of asthma and doc-
ument a need to better define the disease. Genetics may
also help to identify groups of patients susceptible for spe-
cific forms of treatment and those at risk for adverse ef-
fects of therapy. Thus, genetics may represent a key tool
to achieve individualised medicine in asthma and allergy in
the future.
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Asthma and allergy are complex conditions often present
in the same family or closely related subjects. Genetic
factors undoubtedly contribute to disease susceptibility but
the expression of the disease can be modulated by envir-
onmental exposures and the interactions between the two.
Candidate-gene and linkage studies followed by positional
cloning have already provided a large number of susceptib-
ility genes [1]. The last decade has been marked by the pub-
lication of more than 20 genome-wide association studies
(GWAYS) in asthma or allergy phenotypes. GWAS have re-
ported novel and interesting genes but have also confirmed
the role of some functionally relevant genes previously de-
scribed. However, heritability of allergic diseases has not

medicine been elucidated completely so far [2].

Abbreviations

ACRN Asthma clinical research network 1L1,2,3,4,5,10,13,33 Interleukin 1,2,3,4,5,10,13,33

ADRB2 B,-adrenoreceptor IL18R1 Interleukin 18 receptor 1

BCAP B-cell adaptor for phosphatidylinositol 3-kinase IL2RB Interleukin 2 receptor, beta

CAMP Childhood asthma management programme LABA Long acting B,-adrenoreceptor agonists

CHI3L1 Chitinase 3-like 1 LCR Locus control region

CRHR1 Corticotropin-releasing hormone receptor 1 MHC Major histocompatiblity complex

DENND1B DENN/MADD domain containing 1B protein MRPL4 Mitochondrial ribosomal protein L4

EDC Epidermal differentiation complex NHLBI National Heart Lung and Blood Institute

FCER1A High affinity receptor for IgE NK2R Neurokinin receptor 2

FCER2 Low affinity receptor for IgE ORMDL3 ORM1-like 3

FEF,5_75 Forced expiratory flow 25% and 75% PDE4D Phosphodiesterase 4D, cAMP-specific

FEV, Forced expiratory volume in 1 second PYHIN1 Pyrin and HIN domain family member 1

FLG Fillagrin RAD50 DNA repair protein RAD50

FVC Forced vital capacity SABAs Short acting B,-adrenoreceptor agonists

GATA2 GATA binding protein 2 SH2B3 SH2B adapter protein 3

GLcci Glucocorticoid-induced transcript 1 SNP Single nucleotide polymorphism

GM-CSF Granulocyte-macrophage colony-stimulating factor SPT Skin prick test

GSDMA,B Gasdermin A, B STAT6 Signal transducer and activator of transcription 6

GSTO2 Glutathione S-transferase omega 2 TBX21 T box 21

GWAS Genome-wide Association Studies TENOR The Epidemiology and Natural History of Asthma:
Outcomes and Treatment Regimens

HHIP Hedgehog-interacting protein TSLP Thymic stromal lymphopoietin

HLA Human leukocyte antigen V(D)J Variable, diverse, and joining

ICS Inhaled corticosteroids
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The purpose of this review is to evaluate how genetic
studies have advanced the understanding of asthma and
allergy by identifying specific disease-related markers or
sub-phenotypes of the diseases. A search for all published
GWAS in allergy-related phenotypes was conducted in
MEDLINE using “asthma”, “allergy”, “atopy”, “lung func-
tion” and “GWAS” as subject headings. The results were
compared with the online catalogue of published GWAS
from the National Human Genome Research Institute (ht-
tp://www.genome.gov/) for the Disease/Trait: “asthma”,
“asthma (childhood onset)”, “pulmonary function”, “eos-
inophil counts”, “IgE levels”, “IgE grass sensitisation”,
“YKL-40 levels”, “atopy” and “atopic dermatitis” (version
November 2011). In the second part we evaluate how ge-
netic findings may contribute to pharmacogenetics of

asthma and allergies.

