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Abstract

With the availability of DNA-based molecular markers during early 1980s and that of
sophisticated statistical tools in late 1980s and later, it became possible to identify geno-
mic regions that control a quantitative trait. The two methods used for this purpose
included quantitative trait loci (QTL) interval mapping and genome-wide association
mapping/studies (GWAS). Both these methods have their own merits and demerits,
so that newer approaches were developed in order to deal with the demerits. We have
now entered a post-GWAS era, where either the original data on individual genotypes
are being used again keeping in view the results of GWAS or else summary statistics
obtained through GWAS is subjected to further analysis. The first half of this review
briefly deals with the approaches that were used for GWAS, the GWAS results obtained
in somemajor crops (maize, wheat, rice, sorghum and soybean), their utilization for crop
improvement and the improvements made to address the limitations of original GWA
studies (computational demand, multiple testing and false discovery, rare marker alleles,
etc.). These improvements included the development of multi-locus and multi-trait
analysis, joint linkage association mapping, etc. Since originally GWA studies were used
for mere identification of marker-trait association for marker-assisted selection, the sec-
ond half of the review is devoted to activities in post-GWAS era, which include different
methods that are being used for identification of causal variants and their prioritization
(meta-analysis, pathway-based analysis, methylation QTL), functional characterization of
candidate signals, gene- and gene-set based association mapping, GWAS using high
dimensional data through machine learning, etc. The last section deals with popular
resources available for GWAS in plants in the post-GWAS era and the implications of
the results of post-GWAS for crop improvement.

Abbreviations
DArT diversity arrays technology

EMMA efficient mixed model association

Fast-LMM factored spectrally transformed linear mixed model

FDR false discovery rate

FWER family-wise error rate

GBAM gene based association mapping

GBS genotyping by sequencing

GEMMA genome-wide efficient mixed model association

GRAMMAR genome-wide rapid association using mixed model and regression

GS genomic selection

GWAS genome wide association studies

GWER genome-wide error rate

HT high throughput

HTS high-throughput sequencing

JLAM joint linkage association mapping

LD linkage disequilibrium

LRT likelihood ratio test

LSR localization success rate
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MAF minor allele frequency

ML machine-learning

MLM mixed linear model

MLMM multi-locus mixed model

MTMM multi-trait mixed model

MTAs marker-trait associations

NAM nested association mapping

NGS next-generation sequencing

PCA principal component analysis

PheWAS phenome-wide association studies

PVE phenotypic variation explained

QTL quantitative trait loci

SKAT sequence kernel association test

SNP single nucleotide polymorphism

SSR simple sequence repeat

TAD topologically association domain

TWAS transcriptome based association studies/transcriptome wide association

studies

WGS whole genome sequencing

1. Introduction

During the last two decades, a large number of studies involving link-

age disequilibrium (LD) based association mapping (AM), also called as

genome wide association studies (GWAS), have been conducted in humans,

livestock and crop plants. Candidate-gene (CG) based association studies

have also been conducted in some cases (Cockram et al., 2010; Liu, Xue,

Guo, Li, & Tang, 2016; Remington et al., 2001; Thornsberry et al.,

2001). A GWA study has twin objectives: first, to identify marker-trait asso-

ciations (MTAs) for one trait at a time, and second, to study the genetic archi-

tecture of the trait. The latter involves identification of all QTLs/genes

(including epialleles) and interactions among QTLs identified through

GWAS. Large numbers of such MTAs for a number of traits, identified

through GWAS, are now available for all major crops. Genetic architecture

for a number of traits has also been worked out in all major crops. The extent

and level of this information derived from an individual study has also been

improving with continuous increase in the size of the association panel and

the number of molecular markers that are used for an individual GWAS.

The technique of high-throughput (HT) whole genome sequencing

(WGS) is also being increasingly used to improve the power and resolution

of GWAS. In some cases, meta-analyses of the results from GWAS,
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particularly in humans, have also been undertaken to identify additional

newerMTAs and to verify theMTAs identified earlier. Newer bioinformat-

ics pipelines have also been developed to extract more meaningful informa-

tion from genotyping data obtained using next-generation sequencing

(NGS) technology, and the high dimensional phenotypic data obtained

using phenomics platforms that have been developed and are being used

for GWAS. For instance, NGS Eclipse Plugin (NGSEP) has been developed

for accurate, efficient and user-friendly analysis of high-throughput

sequencing (HTS) data for genotyping the association panel that is needed

for GWAS (Perea et al., 2016). For this purpose, “machine learning” is also

being increasing used for GWAS in the post-GWAS era.

Identification of a large number of false positives that appear after the

original GWA analysis and false negatives that result after application of

Bonferroni or false discovery rate (FDR) corrections has been a problem

in GWAS. Also, the phenotypic variation for a trait explained through

GWAS still remains to be only a fraction of the total phenotypic variation;

this feature has also been described as missing heritability, which has been

considered as a serious concern in case of humans, although in case of crops,

this has not been such a serious problem. The utilization of MTAs obtained

through initial GWAS has apparently been only marginal, so that major

efforts are needed to utilize the results of GWAS for MAS.

In the post-GWAS-era, newer approaches are being developed for

GWAS. GWAS statistics are also being used for further analysis for deriving

useful information. Some of these newer approaches include the following:

(i) use of expression profiles, resequencing (using NGS), epigenomics, etc.,

for GWAS; (ii) use of GWAS summary statistics for conditional GWAS,

identification of causal SNPs, prioritization among associated markers and

identification of candidate genes (for gene annotation); (iii) identification

and further analysis of rare alleles and rare variants. Meaningful information

has been generated through these newer approaches in several studies in the

post-GWAS era. Bioinformatics and reverse genetics approaches are also

being used for identification and functional characterization of candidate

genes after identification of MTAs through GWAS. The reverse genetics

approaches included retrotransposon-mediated gene disruption, gene silenc-

ing through RNAi and site specific genome editing using CRISPR/Cas9

nuclease system (Curtin et al., 2011, 2017) and the modified CSISPR/Cas

technology involving development of base editors (Komor, Kim, Packer,

Zuris, & Liu, 2016).
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In this review, we have two major components. In the first half, we

briefly describe the achievements of GWAS in important crops and also

about the newer models and software that became available during the past

more than a decade; this will also include a brief description of the limitations

of these earlier studies, which have already been highlighted in a number of

recent reviews (e.g., Gupta, Kulwal, & Jaiswal, 2014; Huang & Han, 2014).

