
Ariane R PessentheinerKarl-Franzens-Universität Graz | KFU Graz · Institute of Molecular Biosciences
Ariane R Pessentheiner
Dr. techn. MSc.
About
36
Publications
6,745
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,111
Citations
Introduction
Ariane R Pessentheiner currently works at the Department of Medicine, University of California, San Diego. Ariane does research in Cell Biology, Nutritional Biochemistry and Nutrition and Dietetics. Her most recent publication is 'Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance'.
Additional affiliations
March 2017 - present
October 2014 - December 2016
Publications
Publications (36)
Adipose tissue (AT) plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like AT become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans,...
Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of Type IIIa mucopolysacchari...
Introduction: Apolipoprotein C-III (apoC-III) is a key regulator in triglyceride (TG) metabolism and correlates positively with hypertriglyceridemia and incidences of CVD. Recent studies also identified apoC-III as an inducer of sterile inflammation by activating the inflammasome, another CVD risk factor. It remains unclear if therapeutic apoC-III...
Adipose tissue (AT) plays a crucial role in maintaining me tabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like AT become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, glycocalyx modulating as a pharmacological treatment strat...
Macrophages contribute to the induction and resolution of inflammation and play a central role in the chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we i...
Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects cholesterol homeostasis by targeting hepatic LDL receptor (LDLR) for lysosomal degradation. Clinically, PCSK9 inhibitors effectively reduce LDL-cholesterol (LDL-C) levels and the incidence of cardiovascular events. Because microRNAs (miRs) are integral regulators of cholesterol homeostas...
BACKGROUND
Blood group A and B antigens are synthesized by glycosyltransferases regulated by a complex molecular genetic background. A multibase deletion in the ABO gene was identified in two related blood donors. To define its hereditary character and to evaluate genotype–phenotype associations, a detailed study including 30 family members was con...
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of...
G protein-coupled receptor 120 (GPR120) and PPARγ agonists each have insulin sensitizing effects. But whether these two pathways functionally interact and can be leveraged together to markedly improve insulin resistance has not been explored. Here, we show that treatment with the PPARγ agonist rosiglitazone (Rosi) plus the GPR120 agonist Compound A...
Type‐2 diabetes, a is a global epidemic that currently drives an enormous health and economic burden. The disease is chronic condition in which blood glucose levels are deregulated due to insulin resistant in metabolic tissues, such as liver, muscle and adipose tissue. Recently, fibroblast growth factor 1 (FGF1) has been implicated in promoting ins...
Heparan sulfate (HS) proteoglycans are important components of cells and the extracellular microenvironment. Interaction between growth factors and receptors is often modulated by the amount and degree of HS sulfation. We hypothesize that natural variation in HS composition on adipocytes serves as a rheostat for adipocyte function and impacts susce...
N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adip...
Hypertriglyceridemia results from accumulation of triglyceride (TG)-rich lipoproteins (TRLs) in the circulation and is associated with increased CVD risk. ApoC-III is an apolipoprotein on TRLs and a prominent negative regulator of TG catabolism. We recently established that in vivo apoC-III predominantly inhibits LDL receptor-mediated and LDL recep...
Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose trea...
Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP in vivo We generated Apmap-knockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We ident...
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate t...
Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production....
Objective
Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARg).
Methods
To assess the specifi...
The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recently it has been shown that recruited hepatic macrophages (RHMs) represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver i...
It is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and incre...
Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly...
Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting.
We inves...
N-acetyltransferase 8-like (Nat8l) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expr...
Proteins of the activator protein-1 family are known to have roles in many physiological processes such as proliferation, apoptosis, and inflammation. However, their role in fat metabolism has yet to be defined in more detail. Here we study the impact of JunB deficiency on the metabolic state of mice. JunB knockout (JunB-KO) mice show markedly decr...
We have developed a method for reconstructing gene association networks and have applied this method to gene profiles from 3T3-L1 cells. Priorization of the candidate genes pinpointed a transcript annotated as APMAP (adipocyte plasma membrane-associated protein). Functional studies showed that APMAP is upregulated in murine and human adipogenic cel...