Genetic epidemiology of asthma and
allergy

Genetics of distinct asthma phenotypes

Asthma is a heterogeneous disease characterised by in-
flammation of the small airways, bronchial hyper-respons-
iveness, intermittent airway obstruction, smooth muscle
hypertrophy and mucus hypersecretion. Many physiologic-
al mechanisms contribute to the disease involving many
different cell types [3]. Clinical symptoms differ greatly
between patients, suggesting that clinicians are not dealing
with a single disease but rather with overlapping conditions
of a syndrome [4]. For example atopy, the IgE-mediated re-
sponse to common allergens in a skin prick test, may be
present in many children with asthma but there is a substan-
tial number of patients with non-atopic forms of asthma,
where IgE responses to allergens seem not to play a signi-
ficant role [5].

Descriptive criteria such as age of onset, triggers, fre-
quency and severity of symptoms, as well as response to
treatment are often used to classify different sub-pheno-
types of asthma. However, these asthma phenotypes are
based on the course of the disease and clinical presentation
may not reflect distinct disease mechanisms. The discovery
of precise markers for specific asthma sub-phenotypes
would help greatly in dissecting different entities of the
asthma syndrome and would facilitate prevention and treat-
ment of the disease on an individual level.

“Omics” have recently been applied in the quest for such
markers in many complex diseases. Genomics is one of the
approaches contributing to marker identification. One ad-
vantage is that GWAS can systematically interrogate mil-
lions of genetic markers across the genome simultaneously
and relate them to clinical outcomes or patient character-
istics [6] without an a priori hypothesis. Powerful GWAS
have now been published involving thousands of subjects
and testing association with different disease phenotypes

[7].

Childhood onset asthma

Childhood onset asthma was investigated in the first pub-
lished GWAS on asthma in 2007 by the GABRIEL con-
sortium, phase I [8]. A novel locus on chromosome 17q21

was reported to contribute to the susceptibility for early-
onset childhood asthma. Associated variants were correl-
ated with mRNA levels of the ORMDL3 gene indicating a
genotype-specific regulation of its expression. Other genes
on the 17q21 region, namely GSDMA and GSDMB, were
later found to also be regulated by the same asthma-asso-
ciated variants, suggesting that more than one gene from
17q21 may contribute to asthma development [9]. The as-
sociation of the locus with asthma was robustly replicated
in studies involving ethnically diverse populations [10—12].
Chromosomal region 17q21 represents an example of the
complexity in delineating the functional variants underpin-
ning the genetic associations. The locus is characterised by
high linkage disequilibrium complicating the dissection of
the true functional variants from the proxy variants. The
co-regulation of ORMDL3 and GSDMA/GSDMB genes by
the same variants complicates the identification of the
functional gene (or genes) even more. Extensive fine map-
ping approaches, including complete re-sequencing of the
region followed by standardised functional assays for ex-
ample, are underway to explain the nature of the 17q21 ge-
netic associations [9].

Initial functional studies suggest that ORMDL3 may be im-
plicated in calcium homeostasis which could induce intra-
cellular mechanisms of inflammation [13]. Other studies
propose a role of ORMDL proteins in the regulation of
sphingolipid metabolism, a hypothesis which needs to be
tested further for its relevance in asthma [14]. The observed
association between the SNPs at 17q21 locus and other in-
flammatory diseases such as inflammatory bowel disease
and diabetes could also hint to a more general or basic role
of this locus in chronic inflammatory conditions [15, 16].
The GABRIEL consortium investigated different forms of
asthma, including childhood onset in phase II published in
2010 [17]. In that study, 8,730 asthmatics and 11,389 con-
trols were included; 6,783 were childhood onset asthmat-
ics. The association of the 17q21 locus with childhood on-
set asthma remained and additional associations with HLA-
DQAIL,-DQBI, IL33, ILIRLI/ILISR1, SMAD3, IL2RB and
IL13 were reported, mainly attributable to childhood onset
asthma (<16 years).

In another GWA study, childhood onset asthma was also
found to be associated with DENNDIB (DENN/MADD
domain containing 1B protein) [18]. The study included
asthmatics with the severe form of the disease. However,
replication of this signal is sparse in other populations
which could indicate that it may be related to a specific
yet unidentified sub-phenotype of asthma present in the US
discovery cohort. The gene is a plausible candidate for a
role in asthma pathogenesis as it seems to encode for a
protein interacting with TNFo (Tumour necrosis factor o).
As DENNDIB is expressed by dendritic cells it could very
easily play a role in adaptive immune responses [19]. In
a second GWAS in a US cohort, the Childhood Asthma
Management Program (CAMP) study, a region on chromo-
some 5q12 was suggested to be associated with childhood
asthma, even though the signal did not reach significance
in the discovery cohort [20]. Without further fine mapping,
the authors concluded that the association signal is related
to PDE4D (Phosphodiesterase 4D, cAMP-specific), a gene
harboured in the locus. The encoded protein is involved in
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the airway smooth muscle contractility in knockout mice
suggesting that it is a potential therapeutic target [21]. In
replication cohorts within the same study the finding re-
mained significant in some study populations of European
and Hispanic people, but not in populations of African an-
cestry.

