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SUMMARY

In medical research, continuous variables are often converted into categorical variables by grouping
values into two or more categories. We consider in detail issues pertaining to creating just two groups,
a common approach in clinical research. We argue that the simplicity achieved is gained at a cost;
dichotomization may create rather than avoid problems, notably a considerable loss of power and
residual confounding. In addition, the use of a data-derived ‘optimal’ cutpoint leads to serious bias. We
illustrate the impact of dichotomization of continuous predictor variables using as a detailed case study
a randomized trial in primary biliary cirrhosis. Dichotomization of continuous data is unnecessary for
statistical analysis and in particular should not be applied to explanatory variables in regression models.
Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

‘Why have researchers continued to ignore methodologists’ advice not to dichotomize their
measures?’ [1]. Measurements of continuous variables are made in all branches of medicine,
aiding in the diagnosis and treatment of patients. In medical research, such continuous
variables are often converted into categorical variables by grouping values into two or more
categories. It seems that the usual approach in clinical and psychological research is to
dichotomize continuous variables, whereas in epidemiological studies it is customary to cre-
ate several categories, often four or five, allowing investigation of a possible dose-response
relation.
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Although dichotomization is often done, its practice and implications have often been ig-
nored in texts on medical statistics. In this paper we consider in detail the consequences
of converting continuous data to two groups. We believe that dichotomization of continuous
data is unnecessary for statistical analysis, and for most statisticians is not a natural way of
analysing continuous data. It is done to make the analysis and interpretation of results simple.
Furthermore, clinical decision-making often requires two classes, such as normal/abnormal,
cancerous/benign, treat/do not treat, and so on. Although necessary and sensible in clinical
settings, in a research context such simplicity is gained at a high cost, and may well create
problems rather than solve them. As noted by Weinberg [2], ‘alternative methods that make
full use of the information at hand should indeed be preferred, where they make sense’. Such
approaches include different types of splines, and fractional polynomials [3, 4].

In this paper, we discuss the impact of dichotomization of continuous predictor variables
and present a detailed case study to illustrate the issues.

2. DICHOTOMIZING CONTINUOUS VARIABLES

Dichotomization is widespread in clinical studies [5], but the reasons for its popularity are
largely a matter for speculation. There is to be a general need in clinical practice to
label individuals as having or not having an attribute (such as ‘hypertensive’, ‘obese’, ‘high’
PSA), often preliminary to determining diagnostic or therapeutic procedures. Unfortunately,
this attitude perhaps affects the way in which research is done. However, a similar liking for
reducing data to two groups has been observed in other fields including psychology [6] and
marketing [7].

As it is so common, many researchers may feel that this is in some sense the recommended
approach. They may be inexperienced in analysing continuous variables, and may be unaware
of the considerable range of suitable methods of analysis. Also, they may simply prefer more
familiar and easier analyses. Additionally, among those who are more comfortable with regres-
sion there may be concerns about assuming a linear relation between the explanatory variable
and the outcome. Such an automatic assumption may be wrong, and is neither necessary nor
desirable.

2.1. Perceived advantages of dichotomizing

Various perceived advantages of dichotomizing continuous explanatory variables have been
advanced, but they generally cannot be supported on statistical grounds [6]. The most common
argument seems to be simplicity. Forcing all individuals into two groups is widely perceived to
greatly simplify statistical analysis and lead to easy interpretation and presentation of results.
A binary split leads to a comparison of groups of individuals with high or low values of the
measurement, leading in the simplest case to a ¢ test or x> test and an estimate of the difference
between the groups (with its confidence interval). In the context of a regression model with
multiple explanatory variables the advantage is not as clear, although the regression coefficient
(or odds ratio) for a binary variable may be felt easier to understand than that for a change
in one unit of a continuous variable. Likewise the analysis of a single binary variable is much
easier than that of a multi-category variable, which necessitates the creation of several dummy
variables and for which there are several possible coding options and analysis strategies. Such
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relative simplicity may be illusory, however. Even if there are good reasons to suppose that
there is an underlying grouping, dichotomization at the median will not reveal it [6].

MacCallum et al. [6] considered various other weak or false arguments that may be put
forward in support of dichotomization. For example, investigators may argue that because the
analysis of a dichotomized variable is conservative, if a significant relation is found we can
expect that the underlying relation is a strong one. They may also argue that dichotomization
makes sense when the measurement is recorded imprecisely, and would provide a more reliable
measure. This argument is incorrect—dichotomization will reduce the correlation with the
(unknown) true values [6].