In the second part of the review, which is more important, we discuss the

current and future possible activities in the post-GWAS era, which overlaps

the post-genomics era. While doing this, we also make use of literature on

different methods proposed in humans and other organisms for this purpose.

2. Major genes/QTL identified for important traits in
major crops following GWAS

In all major crops includingmaize, wheat, rice, sorghum, etc., thousands

of GWA studies have been conducted. These studies involved all kinds of traits

including the following: (i) developmental and agronomic traits (e.g., plant

height, flowering time, leaf architecture, forage quality, etc.); (ii) yield traits

(e.g., grain size, grain number, biomass, etc.), (iii) traits associated with various

abiotic and biotic stresses and (iv) biochemical and cellular traits (e.g., oil con-

centration, tocopherol, carotenoid, lipidome, etc.) (see Table 1 for some

details). A number of reviews have also been written on GWAS in plants

(Ersoz, Yu, & Buckler, 2007; Gupta et al., 2014; Gupta, Rustgi, & Kulwal,

2005; Huang & Han, 2014; Ingvarsson & Street, 2011; Kulwal, 2016;

Sukumaran & Yu, 2014; Xiao, Liu, Wu, Warburton, & Yan, 2017). GWA

studies have also been used for validation of QTLs that were earlier identified

through interval mapping. It has also been recognized that the GWA studies

carried out initially in all these crops were based on limited number of markers

(few SSRs) and restricted population size. However, in recent years, with the

advances in high-throughput genotyping techniques, large association panels

with large numbers of markers (in millions) are being used in such studies

(Table 1). However, GWA studies undertaken so far could explain only a lim-

ited proportion of the total phenotypic variation for individual traits; this is

certainly true for GWAS in humans, but to some extent holds good for plants

also. Validation of MTAs identified so far is another serious issue, which limits

their use in plant breeding. Salient features of the traits for whichGWA studies

have been conducted in important crops likemaize, wheat, rice, sorghum, and

soybean are summarized in Table 1.
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Table 1 Summary of list of traits for which genome wide association studies have been conducted in major crop plants.

Crop Type of traits Traits studied
Marker types
used

Number of markers
used (range)

Maize Morphological traits/

agronomic traits

Plant height; ear length and ear architecture; leaf architecture;

inflorescence traits; day-length adaptation; flowering time; stalk strength;

internode length; lodging resistance; number of kernel rows; root traits at

seedling stage; traits related to nitrogen use efficiency

SSR, SNP 82 SSRs to 26.5

million SNPs

Nutritional/

biochemical traits

Oil related traits; kernel starch, protein and oil content; tocochromanol

levels; α-tocopherol content; stover fodder quality; starch content;

carotenoid biofortification; carbon and nitrogen metabolism

Biotic stresses Head smut; aflatoxin accumulation resistance; lethal necrosis disease;

Northern leaf blight; Southern leaf blight; gray leaf spot; fusarium ear rot;

rough dwarf disease; resistance to the Mediterranean corn borer;

hypersensitive defense response

Abiotic stresses Cold tolerance; drought tolerance; water logging tolerance; mercury

accumulation; lead accumulation; cadmium accumulation

Wheat Morphological traits/

agronomic traits

Plant height; agronomic traits; yield and related traits; morphological traits;

grain number; grain weight; earliness

SSR, SNP,

DArT, STS

51 SSRs to 90K

SNP chip

Biotic stresses Resistance to cereal cyst nematode; seedling and leaf rust resistance; Stem

rust resistance; fusarium head blight resistance; Stagnospora nodurum

glume blotch resistance; Russian wheat aphid

Abiotic stresses Drought stress; drought adaptive traits; Aluminum resistance

Quality parameters Pre-harvest sprouting tolerance; grain color; late maturity alpha amylase;

dough mixing properties; grain quality traits; grain protein content;

alveograph strength
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Rice Morphological traits/

agronomic traits

Heading date, plant height and panicle length; grain yield; grain length;

mesocotyl length of seedling; agronomic traits; harvest index and related

traits; developmental and morphological traits; flowering time; stigma and

spikelet characteristics

RFLP, SSR,

SNP, InDel

75 SSRs to 3.6

million SNPs

Biotic stresses Blast resistance; sheath blight resistance

Abiotic stresses Salinity tolerance; aluminum tolerance; straight head disorder

Other Silica concentration in rice hulls

Sorghum Morphological traits/

agronomic traits

Plant height; kernel weight; tiller number; inflorescence architecture; seed

size; days to maturity; yield components

SSRs, SNPs 47 SSRs to 404,628

SNPs

Sugar related traits Sugar yield related traits; saccharification yield; Brix content

Biochemical

parameters

Flavonoid pigmentation traits; grain polyphenol concentration;

polyphenol concentration

Abiotic stress Drought tolerance

Disease resistance Anthracnose resistance

Barley Morphological traits/

agronomic traits

Flowering time; heading date; plant height; agronomic and morphological

traits; yield and related traits; photoperiod response

SSR, AFLP,

DArT,

SSAP; SNP

22 SSRs to 9K SNP

chip

Biotic stresses Fusarium head blight resistance; spot blotch, stripe rust, and leaf rust

resistance; stem rust resistance

Abiotic stresses Winter hardiness; frost tolerance; drought tolerance related traits; salinity

tolerance; aluminum tolerance

Quality parameters Amylose, amylopectin and β-glucan concentration; malting quality traits;

protein fraction content; tocochromanol concentrations

Continued
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Table 1 Summary of list of traits for which genome wide association studies have been conducted in major crop plants.—cont’d

Crop Type of traits Traits studied
Marker types
used

Number of markers
used (range)