Childhood asthma was associated with the HLA-DP locus
(HLA-DPAI and HLA-DPBI) in Japanese and Korean pop-
ulations [22]. Inthat study, modest associations were
shown for the 17q21 locus containing ORMDL3/GSDMB/
GSDMA and 5q31 (IL5/RAD50/IL13), whereas there were
no associations with PDE4D, DENNDIB, ILISRI, and
IL2RB.

Adult onset asthma

The GABRIEL consortium GWAS in phase II included
1,947 adult onset asthmatics. HLA-DQ was the only locus
presenting strong associations with later onset asthma [17].
A separate analysis of 529 subjects with occupational
asthma did not reveal significant results. HLA-DQ/DR vari-
ants were also associated with “difficult-to-treat” asthma
in TENOR (The Epidemiology and Natural History of
Asthma: Outcomes and Treatment Regimens) GWAS [23].
The study investigated asthmatic adults though it did not
provide any information regarding the age of onset of the
disease.

GWAS in Asian populations also confirmed genetic hetero-
geneity between children and adults. The largest GWAS so
far published on an Asian population identified the most
significant associations between adult asthma and the ma-
jor histocompatibility complex region (MHC) [24]. The ef-
fects were independent of the HLA-DQ associations found
in the GABRIEL Consortium GWAS [17].

Atopy and asthma

It is a common belief that the development of IgE-mediated
atopy is a precursor for the later development of asthma,
a theory also propagated as the atopic march. However, it
seems that genetic susceptibility influencing IgE synthesis
differs greatly from the susceptibility to developed asthma.
Thus, one may speculate that IgE and asthma, while linked
to each other, are not linearly related. The idea that asthma
just develops on the basis of atopy seems to be too simple
in the light of genetic data.

The first GWAS on IgE serum levels identified functional
variants on chromosome 1q23 which includes FCERIA
(High affinity receptor for IgE) gene, variants within the
5931 locus, and the 12q13 locus encoding the transcription
factor STAT6 [25]. Both FCERIA and STAT6 are func-
tionally involved in IgE regulation, the first being part of
the high affinity IgE receptor complex and the second be-
ing the intracellular signal from IL4 necessary to induce
IgE switching. Both have been extensively studied in atopy
and asthma genetics [26, 27]. The 5g31 locus was iden-
tified to encompass variants also associated with severe
asthma in the TENOR GWAS [23]. The overlapping asso-
ciation of 5g31 locus in IgE [25] and severe asthma [23]
could imply that it is involved in atopic asthma. The 5q31
region contains many cytokines genes such as /L3, IL4,
IL5, IL13 and GM-CSF, and the RADS50 gene (DNA re-
pair protein RAD50) a less obvious candidate for IgE reg-

ulation. The RAD50 gene contains a locus control region
(LCR) which could also regulate the transcription of /L4
and 7L13 genes [28]. However, RAD50 may itself parti-
cipate in V(D)J (variable, diverse and joining) and class-
switch recombination based on its role in DNA repair and
re-ligation [29].

In the GABRIEL consortium study, only HLA-DRBI was
significantly associated with serum IgE levels [17]. These
results confirm that genetic determinants of IgE and asthma
do not overlap in the populations included in the study.
While it is still unclear whether IgE is a secondary event in
the development of an asthmatic phenotype, it is obvious
that atopic and non-atopic asthma are two diverse entities
in terms of genetic susceptibility.

Skin prick test (SPT) and allergen-specific IgE levels have
also been analysed for genetic susceptibility signals in a
recent GWAS but no consistent patterns of associations
were found [30]. In another study performed mainly in
adult populations, grass sensitisation was associated with
the HLA-DRB4 locus [31]. Taken together, one could hypo-
thesise that genetic determinants for atopy-phenotypes and
specific sensitisation differ.