Not only are many of the perceived advantages illusory, dichotomization comes at a cost,
as discussed in the next section.

2.2. Disadvantages of dichotomizing

The disadvantages of grouping a predictor have been considered by many authors, includ-
ing References [6—11]. Grouping may be seen as introducing an extreme form of rounding,
with an inevitable loss of information and power. When a normally distributed predictor is
dichotomized at the median, the asymptotic efficiency relative to an ungrouped analysis is
65 per cent [12]. Dichotomizing is effectively equivalent to losing a third of the data, with a
serious loss of power to detect real relationships. If the predictor is exponentially distributed,
the loss associated with dichotomization at the median is even larger (efficiency is only
48 per cent [12]). Discarding a high proportion of the data is regrettable when many research
studies are too small and hence underpowered. It seems likely that many who do this are
unaware of the implications [6]. Furthermore, dichotomization may increase the probability of
false positive results [11].

When the true risk increases (or decreases) monotonically with the level of the variable
of interest, the apparent spread of risk will increase with the number of groups used. With
just two groups one may seriously underestimate the extent of variation in risk; see Reference
[13, p. 92] and Figure 5 below. Put differently, when individuals are divided into just two cat-
egories, considerable variability may be subsumed within each group. Faraggi and Simon [14]
demonstrate a substantial loss of power when a cutpoint model is used to estimate what is in
fact a continuous relationship between a covariate and risk. Furthermore, the cutpoint model
is unrealistic, with individuals close to but on opposite sides of the cutpoint characterized
as having very different rather than very similar outcome. We would expect the underlying
relation with outcome to be smooth but not necessarily linear, and usually but not necessarily
monotonic. Using two groups makes it impossible to detect any non-linearity in the relation
between the variable and outcome.

Lastly, if regression is being used to adjust for the effect of a confounding variable,
dichotomization of that variable will lead to residual confounding compared with adjust-
ment for the underlying continuous variable [15—17]. Further issues arise when more than
one explanatory variable is dichotomized. Both of these issues are discussed below.

2.3. Choice of cutpoint for dichotomization

Several approaches are possible for determining the cutpoint. For a few variables there are
recognized cutpoints which are widely used (e.g. >25kg/m? to define ‘overweight’ based
on body mass index). For some variables, such as age, it is usual to take a ‘round number’,
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an elusive concept which in this context usually means a multiple of five or 10. Another
possibility is to use the upper limit of the reference interval in healthy individuals. Otherwise
the cutpoint used in previous studies may be adopted.

In the absence of a prior cutpoint the most common approach is to take the sample median.
However, using the sample median implies that different studies will take different cutpoints
so that their results cannot easily be compared. For example, in prognostic studies in breast
cancer, Altman et al. [9] found 19 different cutpoints used in the literature to dichotomize
S-phase fraction. The median cutpoint was used in 10 studies. The range of the cutpoints was
2.6—12.5 per cent cells in S-phase, whereas the range of 5 ‘optimal’ cutpoints (discussed in
the next section) was 6.7—15.0 per cent. (Incidentally, we note that moving the cutpoint to a
higher value leads to higher mean values of the variable in both groups.)

2.4. ‘Optimal’ cutpoints

The arbitrariness of the choice of cutpoint may lead to the idea of trying more than one value
and choosing that which, in some sense, gives the most satisfactory result. Taken to extremes,
this approach leads to trying every possible cutpoint and choosing the value which minimizes
the P-value (or perhaps maximizes an estimate such as the odds ratio [18]). In practice, the
search may be restricted to, say, the central 80 or 90 per cent of observations [9,19]. The
cutpoint giving the minimum P-value is often termed ‘optimal’, but it is optimal only in a
narrow sense, and is unlikely to be optimal beyond the sample analysed [9].

Because of the multiple testing the overall type I error rate will be very high, being around
25-50 per cent rather than the nominal 5 per cent [9,19-21]. Also, the cutpoint chosen
will have a wide confidence interval and will not be clinically meaningful. Crucially, the
difference in outcome between the two groups will be over-estimated, perhaps considerably,
and the confidence interval will be too narrow. It is possible to correct the P-value for multiple
testing [9, 19-21]. In addition, different types of shrinkage factor can be applied to correct
for the bias and confidence intervals with the desired coverage can be derived by bootstrap
resampling [22, 23]. However, it is not clear which shrinkage factor is best, and the approach
is complex and little used so far.