Soybean Morphological traits/

agronomic traits

Growth period; agronomic and morphological traits; flowering time; days

to maturity; plant height; domestication traits; seed weight

SSR, SNP 24 SSR to 50,000

SNPs

Biotic stresses Resistance to Phytophthora sojae, soybean cyst nematode, white mold,

brown stem rot, charcoal rot; sensitivity to Tobacco ringspot virus

infection

Abiotic stresses Iron deficiency chlorosis; sudden death syndrome; carbon isotope ratio;

salt tolerance; canopy wilting

Quality parameters Fatty acid formation; seed protein content; oil content

Other Shoot ureide concentration
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3. Utilization of genes/QTL identified by GWAS for crop
improvement

In general, it is recognized that the results of LD-based GWAS are

underutilized for crop improvement (Gupta et al., 2014). In contrast, QTLs

identified through linkage-based interval mapping have been successfully

introgressed in several cultivars for each of several important crops leading

to the development of either pre-bred material or improved varieties

(Arruda et al., 2016; Brumlop & Finckh, 2011; Gupta, Langridge, & Mir,

2010). There is also at least one documented example of the utilization of

the results of GWAS for crop improvement, which includes improvement

of provitamin A in maize (Xiao et al., 2017). This study followed an earlier

CG-based association mapping study, which allowed identification of rare

favorable alleles of two genes, namely LcyE for lycopene epsilon cyclase

and crtRB1 for β-carotene hydroxylase 1 (Harjes et al., 2008; Yan et al.,

2010). Improved maize genotypes with higher level of provitamin

A developed through MAS are already being used for commercial cultiva-

tion, thus addressing the problem of malnutrition of children in Africa. In

addition to this, there may be many other undocumented examples of

the utilization of the results of GWAS in the private sector.

4. Improvement in GWAS over the years

4.1 Development of newer methods
Development of newer methods mainly involved regular development of

improved statistical models and tools (Lipka et al., 2015). This became nec-

essary due to the use of association panels of larger size and due to availability

of millions of SNPs for each individual study. Many of the limitations of

GWA studies have thus been overcome through newer computational

methods involving improved statistical models. These models had major

emphasis on reducing the computational demand and were discussed by

us in an earlier review (Gupta et al., 2014). These earlier approaches along

with newer approaches are listed in Table 2, and will be described briefly in

this section.

4.1.1 Single-locus, single trait (SLST) mixed models
Majority of initial GWA studies involved analysis of a single-locus and a sin-

gle trait at a time; methods for multi-locus and multi-trait were developed
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Table 2 Different mixed model approaches proposed over the years for GWAS in crop plants along with their features.
SN Approach Features Reference

1. Mixed liner model

(MLM)

Takes care of multiple levels of relatedness; effectively controls population structure and

type I and type II error rates

Yu et al. (2006)

2. Genome-wide Rapid

Association using Mixed

Model and Regression

(GRAMMAR)

An approximate method which first estimates the residuals adjusted for family effects and

then treats these as phenotypes along with genotyping data for analysis using rapid least-

squares methods; reduces computation time for each individual SNP

Aulchenko, De Koning,

and Haley (2007)

3. Efficient mixed-model

association (EMMA)

An exact method that accounts for population structure and genetic relatedness with

substantially increased computational speed and reliability of the results

Kang et al. (2008)

4. Efficient mixed-model

association eXpedited

(EMMAX)

An approximate method in which VCA is not repeated for each marker, as each marker is

assumed to explain only a small fraction of phenotypic effect; instead, heritability

estimated from the null model is used for all markers; can perform AM using vast amount

of data in a short time

Kang et al. (2010)

5. Compressed mixed linear

model (CMLM)

Clusters the individuals into fewer groups based on the kinship among the individuals; the

kinship between pairs of groups is replaced by the kinship between pairs of individuals;

reduces the computation demand substantially

Zhang et al. (2010)

6. Population parameters

previously determined

(P3D)

A complementary approach to CMLM; eliminates the need of estimating population

parameters (such as VCs); computationally fast

Zhang et al. (2010)

7. Factored Spectrally

Transformed Linear

Mixed Models (FaST-

LMM)

An exact method with improvement over MLM approach brought out by use of a low-

rank relatedness matrix (matrix based on a few thousand markers instead of all the

markers); reduces computation time considerably

Lippert et al. (2011)

8. Multi-locus mixed model

(MLMM)

An improvement over MLM; can effectively control for population structure and false

discovery rate in GWA studies; takes into account the background genotypes

Segura et al. (2012)
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9. Multi-trait mixed model

(MTMM)

Performs GWAS of correlated phenotypes using the principle of MLM; takes into

account both, within-trait and between-trait VCs simultaneously for multiple traits

Korte et al. (2012)

10. GRAMMAR-Gamma A VC-based two-step approximate method; an improvement over GRAMMAR;

reduces computational demand and provides correct estimates of SNP effects; suitable for

using genotyping data based on whole-genome resequencing with large sample size

Svishcheva, Axenovich,

Belonogova, van Duijn,

and Aulchenko (2012)

11. GEMMA An efficient-exact method; faster than EMMA; yields accurate p values even in the

presence of strong population structure, and even when the marker effect is large; suitable

for studies with large association panels

Zhou and Stephens

(2012)

12. Linear mixed model-

Lasso (LMM-Lasso)

Combines multivariate analysis and corrects for population structure (combination of

MLM and Lasso regression); can partition the total phenotypic variance into different

components, like the one caused due to individual SNP effects as well as that caused by

population structure

Rakitsch, Lippert,

Stegle, and Borgwardt

(2013)

13. Selecting CONnected

Explanatory SNPs

(SConES)

An efficient multi-locus method for discovering sets of loci which are associated with a

phenotype while being connected in an underlying network; computationally fast

Azencott, Grimm,

Sugiyama, Kawahara,

and Borgwardt (2013)

14. Low rank linear mixed

model (LRLMM)

Takes into account the effective degrees of freedom for interpreting model complexity of

the LRLMM along with principal components (for controlling population structure) and

kinship

Hoffman (2013)