Intermediate phenotypes of asthma

Studying asthma by disease-onset phenotype, severity or
atopic status has been the preferred method in GWAS.
There are nevertheless studies using intermediate or
asthma-related phenotypes in GWAS resulting in statistic-
ally strong and plausible outcomes (table 1).

Eosinophilia and asthma

Eosinophils are important in asthma-related inflammatory
responses and high eosinophil counts are a prominent fea-
ture of severe asthma [32]. In addition, studies have shown
that corticosteroids are more efficient in eosinophilic
asthma [33]. An Icelandic study found /L/RLI variants to
be associated with higher blood eosinophil counts and to
also confer susceptibility to atopic asthma [34]. The rep-
lication included nine European populations and one from
East Asia. Interestingly, /LIRLI1/ILISRI on 2q12 was also
associated with childhood asthma in the GABRIEL Con-
sortium [17] and seems to associate with other inflammat-
ory conditions such as Crohn’s disease [35] and atopic
dermatitis [36]. This could imply that the /L/ receptor gene
cluster on 2q12 also contributes to common mechanisms in
inflammatory diseases. In the same GWAS, GATA2 (GATA
binding protein 2), IL5 and SH2B3 (SH2B adapter protein
3) were linked to eosinophil counts but not to asthma. All
these genes are encoding for proteins expressed in blood
cells involved in hematopoietic cell maturation, T cell ac-
tivation and eosinophil activation, making their role in eos-
inophilia plausible.

Chitinases and asthma

Serum YKL-40 levels may represent a biomarker for
asthma and disease severity [37]. YKL-40 serum levels
were increased in asthmatics and in those with bronchial
hyper-responsiveness compared to controls. A study by
Ober et al. used GWA to study genetic involvement in
the regulation of YKL-40 levels and found an association
between a promoter SNP in CHI3L!I (Chitinase 3-like I)
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and YKL-40 levels [38]. CHI3L 1 variations were also asso-
ciated with bronchial hyper-responsiveness and lung func-
tion but not atopic state. Despite the compelling role of
chitinases in the pathogenesis of asthma [39], CHI3L] as-
sociations with asthma could not yet be replicated in subse-
quent studies [40].

Pulmonary function

Reduced pulmonary function is not specific for asthma but
plays a role in many obstructive pulmonary diseases. Pul-
monary function is a heritable trait depicting the physiolo-
gical capacity of the lungs [41] and can be viewed as an
intermediate and easily measurable phenotype related to
asthma. GWAS were conducted in healthy individuals to
interrogate the heritability of lung function, and spirometry
measurements were tested for genetic associations [42—46].
Variants in the putative genes GSTO?2 (Glutathione S-trans-
ferase omega 2) on chromosome 10 and IL6R (Interleukin
6 receptor) on chromosome 1 showed significant associ-
ations with FEV,, FVC and FEF,s 55, respectively [42].
Thus, IL6R SNPs are associated with both asthma and
lung function [42, 47]. HHIP (Hedgehog-interacting pro-
tein) was also identified as a lung function susceptibility
locus in a number of well-powered studies [43—46]. HHIP
is part of the hedgehog signalling pathway and may play

a role in embryonic lung development [48]. However, the
reproducible and plausible association of HHIP with lung
function was independent of the asthmatic phenotype [43].
Therefore, association of genes with lung function meas-
urements and asthma may identify lung specific mechan-
isms in asthma development in contrast to general inflam-
matory mechanisms (such as eosinophilia) that also play a
role in asthma development.

Ethnic diversity in GWAS results with asthma

Most GWAS have been conducted in populations of
European ancestry (tables 1, 2). However, genetic associ-
ations with asthma differ significantly between European,
African and Asian populations. The 17921 signal is a good
example of this diversity in disease heritability [49, 50].
Association between asthma and 17q21 was well replicated
in Europeans and Hispanic populations but not in popula-
tions of African ancestry where PYHIN! (encoding Pyrin
and HIN domain family member 1) was identified as a spe-
cific risk locus exclusive for this ethnic group. Interest-
ingly, variants in DENND1B showed opposite directions of
association with asthma in European and African popula-
tions [18]. DENNDIB is currently the only asthma candid-
ate gene found to be associated with the disease in both
European and African populations.

