Arie Staal

Arie Staal
Utrecht University | UU · Copernicus Institute of Sustainable Development

PhD in Ecology

About

86
Publications
56,971
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,185
Citations
Introduction
I study the resilience of tropical forests and savannas by combining dynamic modeling and satellite-data analysis. I can also be followed on Twitter: @ArieStaal.
Additional affiliations
November 2018 - present
Stockholm Resilience Centre
Position
  • PostDoc Position
November 2017 - October 2018
Wageningen University & Research
Position
  • PostDoc Position
November 2013 - present
Wageningen University & Research
Position
  • PhD Student
Education
September 2011 - October 2013
Utrecht University
Field of study
  • Environmental Sciences
September 2008 - August 2011
Utrecht University
Field of study
  • Environmental Sciences

Publications

Publications (86)
Preprint
Full-text available
The Mediterranean Basin is identified as a climate change hotspot and prone to future drying. Previous studies indicate that the effect of forests on precipitation remains unclear for the Mediterranean Basin specifically. Here we use a simple model to simulate the development of the atmospheric boundary layer (ABL) to determine the impact of forest...
Article
Full-text available
Many areas across the globe rely for their precipitation supply on terrestrial precipitation recycling, which is the amount of precipitation that has evaporated from upwind land areas. Global warming and land-use changes may affect the future patterns of terrestrial precipitation recycling, but where and to which extent remains unclear. To study ho...
Article
The concept of “irreversibility” and its counterpart “reversibility” have become prominent in environmental and ecological research on human-induced changes, thresholds, climate tipping points, ecosystem degradation, and losses in the cryosphere and biosphere. Through a systematic literature review, we show that in these research fields, these noti...
Article
Full-text available
Tropical forest and savanna frequently coexist under the same climatic conditions, which has led to the hypothesis that they could represent alternative ecosystem states, stabilized by internal feedbacks. An implication of this hypothesis is that forest and savanna may be bistable and exhibit tipping behavior in response to changing conditions. How...
Article
Full-text available
The Atlantic meridional overturning circulation (AMOC) and the Amazon forest are viewed as connected tipping elements in a warming climate system. If global warming exceeds a critical threshold, the AMOC may slow down substantially, changing atmospheric circulation and leading to Amazonia becoming drier in the north and wetter in the south. Yet, th...
Article
Full-text available
Mediterranean areas are projected to face increased water scarcity due to global changes. Because a relatively large fraction of the precipitation in Mediterranean areas originates locally, changes at the land surface may further dampen local precipitation. Here, we study the contribution of evaporation to local precipitation for the first time on...
Article
Full-text available
As a key region supplementing China's limited croplands, Northwest China has undergone rapid cropland expansion over the past decades to satisfy rising food demand from population growth and socio‐economic development. Although cropland expansion may overconsume local water resources in general, in Northwest China, increased precipitation and enhan...
Preprint
Full-text available
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Global warming and land-use changes may affect the future patterns of terrestrial precipitation recycling, but where and to which extent remains unclear. To study how the global patterns of precipitation recycling may ch...
Article
Full-text available
The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting...
Article
Full-text available
Human actions compromise the many life-supporting functions provided by the freshwater cycle. Yet, scientific understanding of anthropogenic freshwater change and its long-term evolution is limited. Here, using a multi-model ensemble of global hydrological models, we estimate how, over a 145-year industrial period (1861–2005), streamflow and soil m...
Article
Full-text available
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1–3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, defor...
Article
Full-text available
The Amazon rainforest is considered one of the Earth's tipping elements and may lose stability under ongoing climate change. Recently a decrease in tropical rainforest resilience has been identified globally from remotely sensed vegetation data. However, the underlying theory assumes a Gaussian distribution of forest disturbances, which is differen...
Article
Full-text available
Forestation efforts are accelerating across the globe in the fight against global climate change, in order to restore biodiversity, and to improve local livelihoods. Yet, so far the non‐local effects of forestation on rainfall have largely remained a blind spot. Here we build upon emerging work to propose that targeted rainfall enhancement may also...
Article
Full-text available
Extreme precipitation events and associated flash floods caused by synoptic cyclonic systems profoundly impact society and the environment, particularly in arid regions. This study brings forward a satellite-reanalysis-based approach to quantify extreme precipitation characteristics over the Sinai Peninsula (SiP) in Egypt from a statistical–synopti...
Article
Full-text available
The southeastern Amazon has recently been shown to be a net carbon source, which is partly caused by drying conditions. Drying depends on a number of factors, one of which is the land cover at the locations where the moisture has originated as evaporation. Here we assess for the first time the origins of the moisture that precipitates in the Amazon...
Article
Full-text available
Changes in evaporation over land affect terrestrial precipitation via atmospheric moisture recycling and, consequently, freshwater availability. Although global moisture recycling at regional and continental scales is relatively well understood, the patterns of local moisture recycling and the main variables that impact it remain unknown. We calcul...
Article
Full-text available
In July 2021, parts of Germany and Belgium were hit by severe floods. In ‘The central role of forests in the 2021 European floods’, published in Environmental Research Letters (2022 Environ. Res. Lett. 17 064053), Insua-Costa et al reported that ‘moisture from North American forests was a more important source [of the rainfall contributing to the e...