15. Bayesian sparse linear

mixed model (BSLMM)

A combination of MLM and sparse regression models Zhou, Carbonetto, and

Stephens (2013)

16. Settlement of MLM

Under Progressively

Exclusive Relationship

(SUPER)

An improvement over FaST-LMM; extracts a subset of SNPs and uses them in FaST-

LMM; increased statistical power

Wang, Tian, Pan,

Buckler, and Zhang

(2014)

Continued
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Table 2 Different mixed model approaches proposed over the years for GWAS in crop plants along with their features.—cont’d
SN Approach Features Reference

17. Genetic analysis

incorporating Pleiotropy

and Annotation (GPA)

Enables joint analysis of multiple GWA data sets and the annotation information Chung, Yang, Li,

Gelernter, and Zhao

(2014)

18. Enriched CMLM

(ECMLM)

An improvement over CMLM with increased statistical power; calculates kinship using

several different algorithms and uses this information during analysis

Li, Liu, et al. (2014)

19. Principal components-

Select (PC-Select)

A hybrid approach that includes the PCs of the genotype matrix as fixed effects in

FaSTLMM Select method

Tucker, Price, and

Berger (2014)

20. Multivariate linear mixed

models (mvLMM)

Uses computationally-efficient algorithm for fitting mvLMMs with one covariance

component (in addition to the residual error term), and for performing the LR test for

GWAS; improvement over GEMMA

Zhou and Stephens

(2014)

21. BOLT-LMM Based on Bayesian mixed-model association; increased computational power Loh et al. (2015)

22. Random-SNP-effect

MLM (RMLM)

SNP-effects are treated as random; the threshold p value for significance tests are

calculated based on a modified Bonferroni correction

Wang, Feng, et al. (2016)

23. Multi-locus RMLM

(MRMLM)

A multi-locus model that includes markers selected from the RMLM with less stringent

selection criterion; multiple test correction is not required

Wang, Feng, et al. (2016)

24. Fixed and random model

Circulating Probability

Unification (FarmCPU)

Combines both, the fixed effect and random effect models in analysis and improves

statistical power with reduced computing time

Liu, Huang, Fan,

Buckler, and Zhang

(2016)

25. Penalized multitrait mixed

modeling approach

Accommodate both types of correlations, i.e., between subjects and traits during analysis Liu, Yang, et al. (2016)

26. pLARmEB (polygenic-

background-control-based

least angle regression plus

empirical Bayes)

Integrates least angle regression with empirical Bayes and can performmultilocus GWAS;

it is more powerful in detection of QTN and its effect; has less false positive rate and

require less computing time than Bayesian hierarchical generalized linear model

Zhang et al. (2017)
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later (mainly during the last 5–10 years). The first major development

in GWAS was the availability of mixed models, which take into account

both fixed and random effects and therefore, became popular. The first

mixed model for GWAS was proposed by Yu et al. (2006) and has since

been undergoing improvements on a regular basis to deal with the prob-

lem of computational demand and false positives. These methods have

been classified into twomajor groups: (i) exact methods and (ii) approximate

methods. The exact methods like GEMMA and Fast-LMM efficiently

refit the model for every marker and provides exact estimates of marker

effects; these methods are, however, comparatively slower (Lipka et al.,

2015; Zhou & Stephens, 2012), and standard test statistics cannot be used

in a user-friendly manner. In contrast, the approximate methods like

EMMAX and GRAMMAR are computationally fast, since they eliminate

the need of estimating population parameters for every marker. They are

based on the score test statistic instead of the likelihood ratio test (LRT)

statistic that is considered to be the gold-standard; the two test statistics

are, however, asymptotically equivalent. Since dozens of these methods

became available, a comparison of different statistical methods and the

GWAS programs where these were used has often been made (Eu-

ahsunthornwattana et al., 2014; Zhang, Buckler, Casstevens, & Bradbury,

2009; Zhou & Stephens, 2012). However, the choice of method for analysis

should be based on the volume of data, desired speed of analysis and the level

of user-friendliness (Eu-ahsunthornwattana et al., 2014; Gupta et al., 2014).

4.1.2 Multi-locus and multi-trait mixed models (MLMM and MTMM)
The above SLST analysis carries with it the problem of multiple testing,

background genotype effect and inability to identify pleiotropic effects, if

any (Buzdugan et al., 2016). In view of this, new approaches and compu-

tational tools have been developed, which can analyze multiple loci and

multiple traits individually or together in an analysis.

(a) Multi-locus models

Methods proposed for multi-locus analysis include the following: (i) a

Bayesian-inspired penalized maximum likelihood approach (Hoggart,

Whittaker, De Iorio, & Balding, 2008), (ii) penalized logistic regression

approach (Ayers & Cordell, 2010), (iii) elastic-net approach (Cho

et al., 2010), (iv) empirical Bayes approach (Lu, Liu, Wei, & Zhang,

2011), (v) multi-locus mixed model (MLMM; Segura et al., 2012) and

(vi) random-SNP-effect MLM (RMLM; Wang, Feng, et al., 2016).

However, not all thesemethods are efficient, when the number of markers
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exceed the number of genotypes, a problem often described as “large

p, small n” problem. In order to handle this issue of high dimensionality,

Buzdugan et al. (2016) proposed a multivariate approach, which analyzes

all the SNPs in a multiple GLM setup and yields p-values for assessing

significance of single SNP or groups of SNPs (haplotypes), while control-

ling the effect of all other SNPs. Similarly, Zhou, Hu, Qiao, Cho, and

Zhou (2016) proposed several approaches including computationally

efficient, exact (nonasymptotic) score (eScore), likelihood ratio test

(eLRT) and restricted likelihood ratio test (eRLRT). These tests are

described as efficient exact variance component tests (ExactVCTests) and

can achievehighpower, evenwhen sizeof samples is small. Theunderlying

idea for these tests is that the SNP-set used examines groups of SNPs

(haplotypes) rather than individual SNPs, and can enhance the power

of detection. The ExactVCTests are supposed to be superior to the

popular sequence kernel association test (SKAT; Wu et al., 2011),

particularly when the sample size used in analysis is small. However, it

is necessary that the data being studied should be normally distributed,

which is not always possible (this condition is not required in case of

SKAT). The efficiency of almost all these multi-locus methods (except

empirical Bayes) was demonstrated using the data from humans. It will

therefore be interesting to see their practical utility using the data fromplant

systems.