Almost all studies using optimal cutpoints derive the cutpoint using univariate analysis
and then use the resulting binary variable in multivariable analysis. Unless adjustment is
made the results will be severely misleading [9]. Mazumdar et al. [24] extend the method of
searching for a cutpoint for one specific predictor by adjusting in a multivariable model for
other predictors known to be important. In particular, if a model reduction algorithm is used,
the dichotomized predictor may lead to other, more influential variables being displaced. This
data-dependent approach to analysis should be avoided. The strategy has been used frequently
in oncological research.

2.5. Twofold cross-validation method

To evaluate the significance level and the hazard ratio (HR) associated with an ‘optimal’
cutpoint, Faraggi and Simon [14] suggested an approach based on twofold cross-validation.
The main feature is that the cutpoint used to classify an observation is ‘optimally’ selected
from a subset that excludes the observation. The algorithm may be summarized as follows.
The data set is divided at random into two approximately equal subsets. The ‘optimal’ cut-
point is determined within each subset and is used to dichotomize observations in the other
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subset. With this procedure, three usually different ‘optimal’ cutpoints are estimated. The
approach defines a single dichotomization for all patients and is used for calculating the HR
and P-value. The ‘optimal’ cutpoint from the original data is retained for later use.

Mazumdar et al. [24] stressed that if the underlying clinical setting is truly multivariable,
the cutpoint search should incorporate other important variables. The same point was made
earlier by Faraggi and Simon [14]. In epidemiological language, one should adjust for such
variables in some way. However, Mazumdar et al. [24] give no suggestions or comments
on how to determine the adjustment model. Mazumdar et al.’s proposed modification of the
Faraggi—Simon method is to search for the three cutpoints as before, but adjusting for these
other variables. Assuming in a simulation study that other correlated variables influence the
outcome, they show that their modification improves power and reduces bias in the estimated
HR and the cutpoint when the true model has a cutpoint.

We will exemplify some properties and difficulties of this recent approach in an example
data set.

2.6. Impact of dichotomizing more than one explanatory variable

In practice, there is often more than one continuous explanatory variable in a regression
analysis. The effect of dichotomization of two X variables will depend on the correlation
coefficients between them and the response (Y), and cannot easily be predicted. Under some
conditions, the inclusion of two dichotomized correlated variables can lead to a spurious
relation between an X variable and Y [1,6]. It is especially likely to occur when the partial
correlation between one X variable and Y is close to zero. Also, this scenario can lead to
spuriously significant interactions between X variables [1].

These findings suggest that regression models with two or more dichotomized continuous
explanatory variables could be seriously misleading, both in respect of which variables are
significant in the model, and perhaps also with respect to the overall predictive ability. If
some of the cutpoints were selected using a data-dependent method, problems would worsen.

3. ILLUSTRATIVE ANALYSES

3.1. PBC data set

We use for illustration data from a randomized controlled trial in patients with primary bil-
iary cirrhosis [25]. Between 1971 and 1977, 248 patients were randomized to receive either
azathioprine or placebo with follow up until 1983. After removing 41 (17 per cent) of cases
with missing values or no patient follow-up, data on 207 patients (105 deaths) in the PBC
data set were available for analysis. We considered as candidate predictors the covariates
age, albumin, bilirubin, central cholestasis, and cirrhosis. Age, albumin and bilirubin were
continuous measurements and the other two were binary. The data were analysed by Cox
regression.

3.2. Multivariable analysis of continuous and categorical predictors

To build a model involving a mix of continuous and binary predictors, we used the multivari-
able fractional polynomial (MFP) algorithm [4,26]. In brief, the aim is to keep continuous
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predictors continuous in the model. To do this successfully, potentially non-linear relationships
must be accommodated. One approach is by using fractional polynomial functions. Univari-
ate fractional polynomial models (see Reference [27] for a short introduction) were extended
Reference [26] to allow simultaneous estimation of fractional polynomial functions of sev-
eral continuous covariates. The user must prespecify the maximum complexity (degree) of
fractional polynomial for each continuous predictor (usually 2), and the nominal significance
level for testing variables and functions (often 0.05). The algorithm removes uninfluential
predictors by applying backward elimination at the predefined significance level. It proceeds
cyclically. The significance and functional form of each continuous predictor in turn are
determined univariately, adjusting for all continuous and categorical predictors currently in
the model. Convergence occurs when no further changes to selected variables and their frac-
tional polynomial transformations take place. Convergence typically requires two to three
cycles.