Table 1: GWAS findings in intermediate asthma phenotypes.

Phenotype Genetic locus Chromosome Population*
YKL-40 levels CHI3L1 1932 European [38]
Bronchial hyper-responsiveness
Blood eosinophil counts SH2B3 12924 European [34]

GATA2 3921

IL1RL1 2912

IL5 5q31

IKZF2 2934

WDR36 5922

MHC 6p21

IL33 9p24

MYB 6p22
Total serum IgE FCER1A 1923 European [25]

RADS50 5931

STAT6 12913
Specific IgE levels C110rf30/LRRC32 11913 European [31]
(HDM, cat fur, mixed grass) FNDC3A 13q14 European [30]
Lung function GSTO2 10925 European [42]
(FEV, and FVC)
Lung function IL6R 1921
(FEF 25 75)
Lung function HHIP 4931 European [44]
(FEV, and FEV,/FVC) GSTCD 4924

AGER 6p21

THSD4 15923

TNS1 2qg35

HTR4 5q32

DAAM2 6p21

HHIP 4931 European [45]

AGER/PPT2 6p21

HTR4 5q32

ADAM19 5933

GPR126 6024

FAM13A 4q22

PTCH1 9q22

* The term populations refers to the ethnicity of the original study.
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Susceptibility for atopic dermatitis and allergic rhinitis
in relation to asthma

Together with asthma, atopic dermatitis and allergic rhinitis
belong to the group of atopic diseases [S1, 52]. These dis-
eases often occur in the same family and thus, a shared ge-
netic susceptibility was suspected for a long time.

Atopic dermatitis often coexists or even precedes asthma.
In atopic dermatitis a major gene driving the disease was
identified before the GWAS era. The fillagrin (FLG) gene
is located in the epidermal differentiation complex (EDC)
on chromosome 1q21. It was first associated with ichthyos-
is vulgaris (common dry skin), before the relationship with
atopic eczema was discovered [53]. In cross sectional stud-
ies it was shown that FLG accounts for approximately 15%
of atopic dermatitis patients in European populations [54].
If and how fillagrin deficiency may influence other atopic
phenotypes is still a matter of debate [55].

A GWAS on atopic dermatitis showed significant associ-
ations with the 11g35.5 locus (table 2) [56]. The region in-
cludes the Cllorf30 gene which encodes for the nuclear
protein EMSY involved in DNA repair [56]. In that GWAS,
modest associations were also detected for the EDC, apart
from FLG within the region suggesting that other variants
in the EDC also contribute to atopic dermatitis. A recent
GWAS study in Han Chinese confirmed FLG as a genetic
susceptibility locus also in that population. It also un-
covered novel susceptibility loci [57]. Ethnic heterogeneity
in genetic variants across populations was observed for
FLG [58]; however, functional relevant variants in the gene
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Figure 1

Major susceptibility loci for allergic diseases as identified by GWAS
(Venn approach diagram). Genetic loci associated with different
subphenotypes are shown in red.

were always associated with atopic dermatitis, independent
of ethnicity.

Allergic rhinitis is another expression of an allergic disease
with a familial aggregation. A GWAS conducted for al-
lergic rhinitis in a population of Chinese origin showed
significant associations with MRPL4 (mitochondrial ribos-
omal protein L4) on chromosome 19p13.2 and BCAP (B-
cell adaptor for phosphatidylinositol 3-kinase) on 10q24.1,
in both discovery and replication panels [59]. A suggestive
association was detected for the previously atopy-related
locus HLA-DQBI1/HLA-DRBI [17]. In a meta-analysis of
four European populations, variants within the 11q13 locus
were associated with allergic rhinitis and grass sensitisation
[31]. Harbouring variants in Cl/orf30 and LRRC32, the
locus showed association with atopic dermatitis [S6] and
atopic asthma [47], respectively. In addition, the previously
identified atopic dermatitis susceptibility locus TMEM232/
SLC25446 was also significantly associated with allergic
rhinitis [31]. Further suggestive associations were found
for SNPs in the TSLP (Thymic stromal lymphopoietin)
gene.

Not surprisingly, GWAS reflect the genetic heterogeneity
underlying allergic diseases. Although a few shared genetic
loci exist among some allergic or asthmatic phenotypes, it
is evident that each of these phenotypes has distinctive ge-
netic determinants (fig. 1).