Often, in any GWA study, correction for population structure is

undertaken as a measure to reduce confounding, which often leads

to the generation of false positives/negatives (Klasen et al., 2016). In

order to address this issue, a Quantitative Trait Cluster Association Test

(QTCAT) was proposed by Klasen et al. (2016). Taking into account

the correlations between the markers, this test can identify multi-locus

associations simultaneously. It is also not necessary to correct for pop-

ulation structure and genetic background in this method, which was

also found to be better than the other commonly used LMMs.

(b) Multi-trait models

We know that there can be genomic regions (QTLs/genes), each

controlling more than one traits (Korte et al., 2012; Zhan et al., 2017).

A mixed model approach, called multi-trait MLM (MTMM) accommo-

dating pairs of correlated traits, was proposed by Korte et al. (2012).

This model increases the number of tests relative to those conducted

in a single-trait analysis and can identify MTAs, each MTA control-

ling a pair of correlated traits (for a review, see Gupta et al., 2014).
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This approach was successfully used in our own GWA studies involving

a variety of correlated traits in bread wheat ( Jaiswal et al., 2016;

Kumar et al., 2018). Unfortunately, in this method, one could use only

two correlated traits at a time, so that methods had to be developed,

where more than two correlated trait can be used for multi-trait analysis.

Furlotte and Eskin (2015) proposed another method called matrix-variate

linear mixed model (mvLMM) which can reduce the time required to

perform maximum-likelihood inference by using data transformation

in a multiple-trait model. Such multi-trait analyses can also be combined

now with multi-locus analysis (see step (c) in Section 4.1.2).

The power of multiple trait analysis can also be improved by trans-

forming multiple traits into a group of pseudo-principal components

based on residual covariance matrix. Using this principle, Gao et al.

(2014) proposed a methodwhich performs PCA for the residual covari-

ance matrix and allows analysis of each pseudo-PC separately. Several

methods have been proposed for the analysis of multi-trait data in the

GWAS framework in humans; different popular methods have also been

compared (Galesloot, Van Steen, Kiemeney, Janss, & Vermeulen, 2014;

Porter & O’Reilly, 2017). In one such comparative study, Porter and

O’Reilly (2017) made several conclusions: first, that the performance

of any method is dependent on specific combination of genetic effects

and phenotypic correlations; second, that most of the available methods

have similar statistical power, and finally, that these methods can offer

a substantial improvement in the discovery of genetic variants over the

standard univariate approach (Porter & O’Reilly, 2017). Recently,

Thoen et al. (2017) used MTMM approach for a study of the genetics

of responses to different stresses in Arabidopsis using 11 individual stresses

as well as several combinations of different stresses. Using the principle of

MTMM, they identified candidate genes (CGs) for plant responses to

multiple stresses. These CGs were also validated by gene expression

and mutant analyses. Recently, Turley et al. (2018) proposed another

method called Multi-Trait Analysis of GWAS (MTAG), which can ana-

lyze multiple traits and has unique features which can be used with

GWAS summary statistics (meta-analysis). This can handle the sample

overlap (it is not necessary that the summary statistics should come from

independent samples) and can quickly generate estimates of trait-specific

effect for individual SNP. This method takes advantage of the correla-

tions between the traits and correlations between the estimation errors

of SNPs effects across traits.
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(c) Multi-locus, multi-trait models

Multi-locus multi-trait analyses are more rewarding than any of the

methods involving either multi-locus analysis or multi-trait analysis indi-

vidually (Lippert, Casale, Rakitsch, & Stegle, 2014). These models also

address the concerns for high computational demands. For instance,

Kim, Zhang, and Pan (2016) proposed an association test, which involves

analysis of multiple genetic variants and multiple traits simultaneously.

With this method, they observed gain in power in identification of mul-

tiple associated SNPs having weak effects in the geneAMOTL1which is

involved in the human brain default mode network. These SNPs could

not be identified by using single SNP-based tests as well as several other

gene-based tests. This method can also be used for analysis of rare variants

in sequencing data and can also be used for pathway analysis. Themethod

is yet to be tried in plant systems. Similarly, Zhan et al. (2017) proposed a

novel approach called “dual kernel-based association test” (DKAT),

which can evaluate association between high-dimensional structured

traits and multiple SNPs or rare variants. This method also addresses

the “large p small n problem,” since variable number of markers can

be used for association panels, which differ in size.

4.1.3 Joint-linkage association mapping (JLAM)
Over the years, it has been recognized that linkage-based QTL interval map-

ping (IM) and LD-based AM, each has its own merits and demerits (low res-

olution in IM and low power in AM), when performed independently.

In order to harness the potential of both these methods simultaneously, inte-

gration of these two approaches into one approach was proposed and referred

to as joint linkage-association mapping (JLAM) (Wu & Zeng, 2001). In crop

plants, initially JLAM was made possible by Nested Association Mapping

(NAM) involving multiparental populations in maize (Yu, Holland,

McMullen, & Buckler, 2008). Later, many more such multiparental mapping

populations (MPP) including Multi-parent Advanced Generation Intercross

(MAGIC), Multi-line Cross Inbred Lines (MCILs) and Recombinant Inbred

Advanced Intercross Lines (RIAILs) were developed in several important crop

plants (Cavanagh, Morell, Mackay, & Powell, 2008; Gupta, Kulwal, & Mir,

2013; Huang et al., 2015) facilitating JLAM. This approach allows not only

identification but also validation of QTLs in the same experiment, so that

the validated QTLs and the linkedmarkers can then be used in crop improve-

ment programs efficiently.