3.3. Multivariable analysis of the PBC data

For comparison with cutpoint approaches, we developed a multivariable prognostic model
for the PBC data by applying the MFP procedure just outlined. We took a second-degree
fractional polynomial as the most complex permitted function, and selected variables and
functions of continuous variables by using a nominal P-value of 0.05. All models were ad-
justed for randomized treatment. The Cox model selected by the MFP procedure comprised
cirrhosis, central cholestasis, age (untransformed), and log bilirubin. Albumin was not statisti-
cally significant when tested in the form of its best-fitting second degree fractional polynomial
function, and was eliminated. At the final cycle of the algorithm, the test of a second degree
fractional polynomial for bilirubin versus a linear function had y?=27.9 on 3 degrees of
freedom (d.f.) (P < 0.001), clear evidence that a straight line was not an adequate fit for this
variable. The test of a first degree fractional polynomial versus the second degree function had
%2?>=0.1 on 2 d.f. (P=0.9), showing that the simpler (logarithmic) function was acceptable.

3.4. ‘Optimal’ cutpoint for age

We first consider deriving an ‘optimal’ cutpoint for age. The model x> was found for each
candidate cutpoint in the central 90 per cent of observations ranging from 41 to 69 years, first
univariately, then adjusting for the other factors (cirrhosis, central cholestasis, log bilirubin
and treatment) from the MFP model. We define a binary variable representing dichotomization
of X at X* as 0 if X < X* and 1 otherwise.

The top left panel of Figure 1 shows that the ‘optimal’ cutpoint in a univariate analysis is
at 45 years, with a y? of about 10. After adjusting for three variables and treatment (Figure 1,
top right panel) the ‘optimal’ cutpoint shifts to 65 years and has a y? value of about 20. The
%2 values are very unstable and are not conventionally significant for several cutpoints. Note
that 52 years is nearly as good as the ‘optimal’ cutpoint in the adjusted analysis. The estimated
HR fluctuates widely across cutpoints, particularly in the adjusted analysis (Figure 1, bottom
right panel). When the cutpoint on age is large, the risk for patients classified as ‘old’ is
much increased, but only a few patients fall into such a subgroup. For example for a cutpoint
of 65 years, only 14.5 per cent of patients would fall into the ‘old’ group.
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Figure 1. Derivation of the ‘optimal’ cutpoint for age, unadjusted (left panels) and adjusted for three

other prognostic factors and treatment (right panels). Upper panels show the y2, the lower and upper

horizontal lines denoting the critical values of the y? distribution on 1 d.f. for testing significance at

the 5 and 1 per cent levels, respectively. Lower panels show the HR for comparing ‘old” with ‘young’
age by using dichotomization at the different ages shown.

3.5. Evaluation of the twofold cross-validation method

We applied Mazumdar et al.’s [24] extension of Faraggi and Simon’s [14] twofold cross-
validation procedure in 50 replicates to estimate the log HR and its 95 per cent confidence
interval, adjusting for three prognostic variables and treatment. A different random number seed
was used each time. The results are plotted ordered by the HR in Figure 2. The estimated HR
has a large variance between replicates and a positively skew distribution, making it unclear
how large the influence of age is. The median HR is 1.8, and this may be compared with the
value of 4.2 for the ‘optimal’ cutpoint (see Figure 1, bottom right panel).

Figure 3 compares the cutpoints obtained in the two subsets across the 50 replications.
About one half of the paired cutpoints are identical. Ignoring the arbitrary ordering between
“first” and ‘second’ cutpoints, most (41/50) of the paired cutpoints are very different, with one
cutpoint, in the lower group, around 52 years and the other around 65 years. In only 1/50
replications was the same cutpoint (65 years) chosen in both halves. It is questionable whether
estimates of HRs and P-values based on dichotomizations from such different cutpoints in the
two halves have any merit.
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3.6. Derivation of risk groups