Pharmacogenetics in asthma

Current asthma treatments are based on inhaled corticost-
eroids (ICS), long and short acting ,-adrenoreceptor ag-
onists (LABAs and SABAs) as well as leukotriene ant-
agonists. In the vast majority of patients symptoms are
well-controlled with these conventional asthma therapies.
However, approximately 20% of patients are not respons-
ive to ICS, a phenotype often called “difficult to treat” or
severe asthma [60, 61]. It is this form of asthma which
shows an increased risk for exacerbations, hospitalisation
and death.

Thus, there is a need for markers characterising patients
who (1) benefit from a particular treatment and (2) exclude
those at risk for side effects. Identification of responders
and non-responders to certain (expensive) medications may
also reduce costs for the treatment of severe asthma [62].
Pharmacogenetic studies show that genetic variation can
determine and modify an individual’s response to drugs. In
asthma, most pharmacogenetic studies retrospectively in-

Table 2: GWAS findings in allergic diseases other than asthma.

Phenotype Genetic locus Chromosome Population*

Atopic dermatitis C110rf30 11913 European [56]
FLG 1921 European [56], Asian [57]
TMEM232/SLC25A46 5q22 Asian [57]
TNFRSF6B/ZGPAT 20913

Allergic rhinitis MRPL4 19p13 Asian [59]
BCAP 10024
HLA-DQB1/HLA-DRB1 6p21
TMEM232/SLC25A46 5q22 European [31]
TSLP 13q31
C110rf30/LRRC32 11913

*The term populations refers to the ethnicity of the original study.
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vestigated effects of medication on changes in FEV, or
asthma exacerbations in relation to genetic variation in a
specific candidate gene (or a candidate pathway), poten-
tially involved in treatment-associated mechanisms. Here,
we firstly discuss pharmacogenetic studies related to poly-
morphisms in the B,-adrenoreceptor (ADRB2) important in
SABA and LABA treatment. Then, we describe studies
dealing with severe or “difficult to treat” asthma and finally
we discuss the potential role of pharmacogenetics in treat-
ment with biologicals, a new group of asthma medication
only recently introduced to clinical practice.

The B,-adrenoreceptor

Short and long acting B,-adrenoreceptor agonists (SABAs
and LABAs) are the most commonly prescribed reliever
drugs in asthma, ameliorating bronchoconstriction and
leading to long-term symptom control [63]. The primary
target of 3,-adrenoreceptor agonists is the ,-adrenorecept-
or located on the surface of airway smooth muscle cells.
The ADRB? gene, coding for this receptor, is a highly poly-
morphic locus with common and rare SNPs in exonic and
regulatory regions of the gene. These SNPs are associated
with asthma phenotypes and response to treatment [64].
When clinical and epidemiological studies reported that
some patients were experiencing life-threatening symp-
toms and death following the use of B,-adrenoreceptor ag-
onists [65—67], the need to have a better understanding
of individual differences to treatment responses became
essential. Three polymorphisms leading to amino acid
changes in the receptor, Argl6Gly, GIn27Glu and the rare
Thr164lle, have been the focus of ADRB2 pharmacogenetic
studies on SABA and LABA effects.

The Argl6Gly polymorphism is very common in
Europeans; approximately 40% of the population carries an
Argl6 allele. Patients with the Argl6Arg variation were
more responsive to SABA treatment with albuterol [68].
However, Argl6Arg carriers had a reduced response com-
pared to Glyl6Gly carriers when albuterol was used reg-
ularly [69]. In case of severe asthma exacerbations, chil-
dren with Gly16Gly showed a better response to albuterol
[70]. 1t was speculated that these differences in response to
SABA may be modified by further polymorphisms in the
gene such as GIn27Glu [71].