Preprint
A substantial amount of the tropical forests of South America and Africa is generated through moisture recycling (i.e., forest rainfall self-reliance). Thus, deforestation that reduces evaporation and dampens the water cycle can further increase the risk of water-stress-induced forest loss in downwind areas, particularly during water scarce periods...
Article
Greening of the planet has increased global surface water availability, but vegetation changes can have diverse local and remote impacts across different regions.
Article
Full-text available
Earth’s hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global hy...
Article
Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global "core" tipping elements and regional "impact" tipping elements and the...
Article
Full-text available
Rapid technological advancements and increasing data availability have improved the capacity to monitor and evaluate Earth's ecology via remote sensing. However, remote sensing is notoriously ‘blind’ to fine‐scale ecological processes such as interactions among plants, which encompass a central topic in ecology. Here, we discuss how remote sensing...
Preprint
Full-text available
Changes in evaporation over land affect terrestrial precipitation via atmospheric moisture recycling and consequently freshwater availability. Although global moisture recycling at regional and continental scales are relatively well understood, the patterns and drivers of local moisture recycling remain unknown. For the first time, we calculate the...
Article
Full-text available
Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food produ...
Article
Full-text available
Tipping elements are nonlinear subsystems of the Earth system that have the potential to abruptly shift to another state if environmental change occurs close to a critical threshold with large consequences for human societies and ecosystems. Among these tipping elements may be the Amazon rainforest, which has been undergoing intensive anthropogenic...
Preprint
Full-text available
Human actions compromise the many life-supporting functions of the global freshwater cycle. Yet, an encompassing analysis of humanity’s aggregate impact on the freshwater cycle is still missing. We compare the current state of the freshwater cycle against a stable reference state by estimating the global area experiencing streamflow and soil moistu...
Article
Full-text available
Tropical forests are complex systems containing myriad interactions and feedbacks with their biotic and abiotic environments, but as the world changes fast, the future of these ecosystems becomes increasingly uncertain. In particular, global stressors may unbalance the feedbacks that stabilize tropical forests, allowing other feedbacks to propel un...
Article
Full-text available
[Free access to the full text at: https://rdcu.be/cL78K] Green water — terrestrial precipitation, evaporation and soil moisture — is fundamental to Earth system dynamics and is now extensively perturbed by human pressures at continental to planetary scales. However, green water lacks explicit consideration in the existing planetary boundaries fra...
Preprint
Full-text available
Extreme precipitation events and associated flash floods caued by the synoptic cyclonic-systems have profound impacts on society and the environment particularly in dry regions. This study brings forward a satellite-reanalysis-based approach to quantify the extreme precipitation characteristics over the Sinai Desert in Egypt, from a statistical-syn...
Preprint
Full-text available
Earth's hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here, we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global h...
Article
Full-text available
Forest restoration is increasingly applied as a climate change mitigation measure. Apart from sequestering carbon, the large-scale addition of trees on Earth may enhance global precipitation levels. Here we estimate the global precipitation effects of the global forest potential by estimating its effects on evaporation and simulating the downwind p...
Article
Full-text available
Precipitation recycling is essential to sustaining regional ecosystems and water supplies, and it is impacted by land development and climate change. This is especially true in the tropics, where dense vegetation greatly influences recycling. Unfortunately, large-scale models of recycling often exhibit high uncertainty, complicating efforts to esti...
Preprint
Full-text available
Several safe boundaries of critical Earth system processes have already been crossed by human perturbations. Recent research indicates that not accounting for the interactions between these processes may further narrow the safe operating space for humanity. Yet existing work accounts only for transgression of single boundaries and only a few studie...
Article
Aim We aimed to evaluate the vulnerability of the Amazon forest to post-fire grass invasion under present and future climate scenarios. Location Amazon Basin. Time period 1981–2017 and 2070–2099. Major taxa studied Plants. Methods We combined a fire–ecosystem model with remote sensing data and empirically-derived equations to evaluate the effec...
Article
Full-text available
The Amazon forest enhances precipitation levels regionally as trees take up water from the soil and release it back into the atmosphere through transpiration. Therefore, land-use changes in the Amazon affect precipitation patterns but to what extent remains unclear. Recent studies used hydrological and atmospheric models to estimate the contributio...
Article
Full-text available
Atmospheric moisture recycling effectively increases the amount of usable water over land as the water can undergo multiple precipitation–evapotranspiration cycles. Differences in land cover and climate regulate the evapotranspiration flux. Forests can have deep roots that access groundwater facilitating transpiration throughout the dry season inde...
Article
Full-text available
Tipping elements occur in various systems such as in socio-economics, ecology and the climate system. In many cases, the individual tipping elements are not independent of each other, but they interact across scales in time and space. To model systems of interacting tipping elements, we here introduce the PyCascades open source software package for...
Article
Full-text available