There is no obvious reason to produce a prognostic model with one or more categorized
continuous variables when the resulting linear predictor will still take many values. However,
there is a real point in creating risk groups from such a model—not least, as an aid to
making clinical decisions about therapy. Accordingly, we prefer first to derive a continuous
risk score from a model in which all relevant covariates are kept continuous, and then to
apply categorization at the final step. Patients are divided into several groups for clinical
application by applying cutpoints to the risk score. Royston and Sauerbrei [28] suggest an
approach to choosing a ‘reasonable’ number of risk groups loosely based on the idea that
the HR between neighbouring groups should be statistically significantly different from 1. In
the present example, it turns out that four groups is the maximum that may be entertained
to maintain such separation of the hazard between neighbouring groups. Figure 4 shows
Kaplan—Meier survival curves for four groups with equal numbers of events in each, derived
from a risk score calculated from the MFP model. The patients separate nicely into low,
low intermediate, high intermediate and high risk groups, the probability of surviving 3 years
ranging from about 25 to 90 per cent.

3.7. Adjustment of a treatment effect

The PBC data originate from a randomized controlled trial of azathioprine versus placebo.
In PBC, serum bilirubin concentration is a powerful predictor of survival time, and even
slight imbalance in this factor between randomized groups could induce bias in the estimated
treatment effect. There was indeed a small imbalance between the groups in log bilirubin
of 0.23 SD units. Estimating the treatment effect within a multivariable model is the usual
approach to adjusting for the imbalance. We assessed the robustness of the estimated treatment
effect to alternative ways of modelling the prognostic effect of bilirubin. Table I shows the

Ly — Group 1

—=—= Group 2
---------- Group 3

0.8 —-—- Group 4

0.61

0.44

Survival probability

0.2

Survival time (yr)

Figure 4. Prognostic groups for PBC data based on categorizing the risk score from the MFP model.
Groups 1-4 contain 103, 39, 36 and 29 patients, respectively, with 26, 26, 27 and 26 events (deaths).
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Table 1. Estimated treatment effect in PBC data using different confounder models.

Model no. Adjustment for bilirubin HR for treatment 95 per cent CI P-value for treatment
1 None 0.83 0.57, 1.22 0.348
2 Median cutpoint 0.76 0.51, 1.12 0.170
3 ‘Optimal’ cutpoint 0.72 0.49, 1.06 0.094
4 Four groups 0.67 0.45, 0.99 0.046
5 Eight groups 0.58 0.38, 0.87 0.009
6 Linear 0.61 0.41, 0.91 0.015
7 Quadratic 0.58 0.39, 0.86 0.007
8 FP1 0.61 0.41, 0.90 0.014
9 FP2 0.60 0.40, 0.89 0.011

10 Spline with 4 e.d.f. 0.59 0.39, 0.87 0.008

11 Multivariable (MFP) 0.61 0.41, 0.90 0.014

The strong prognostic factor bilirubin is handled differently in each model, whereas identical adjustment for
age, cirrhosis and central cholestasis is applied. See text for details.

results of the investigation with 11 different adjustment models. In model 1 no adjustment is
applied. In models 2—10, adjustment is done for age (linear), cirrhosis and central cholestasis
together with various transformations of bilirubin: median cutpoint (32 mmol/1), ‘optimal’
univariate cutpoint (45 mmol/1), four and eight equal-sized groups, linear, quadratic, FP1, FP2
and spline functions. In model 11, adjustment is by a multivariable model derived by the MFP
approach. The notation ‘FPm’ denotes a fractional polynomial function of degree m, i.e. with
m terms. The best FP1 and FP2 models for bilirubin were f; In X and X% + f,X% In X,
respectively. The spline model was a generalized additive model (GAM) [3] using a cubic
smoothing spline for bilirubin with four equivalent d.f. Model 1, with no adjustment, gives
the smallest estimated treatment effect. Models 2—4, with adjustment using categorization
models, give HRs for comparing treatments rather closer to 1 than models 5—11, which have
adjustment for bilirubin with many (8) groups or on a continuous scale. The treatment effects
agree closely between models 5 and 11, even when the misspecified linear function is used for
bilirubin. Both cutpoint adjustment models perform quite poorly. Even four groups (model
4) are not enough to abolish the effect of the imbalance in bilirubin. The large differences
between the unadjusted model and the ‘successfully’ adjusted models 5—11 indicate that this
study is a rather extreme example of a trial in which randomization did not completely balance
the two treatment groups with respect to disease severity. The effect is analogous to residual
confounding in epidemiological studies [15—17]. The unadjusted treatment effect has a P-value
of 0.35, whereas the adjusted effects for models 5—11 have P-values of around 0.01.