To date it is unclear if the Argl6Gly genotype could be
used to predict which patients will respond well to LABA
treatment in combination with ICS and which are at in-
creased risk for serious adverse effects. An initial retro-
spective study by the National Heart Lung and Blood Insti-
tute (NHLBI) Asthma Clinical Research Network (ACRN)
suggested that patients with Argl6Arg showed a decline
in lung function following combined LABA and ICS treat-
ment [72]. The findings of a British cohort study consisting
of children under regular use of salmeterol and children
not taking salmeterol supported the idea that Argl6Arg
carriers have a higher asthma exacerbation risk compared
to Gly16Gly carriers [73]. Extending their cohort popula-
tion, the authors investigated the risk of asthma exacer-
bations related to Argl6Gly polymorphism in young asth-
matics under regular and “on demand” use of albuterol
[74]. The increasing exacerbation risk effect of Argl6 was
still evident in patients under regular use of SABAs or

LABAs. The results emphasise that carriers of Argl6 are
at increased risk for exacerbation when either SABAs or
LABAs are used as a regular reliever. Later studies con-
sisting of asthmatic adults under combined LABA and ICS
treatment showed no pharmacogenetic effect of Argl6Gly
[75, 76]. Indeed comparative meta-analysis suggested that
children have an augmented risk for adverse effects com-
pared to adults but these differences (potentially due to
small sample size in childhood studies) did not reach stat-
istical significance [77].

GIn27Glu is in high linkage disequilibrium with Arg16Gly
[78] and thus, Argl6Arg is predominantly combined with
GIn27Gln. As a result GIn27Glu could be considered to act
as a co-modifier of Argl6Gly effects. The combination of
the two polymorphisms seems to affect the binding of the
ligand to the ADRB2 receptor and the downstream signal
transduction [79-81]. Similarly, Thr164Ile may potentially
influence the binding of B,-adrenoreceptor agonists. Des-
pite its low frequency (<3% in European populations), the
position of Thr164lle polymorphism in one of the trans-
membrane domains suggests that it may affect ADRB2
function [80, 82] in a small fraction of the population car-
rying the polymorphisms and taking SABA or LABA.
Existing pharmacogenetic studies on ADRB2 have
provided initial evidence that genetic factors could be im-
portant in patients treated for asthma. However, due to
study design, it is difficult to distinguish if ADRB2 poly-
morphisms increase the risk for exacerbation per se, or if
these effects are truly due to pharmacogenetic interaction
with SABA and LABA. In prospective pharmacogenetic
studies a comparison needs to be made between carriers of
different ADRB2 genotypes and use of either p,-adrenore-
ceptor agonists or anticholinergics.

The corticosteroid pathway

Inhaled corticosteroids (ICS) represent the main and most
effective anti-inflammatory controller treatment in asthma
improving bronchial hyper-responsiveness and lung func-
tion while reducing asthma exacerbations [63, 83]. Cor-
ticosteroid function in asthma is not fully understood. In
part, it may act on intracellular glucocorticoid receptors.
Corticosteroids can inhibit the expression of pro-inflam-
matory molecules such as ILS and IL6 while promoting the
expression of regulatory cytokines such as IL10 [84, 85].
Furthermore, corticosteroids are potent regulators of his-
tone acetylation, having significant epigenetic effects [86].
Asthmatic patients do not always respond to ICS and in
severe asthma high doses of inhaled or even oral corticost-
eroids are often administered in an attempt to control symp-
toms [60, 87].

Three separate candidate gene studies conducted in the
CAMP population suggested pharmacogenetic effects of
variants in CRHRI (Corticotropin-releasing hormone re-
ceptor 1) [88], TBX21 (T box 21) [89] and FCER2 (Low
affinity receptor for IgE) [90] in relation to ICS treatment.
CRHRI variants significantly influenced lung function in
patients receiving ICS [88]. However, the result could not
be replicated in a following study [91]. In a second study
in the same population, a rare SNP leading to an amino
acid change in the Th1 cells induction transcription factor
T-bet, modulated the effect of ICS treatment on bronchial
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hyperresponsiveness [89]. In an independent study of mild
to moderate Asian asthmatics receiving ICS, asthma con-
trol was more easily achieved in patients carrying the wild
type alleles of 7BX21 H33Q and NK2R (Neurokinin recept-
or 2) G231E polymorphism [92]. As NK2 receptors can
mediate bronchoconstriction it was plausible that this ge-
netic variant was associated with increased FEV% in the
same study [92].

Again in the CAMP study, the T2206C polymorphism in
the FCER?2 gene was associated with severe exacerbations
and increased IgE levels in severe asthmatic children re-
ceiving ICS but not in those not receiving medication [90].
FCER?2 gene encodes for the low affinity receptor for IgE,
CD23. CD23 is a major regulator in allergic asthma and
could be implicated in persistently elevated IgE levels seen
in some asthmatics under ICS [93]. The effect was present
in patients from European and African ancestry in the
CAMP study. An independent study confirmed that the
T2206C variant is a genetic marker for severe exacerba-
tions in children with severe asthma despite increased use
of ICS [94].