A key Earth system process is the circulation of evaporated moisture through the atmosphere. Spatial connections between evaporation and precipitation affect the global and regional climates by redistributing water and latent heat. Through this atmospheric moisture recycling, land cover changes influence regional precipitation patterns, with potent...
Preprint
Full-text available
Tipping elements occur in various systems such as in socio-economics, ecology and the climate system. In many cases, the individual tipping elements are not independent from each other, but they interact across scales in time and space. To model systems of interacting tipping elements, we here introduce the PyCascades open source software package f...
Article
Full-text available
Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional...
Preprint
Full-text available
Tipping elements are nonlinear subsystems of the Earth system that can potentially abruptly and irreversibly shift if environmental change occurs. Among these tipping elements is the Amazon rainforest, which is threatened by anthropogenic activities and increasingly frequent droughts. Here, we assess how extreme deviations from climatological rainf...
Preprint
Full-text available
A key Earth system process is the circulation of evaporated moisture through the atmosphere. Spatial connections between evaporation and precipitation affect the global and regional climates by redistributing water and latent heat. Through this atmospheric moisture recycling, land-cover changes influence regional precipitation patterns, with potent...
Article
Full-text available
Many processes in hydrology and Earth system science relate to continental moisture recycling, the contribution of terrestrial evaporation to precipitation. For example, the effects of land-cover changes on regional rainfall regimes depend on this process. To study moisture recycling, a range of moisture-tracking models are in use that are forced w...
Conference Paper
Full-text available
Over the past 15 years climate tipping points have emerged as both an important research topic and source of public concern. Some articles have suggested that some tipping points could begin within the 1.5-2oC Paris climate target range, with many more potentially starting by the ~3-4oC of warming that current policy is projected to be committed to...
Article
Full-text available
Background Tropical forests are threatened by intensifying natural and anthropogenic disturbance regimes. Disturbances reduce tree cover and leave the organic topsoil vulnerable to erosion processes, but when resources are still abundant forests usually recover. Scope Across the tropics, variation in rainfall erosivity – a measure of potential soi...
Article
Full-text available
In the original version of this article, the following text must be added in the acknowledgement. M.H., B.M.F. and R.S.O. acknowledge the project grant from Instituto Serrapilheira/Serra-1709–18983.
Article
Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy, and engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled...
Article
Full-text available
Deforestation and drought are among the greatest environmental pressures on the Amazon rainforest, possibly destabilizing the forest-climate system. Deforestation in the Amazon reduces rainfall regionally, while this deforestation itself has been reported to be facilitated by droughts. Here we quantify the interactions between drought and deforesta...
Article
Full-text available
In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erdős–Rényi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs ar...
Preprint
Full-text available
Deforestation and drought are among the greatest environmental pressures on the Amazon rainforest, possibly destabilizing the forest-climate system. Deforestation in the Amazon reduces rainfall regionally, while this deforestation itself has been reported to be facilitated by droughts. Here we quantify the interactions between drought and deforesta...
Preprint
Full-text available
In this study, we investigate how specific micro interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erd\"os-R\'enyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motif...
Preprint
Full-text available
Abstract. Many processes in hydrology and Earth system science relate to moisture recycling, the contribution of terrestrial evaporation to precipitation. For example, the effects of land-cover changes on regional rainfall regimes depend on this process. To study moisture recycling, a range of moisture tracking models are in use that are forced wit...
Article
Full-text available
Livestock grazing is the most extensive human land use and one of the key drivers of the conversion of tropical forests into grasslands. Livestock effects on vegetation structure are complex, as they can prevent tree recruitment and growth through browsing and trampling, but they can also affect vegetation indirectly through fire interactions. Howe...
Preprint
Full-text available
Interactions among climate change, deforestation and fires are changing the stability of the Amazon forest, and may promote transitions to degraded grassy ecosystem states. However, our ability to predict the locations in the Amazon that are most vulnerable to these transitions is limited. In this study we used a dynamic carbon model to evaluate ho...
Preprint
Full-text available
Tipping points occur in a lot of systems in various disciplines such as ecology, climate science, economy or engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled m...
Article
Full-text available
Fires and herbivores shape tropical vegetation structure, but their effects on the stability of tree cover in different climates remains elusive. Here we integrate empirical and theoretical approaches to determine the effects of climate on fire‐ and herbivore‐driven forest‐savanna shifts. We analyzed time series of remotely sensed tree cover and fi...
Article
Full-text available
Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Am...
Article
Full-text available
Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using...
Data
The ranges of tree cover above which the fire frequency drops (see also Fig 3). The range of the steepest drop is defined as the area where the fire frequency is between 25% and 75% of the maximum. (PDF)
Data
Multimodality in tree cover and the shape of the fire function match within different classes of mean annual precipitation (MAP in mm yr-1) for all tropics. The grayed areas approximate the range of logistic growth functions where alternative stable states are possible. a: MAP<500 mm yr-1; b: MAP between 500 and 1000 mm yr-1; c: MAP between 1000 an...