3.8. Loss of information due to dichotomization

We compared the information content and ability to discriminate outcomes between three
models for the PBC data. All models included the two continuous and two binary prognostic
factors identified by the MFP procedure, and treatment. In model 1 both age and bilirubin were
dichotomized at the median. In model 2 ‘optimal’ cutpoints, determined univariately, replaced
median cutpoints. Model 3 was an MFP model with all continuous variables retained as
continuous (see Section 3.3). Table II shows the model y? statistic (calculated from differences
in twice the log partial likelihood), c-index, D measure of separation [28] and its associated
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Table II. Quantifying the loss of information in two cutpoint models for the PBC data, compared
with model 3 in which continuous variables were retained as continuous.

Model 1 Model 2 Model 3
Measure Median cutpoint ‘Optimal’ cutpoint Continuous
Model z* 94.6 99.2 136.8
c-index 0.778 0.774 0.814
D 1.91 2.02 2.55
R}, 0.465 0.494 0.608

1007 woptimal” cutpoint (45)
———— Linear ///
—— MFP [ e
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Figure 5. Functional form of the effect of bilirubin on the relative hazard according to the ‘op-

timal’ cutpoint of 45mmol/l (determined univariately) and three continuous models (adjusted for

three other prognostic factors and treatment). Functions are standardized such that the HR is

1 at the mean bilirubin (61.9 mmol/l). The short vertical lines on the horizontal axis indicate
the values of bilirubin measurements.

R% measure of explained variation. The increase in model y? for the continuous model 3
compared with both cutpoint models is >37, and the variance explained by model 3 is much
higher. The c-index does not show the differences between models so clearly. The loss of
information due to dichotomization is slightly less with ‘optimal’ cutpoints. The estimated
treatment effect within models 1-3 is 0.74, 0.76 and 0.61, respectively.

3.9. Functional form

It is of interest to compare a cutpoint model for bilirubin with the continuous functions
estimated by methods retaining continuous predictors as continuous. Figure 5 compares the
univariate ‘optimal’ cutpoint (45 mmol/l) with linear and spline functions, and the function
(here, log) selected by MFP. Clearly, the effect of bilirubin according to the cutpoint model
is unrealistic. Also, the associated HR of 4.2 seems greatly to underestimate the range of
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hazards seen with the continuous functions. Furthermore, none of the estimated continuous
functions offers any justification for the data-driven choice of 45 mmol/l as a cutpoint. For
most values of bilirubin above the mean, the straight line model probably underestimates the
hazard. The MFP and spline models generally agree closely, but the spline model suggests a
biologically implausible reduction in hazard for very high values of bilirubin.

4. DISCUSSION

It is well recognized in the methodological literature that dichotomization of continuous vari-
ables introduces major problems in the analysis and interpretation of models derived in a
data-dependent fashion. Nevertheless, dichotomization of continuous variables is widespread
in clinical research. Problems include loss of information, reduction in power, uncertainty in
defining the cutpoint, arriving at a biologically implausible step function as the estimate of
a dose-response function, and the impossibility of detecting a non-monotonic dose-response
relation. Uncertainty in how to select a ‘sensible’ cutpoint to group a continuous variable into
two classes has led researchers to use either the median or an ‘optimal’ cutpoint. The latter
approach gives a highly inflated type 1 error probability, together with biased parameter esti-
mates and variances that are too small [9, 11]. Although some remedies for these difficulties
have been developed [9,21-23], none of the authors of these papers actually recommends
the use of ‘optimal’ cutpoints with their proposed corrections. In general, the situation seems
hardly to have improved since the advice in 1993 of Maxwell and Delaney [1] to avoid
dichotomization, quoted at the beginning of this paper.

Faraggi and Simon [14] put forward a method in which ‘optimal’ cutpoints are determined
in three samples (overall and in two subsamples). The cutpoint determined in the overall
sample is meant to be used in general applications. These authors showed by simulation that
a realistic P-value and a nearly unbiased estimate of the HR are obtained by twofold cross-
validation. ‘Optimal’ cutpoints are found separately in each subset, and the cutpoint from
one subset is then used to classify patients in the other subset. Because the cutpoint used to
dichotomize the patients in a given subset is determined independently of these patients, the
P-values and HR estimates from dichotomized data in the overall sample are claimed to be
approximately valid. Unfortunately, this ingenious idea for coping with problems in statistical
analysis introduces fresh difficulties in interpretation and general use. In 41/50 replicate runs
of the procedure in the PBC study, we obtained an ‘optimal’ cutpoint for age in one subset of
about 52 years and a corresponding value of around 65 years in the other. A patient aged 60
would be classified as ‘young’ in one subset and ‘old’ in the other. The ‘optimal’ cutpoint in
the overall sample is 65, but the y? value for the cutpoint 52 is nearly as large (20.3 versus
20.7).