The utility of JLAM has also been enhanced by incorporating multi-trait

data analysis (Meuwissen & Goddard, 2004; Stich et al., 2008; Wu, Ma, &
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Casella, 2002). Recently, it was also reported that for JLAM, the model

accounting for cofactors and a population effect can effectively control pop-

ulation structure and has a high predictive power than any other linear and

linear mixed model (Wurschum et al., 2012). Another advantage of JLAM

approach is that the issue of rare alleles can be effectively addressed (Gupta

et al., 2014).Notable examples of JLAM studies include identification ofQTLs

and the CGs for drought tolerance in maize (Lu et al., 2010) and pleiotropic

QTLs for seed weight and silique length in rapeseed (Li, Shi, Wang, Liu, &

Wang, 2014).

4.1.4 Use of diverse panels for GWAS
Biparental populations, multiparental populations [e.g., NAM, MAGIC and

random-open-parent association mapping (ROAM)] and breeding popu-

lations have already been used both for linkage studies and GWAS. Each

of these population types has their own advantages and limitations, as discussed

elsewhere (Gupta et al., 2014; Wang, Xu, et al., 2017; Xiao et al., 2017). The

choice of any of these populations also depends upon the nature of breeding

system (inbred versus outbred) in the plant species, so that a multi-parental

population like NAMmay not be as desirable in autogamous crops, as in case

of highly cross pollinated-crops like maize. Utilizing the principle of NAM,

new designs have also been proposed, which include doubled haploid NAM

(DH-NAM) and backcross NAM (BC-NAM) in rapeseed (Li, Bus,

Spamer, & Stich, 2016) and advanced backcross NAM (AB-NAM) in barley

(Nice et al., 2016). Amultiple-hybrid population (MHP) has also been used in

maize for identification of key loci for flowering traits (Wang, Xu, et al.,

2017). It was shown that for cross-pollinated crops, MHPs are better suited

relative to bi-parental andmulti-parental populations that are commonly used.

This GWAS approach can make use of a panel consisting of a limited number

of parental lines and the large numbers of hybrids that can be generated by

crossing the parental lines in diallel fashion. It has also been argued that sharing

a set of parental lines among collaborators is easier than sharing an association

panel with several hundreds to thousands of genotypes (Wang, Xu, et al.,

2017). More such studies in cross-pollinated crops are likely to be conducted

in future. In the year 2015, the journals Genetics andG3 also started a series on

development and use of multiparental populations (MPPs) for linkage and

association mapping studies. More than a dozen papers have already been

published under this series which provide valuable information on the use

of MPPs for QTL analysis involving both linkage based IM and LD-based

AM (Bouchet et al., 2017).

17Association mapping in plants

ARTICLE IN PRESS



4.1.5 Epistasis and Q×E interactions
The detection of markers associated with Q�Q interactions (epistasis) and

QTL�environment (Q�E) interactions has not been a regular feature of

GWAS. Apparently, this is one of the several reasons why only limited

fraction of total genetic variation could be explained in most GWA studies,

particularly in humans, but to some extent in plants also (Bubb & Queitsch,

2016; Ritchie, 2015; Upton, Trelles, Cornejo-Garcıa, & Perkins, 2015).

Several methods and the associated software are now available for detection

of epistasis in GWA studies (for reviews see Upton et al., 2015; Wei,

Hemani, & Haley, 2014). Choice of method also depends on the size of the

data set, the aim of the user and the availability of processing power (Upton

et al., 2015). Bayesian statistical methods which have already shown tremen-

dous promise in genetic analyses is an alternative approach; however, these

methods also do not examine all pairwise interactions (Upton et al., 2015).

Often epistasis is discussed in relation to its effect as either only functional

or only statistical (Wei et al., 2014). While, functional epistasis suggests that

the effect of a variant at one locus depends on the variant at another locus,

the statistical epistasis refers to the variance attributed to the interaction

between variants that are causal only when occurring together, but not in

terms of their independent effects (Wei et al., 2014). If the amount of epistasis

is substantial, then the predictability of complex traits based on genotypic data

can be improved beyond the theoretical limits of heritability estimates.

Q�E interactions are also sometimes substantial and need attention, par-

ticularly for explaining missing-heritability (Thomas, 2010). Several compu-

tational methods for GWAS have been proposed to study such interactions in

humans (Thomas, 2010). However, they may not always be suitable for stud-

ies involving plants. The MTMM approach proposed by Korte et al. (2012),

which accounts for the correlations between traits can be useful in finding

G�E interactions. In doing so, one can consider a trait measured in two envi-

ronments as two correlated traits (Korte et al., 2012; Korte & Farlow, 2013).

Reports of GWAS involving epistasis andQ�E interactions in plants are

limited. However, in a GWAS involving analysis of G�E interactions,

often a small set of genotypes and a limited marker data set have been used.

In one such study, Li, Paulo, van Eeuwijk, and Gebhardt (2010) identified

two-way epistatic interactions for tuber traits in potato, which were respon-

sible for increased starch content and starch yield. Later, Lu et al. (2011)

proposed an epistatic association mapping (EAM) approach in plants using

empirical Bayes approach, which includes in its model the main-effect QTL,

environmental effects, QTL�QTL interactions and Q�E interactions.
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The method was used in soybean for study of the genetics of seed length;

three epistatic QTLs were identified in addition to the main effect QTL.

Similarly, Saidou, Thuillet, Couderc, Mariac, and Vigouroux (2014) pro-

posed a mixed-model approach, which accounts for SNP�environment

as well as Q�E, SNP� structure and three way interactions between

SNP, ancestry and the environment; the approach was used for detecting

these interactions in pearl millet and maize. Jia et al. (2014) reported signif-

icant epistasis and environmental interaction for yield component traits in

cotton. In a rather interesting study in Arabidopis, Lachowiec, Shen,

Queitsch, and Carlborg (2015) reported that narrow-sense genomic herita-

bility for root length was statistically zero, which resulted in no associations

with the root length in the GWA study. However, epistatic GWA analysis

identified four significant interacting pairs of loci for root length. It was also

reported that epistasis canceled out the additive genetic variance, and was

responsible for non-significance of these loci in the additive GWA analysis

(Lachowiec et al., 2015). In the post-GWAS era, efficient integration and

handling of rare variants in the analysis pipeline involving epistatic interac-

tion will however be difficult. With the advances in the computational tech-

niques capable of analyzing high-dimensional data, the data used in earlier

studies can be reanalyzed to find the epistatic interactions in these studies.