A recent GWAS aimed to examine pharmacogenetic effects
in children on ICS (budesonide) [95]. The study found
a number of suggestive hits in a small discovery cohort
associated with improvement of lung function measure-
ments after ICS treatment. After replication in additional
small patient groups, further investigations focused on one
of these polymorphisms located near GLCCII
(Glucocorticoid-induced transcript 1 gene) [96]. Prelimin-
ary molecular studies suggest that polymorphism rs37973
may indeed influence gene function. The authors suggest
that this SNP may be a marker for ICS response but further,
independent replications and proper functional assessments
are necessary before drawing conclusions.

Biological therapies for allergic diseases

The fact that there are asthma patients who do not respond
well to current standard therapy leads to the development
of novel drugs addressing specific immune-mechanisms
thought to be important in asthma. A biological therapy
which has already entered clinical practice is omalizumab,
a humanised IgE monoclonal antibody used in both severe
to moderate allergic asthma and allergic rhinitis [97, 98].
Treatment with omalizumab resulted in reduction of
asthma exacerbations, hospitalisations and use of inhaled
corticosteroids as well as improved lung function in a num-
ber of studies [99—101]. Serious adverse effects, in partic-
ular anaphylactic episodes, have been reported [102]. At
present, a series of steps are recommended to be taken by
the physicians to avoid anaphylactic reactions [103]. Con-
sidering the potential specificity of the action, potential
side effects and the considerable cost of treatment, it is sur-
prising how little effort has been made for proper matching
of patients to this therapy.

Genetics could be one of the tools used for matching;
others will be immunological and clinical profiling. Most
likely, a combination of these approaches will be successful
[104, 105]. Considering treatment costs of biologicals,
matching is necessary and cost effective. It will increase
acceptance of these expensive treatments with patients and
the public. One obvious factor to be considered should

be the T2206C polymorphism in the FCER2 gene [90].
According to recent data, patients with elevated IgE and
exacerbations induced by infections may also profit from
omalizumab therapy [100].

Other biological therapies are mepolizumab, an anti-IL5
monoclonal antibody; the IL4 variant pitrakinra; and
lebrikizumab, a humanised monoclonal antibody against
IL13. Clinical trials including patients non-responsive to
inhaled or oral corticosteroids and eosinophilic severe
asthma showed that anti-ILS can provide an effective treat-
ment by acting on airway thickening and improving the dis-
ease exacerbations [106, 107]. Randomised, double-blind,
placebo-controlled clinical trials on anti-IL13 and the IL4
variant resulted in the reduction of therapy-related adverse
effects and significant improvement of lung function [108,
109]. In these studies, specific subphenotypes of asthma
had been selected for clinical trials based on rather simple
selection criteria. It is conceivable that subgroups of pa-
tients characterised by an aggravation of genetic variants in
the IL4/IL13 pathway would be an even better target popu-
lation for pitrakinra and lebrikizumab therapies [110].

So far, there are no pharmacogenetic studies published re-
lating to biological treatments. However treatments in
severe or “difficult to treat” asthmatics would be facilitated
by the identification of molecular markers which could
convincingly identify responders and those at increased
risk for side effects. In these settings, pharmacogenetic in-
formation can be of great clinical importance.

Conclusion

When using genetics it becomes clear that asthma may not
be just one disease but many. Different mechanisms may
lead to different sub phenotypes, some of which are not
sufficiently controlled with current therapy. Thus, genetic
studies can contribute to the understanding of the disease
and, in a second step, may improve diagnosis and therapy.
Modern genetic tools such as GWAS and whole genome se-
quencing are now feasible in clinical studies and should be
applied in pharmacological trials. The ultimate goal would
be to apply a personalised approach in respiratory medi-
cine, to which genetics can contribute. This would increase
the efficacy and safety of treatment and reduce side effects.
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Figure 1

Major susceptibility loci for allergic diseases as identified by GWAS (Venn approach diagram). Genetic loci associated with different
subphenotypes are shown in red.
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