Recently, Mazumdar et al. [24] extended Faraggi and Simon’s approach by finding the
‘optimal’ cutpoint for a variable of interest in a multivariable setting with adjustment for
other factors. Assuming an underlying cutpoint model and a multivariate correlation structure
between several continuous variables, they showed by simulation that the power was increased
and estimates of the HR and the cutpoint were less biased when compared with the univariate
approach. They also compared it with a split-sample approach. In the latter, an ‘optimal’
cutpoint is determined in a 50 per cent random subsample and used to classify patients in
the complementary half. Compared with cross-validation, the split-sample method had lower
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power and more biased estimates of the HR and cutpoint. The findings are as expected, since
in the split-sample method, the sample size for the estimates and tests is reduced by half
(see Reference [29] for further arguments against such an approach). Unfortunately, Mazumdar
et al. [24] do not mention how to define the multivariable model. In an example in which
identification of a group of patients at high risk of relapse from prostate cancer was required,
they note that the search for a cutpoint for lactate dehydrogenase (LDH) gave different results
in the univariate and multivariable settings. In the penultimate sentence of their paper, they
stress that ‘to incorporate the new markers in the decision-making process, categorization
of these variables is essential’. We feel that this statement contradicts their own simulation
results in which they demonstrate a substantial loss of power when a cutpoint model is used
in cases where a smooth relationship exists between a continuous covariate and the outcome.

Instead of dichotomizing a continuous variable, we prefer to obtain a prognostic index by
methodology which combines selection of variables with selection of functions for continuous
variables [4,26]. As stated in an editorial [2] in an epidemiological journal a decade ago, ‘these
elegant approaches [fractional polynomials and splines] merit a larger role in epidemiology.’
Clinical researchers should in general avoid dichotomization at the model-building stage and
adopt more powerful methods. In our analysis of the data from the PBC study, we compared
several different approaches to creating a prognostic index. Explained variation was smallest
for the model based on the median cutpoint, 6 per cent higher for the index derived with
the ‘optimal’ cutpoint and 31 per cent higher for the MFP model. Although these figures
will be slight over-estimates because no allowance has been made for data-dependent model-
building, the advantage of using full information is obvious. We agree that medical decision-
making often requires categorization of data, e.g. to define a high-risk group of patients for
a clinical trial, as in Reference [24] example. However, categorization should be applied
to the prognostic index, not to the original prognostic variables. Not to do so risks a loss
of discrimination through inefficient use of the full information available with a continuous
prognostic index.

By estimating the treatment effect in the PBC data within different adjustment models, we
showed that the method used to adjust for an unbalanced, strongly prognostic variable can in-
fluence the result. Adjustment for bilirubin dichotomized at the median cutpoint does not fully
correct for imbalance. Epidemiologists would state that there was residual confounding. Use
of more groups or the full information from the continuous variable further reduces residual
confounding and results in larger estimates of the treatment effect. This finding agrees with
simulation studies in the epidemiological literature on the ability to reduce residual confound-
ing by categorized variables [15, 17, 30]. Brenner and Blettner [17] state that ‘inclusion of the
confounder as a single linear term often provides satisfactory control for confounding even
in situations in which the model assumptions are clearly violated. In contrast, categorization
of the confounder may often lead to serious residual confounding if the number of categories
is small.” The most extreme situation of two categories seems to have been abandoned in
epidemiological studies.

For model building with continuous data, software is available for methods such as mul-
tivariable fractional polynomials [31,32] and GAMs (e.g. in S-plus and R). Royston and
Sauerbrei [33] demonstrated in a detailed resampling study that over-fitting and the resulting
instability need not be a serious issue with MFP models. Even the use of conventional polyno-
mials would in general improve on dichotomization. These methods should replace analyses
using dichotomized continuous variables. Preference for one particular approach should be
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guided by parsimony, an important criterion for selecting the simplest adequate descriptor of
a functional form [2].
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