4.1.6 Bayesian methods for GWAS
In recent years, Bayesian statistical methods have become an important, rather

integral part of studies involving genotype-phenotype associations and geno-

mic prediction. What makes them superior over the usual or frequentist

approach is their ability to specifically incorporate background information

(prior) into the specification of the model (Stephens & Balding, 2009). Bayes-

ian methods can be effective for fine mapping in candidate regions (Schaid,

Chen, & Larson, 2018) as well as in studies involving meta-analyses. These

approaches not only increase the computation speed but also deal with the

problems of multiple testing and rare marker alleles (Fernando & Garrick,

2013). In GWAS, generally, issue of multiple testing is handled by controlling

the genome-wide error rate (GWER), which is the probability of occurence

of atleast one false-positive QTL among all tests. However, due to numbers of

such tests involved in a GWA study, control for GWER can result in low

power (Fernando & Garrick, 2013). Therefore, an alternative approach based

on Bayesian regression method has been suggested, which accounts for mul-

tiple testing correction by controlling the proportion of false positives among

all the positives in the study. Using the same principle of Bayesian regression,
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recently, Fernando, Toosi,Wolc, Garrick, andDekkers (2017) showed that in

a GWA study, for controlling false positives, it is more appropriate to control

the posterior type I error rate than to control the GWER. Another advantage

with Bayesian regression models is that they can simultaneously fit more

markers in the analysis as compared to the number of observations. It is

because of this growing interest in the Bayesian statistics that newer methods

are constantly being developed which can help in the integration of the func-

tional information in GWAS (Yang et al., 2017). It is also important to note

that Bayesian statisticians use probability theory to model uncertainty in anal-

ysis (Ball, 2013). In the era of machine learning involving use of artificial intel-

ligence, it is expected that Bayesian approaches will be usedmore frequently in

GWAS. Several mixed model approaches based on Bayesian statistics have

been proposed for use in GWAS; some of them are listed in Table 2. The

differences between frequentist and Bayesian approaches have been discussed

elsewhere (Ball, 2013).

4.2 High-throughput (HT) genotyping and phenotyping
4.2.1 HT genotyping
The availability of NGS and GBS for SNP genotyping has greatly acceler-

ated the speed of GWA studies. Consequently, several thousands to millions

of markers are now being used in individual GWA studies. The technique of

GBS is also rapidly becoming popular due to its cost-effectiveness even in

the crops, where a reference genome sequence is not available (Elshire

et al., 2011; He et al., 2014). In the post-GWAS framework, the issues

which will drive the methodological advances should focus now on efficient

handling of rare alleles, missing marker data and appropriate treatment of the

multiple testing problems arising due to the progress made in the area of

genotyping techniques.

(a) HT marker techniques

Advances in the cost-effectiveNGS techniques have facilitatedwhole

genome sequencing/resequencing of the association panels in many

crops. Resequencing of the entire association panel, albeit at a low depth

coverage has helped in the identification of novelMTAs throughGWAS

in some major crops. Details of some of these studies are summarized in

Table 3. These studies have shown that sequencing even at low depth

coupled with efficient marker-imputation techniques can be very effec-

tive in identifying novel loci in large sample populations using the

approach of GWAS. This has offered greater understanding of the

genetic basis of agronomically important traits as well as domestication

process in several crops. Besides this, RNA sequencing (RNA-seq)
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Table 3 Examples of resequencing based GWA studies in important crops.

Crop Number of accessions
Coverage
depth

Number of
markers Important features of the study Reference

Rice 517 landraces 1� �3.6 million

SNPs

High-density haplotype map was used to

identify key loci for 14 different

agronomic traits; 6 of the identified MTAs

were in close proximity of the previously

identified genes

Huang et al.

(2010)

950 worldwide rice

cultivars

1� �4.1 million

SNPs

32 new loci associated with 10 grain-

related traits and flowering time were

identified; CGs for 18 associated loci were

also identified

Huang et al.

(2012)

176 japonica rice varieties 5.8� 426,337 SNPs

and 67,544

InDels

Important genes for agronomic traits were

identified; later CGs were screened and

four new genes for these traits were

identified; shows that gene-based

association analysis can be more-

rewarding in dealing with spurious

associations

Yano et al.

(2016)

Foxtail millet 916 diverse lines �0.7� 0.8 million SNPs A haplotype map allowed identification of

512 loci for 47 agronomic traits

Jia et al. (2013)

Soybean 302 wild and cultivated

accessions

>11� >9 million

(SNP+InDels)

10 MTAs were identified for 9

domestication or improvement traits;

13 novel loci were identified

Zhou et al.

(2015)

Continued
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Table 3 Examples of resequencing based GWA studies in important crops.—cont’d

Crop Number of accessions
Coverage
depth

Number of
markers Important features of the study Reference

Chickpea 69 varieties and advanced

breeding lines

3.35� �0.4 million

SNPs

A 100kb region (AB4.1) from

chromosome 4 was found to be associated

with resistance to Ascochyta blight

Li, Ruperao,

et al. (2017)

Pigeonpea 292 accessions (breeding

lines, landraces and wild

species)

5–12� 446,568 SNPs Several CGs associated with

agronomically important traits were

identified and had sequence similarity with

the genes which were functionally

characterized in other plants for traits like

control of flowering time, seed

development and pod dehiscence

Varshney,

Saxena, et al.

(2017)

Pearl millet 288 test cross hybrids 1.68� 3,117,056 SNPs 1054 MTAs associated with 15 different

yield and yield contributing traits were

identified

Varshney, Shi,

et al. (2017)
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has also become common in many crop plants for transcriptome-wide

association analysis; useful markers have also been generated from the

transcriptome (see Section 7.2.5.1).

DifferentHTmarker genotyping techniques which are now available

have their own advantages and limitations (Huang & Han, 2014; Pfeifer,

2017) so that choice ofmethod depends on the objective of the study and

the resources available. However, in order to make use of these NGS

techniques, one should have thorough understanding of the data so gen-

erated, and should also have knowledge of different availablemethods for

analysis of this data (Pfeifer, 2017). The volume of genotypic data

obtained using any of these techniques often brings computational and

statistical challenges, which demand appropriate analytical tools for effec-

tive analysis. Moreover, low sequence coverage generates lot of missing

data, which necessitates constant improvements in the marker imputa-

tion techniques. Some of these issues including characteristics of popular

NGS platforms, tools for pre-processing of NGS data, NGS aligners and

SNP callers have been discussed by Pfeifer (2017).

HT marker techniques have also allowed generation of some new

marker systems like copy number variations (CNVs) and presence/

absence variations (PAVs), InDels, insertion-site-based polymorphisms

(ISBPs), epigenetic variations, and transposons. In future, these markers

will be increasingly utilized for GWAS (for reviews, see Edwards &

Gupta, 2013; Lipka et al., 2015).

(b) Missing data and imputation for genotyping

In recent years, although HT sequencing has accelerated the speed

of marker development, it has also created the problem of missing data.

This poses some problem in using these markers in analysis and

increases the chances of spurious associations. In several studies, data

imputation involving use of a reference genome has been used to over-

come this limitation. In multiple genetic studies, it has been reported

that marker imputation greatly increased the efficiency of GWAS in

crop plants (He et al., 2015; Ramstein et al., 2015). It has also been real-

ized that in the absence of imputation, a sufficiently higher sequencing

depth would be required for achieving the desired sensitivity of analysis;

this may not be possible in a cost-effective and time-effective manner.

Imputation of genotypes not only increases the power of association

studies, but also harmonizes data sets for meta-analysis (Porcu, Sanna,

Fuchsberger, & Fritsche, 2013; see Section 7.2.1). Several algorithms

and computer programs are available for this purpose, but not all of
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them may be suitable for plants. Therefore, algorithms have also been

developed to handle the data from crop plants including those for which

reference genome sequence is not available (Ramstein et al., 2015;

Rutkoski, Poland, Jannink, & Sorrells, 2013; Swarts et al., 2014;

Ward et al., 2013). In recent years, emphasis is also laid on the use ofmul-

tiparental populations (MPPs) in GWAS. However, unavailability of

good quality data on founder genotypes often creates a problem while

conducting imputation of the genotypes. Accordingly, a method has

been proposed, which can effectively impute the marker genotypes

for the founder genotypes (Huang, Raghavan, Mauleon, Broman, &

Leung, 2014). Accuracy resulting from imputation generally depends

on the availability of a reference sequence. For example, using a reference

sequence, imputation accuracy is high even for low depth GBS data as

against the one where no reference sequence is available. However,

one of the challenges with imputation techniques is the ability to distin-

guish correctly between missing data arising due to biological reasons

(PAVs) and that arising due to sampling variation (Lipka et al., 2015).

Technique of genotype imputation is also useful in dealing with the rare

variants. One of the efficient ways to deal with rare variants is to impute

genotypes for missing data from corresponding markers into existing

genome-wide data (information from a reference panel) (Hoffmann &

Witte, 2015). However, this is dependent on the marker array and the

number of reference samples used for this purpose. Different strategies

have been proposed for genotype imputation in the rare variants

(Hoffmann & Witte, 2015).

4.2.2 HT phenotyping and genotype-phenotyping gap
HT genotyping platforms are now being extensively used for genotyping at a

large scale (millions of markers). However, similar developments did not take

place for HT phenotyping. This is often described as genotype–phenotype
gap (Gjuvsland, Vik, Beard, Hunter, &Omholt, 2013). In order to bridge this

gap, high-throughput phenomics technologies are being regularly developed

(Yang, Duan, Chen, Xiong, & Liu, 2013). Among all HT phenotyping tools,

image-based phenomics is the most important development (see next section

for some details).

(a) Image-based phenomics and software for analysis of phenomics data

During the last one decade different image-based phenomics facil-

ities have been developed in the public domain around the world

(Australia, France, China, USA, India and member countries of

European Plant Phenomics Network); details are available in Knecht,
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Campbell, Caprez, Swanson, and Walia (2016). All these facilities are

fully automated and allow accurate and non-destructive recording of

data through a series of cameras, thus eliminating errors, which occur

in traditional phenotyping methods. This greatly enhances the ability

to record data on various quantitative traits on a temporal and spatial

manner, and make high-throughput plant phenotyping possible. Vari-

ous factors associated with image-based phenomics, setting up of such

experiments, handling and analysis of data, and many other issues have

been described in detail by Fraas and Luthen (2015).

In any HT-phenotyping, often large-scale image data-sets are used,

which cannot be easily processed on desk-top computers. Therefore, soft-

ware has also been developed for processing the data. The number of files

generated for a GWAS experiment can easily exceed millions, thus mak-

ing the task of handling this data computationally challenging. This prob-

lem has largely been overcome through several resources including

RootNav (Pound, French, Atkinson,Well, & Bennett, 2013), GrainScan

(Whan et al., 2014), Integrated analysis platform (Klukas, Chen, & Pape,

2014), TraitCapture (Brown et al., 2014), PlantCV (Fahlgren, Gehan, &

Baxter, 2015), leaf angle processing toolbox (M€uller-Linow, Pinto-

Espinosa, Scharr, & Rascher, 2015), LemnaGrid (www.LemnaTec.

com), Image Harvest (Knecht et al., 2016) and others (Fraas &

Luthen, 2015).

(b) Examples of GWAS involving HT phenotyping

HT phenotyping has already been utilized in different plant systems

for a number of quantitative traits; some of these studies include the

following: (i) HT phenotyping data through automated confocal

microscopy for a study of symbiotic/pathogen interactions, disease

resistance and rate of root growth in model legume Lotus (Hansen,

2014); (ii) HT phenotyping of 15 agronomic traits in rice using HRPF

(Yang et al., 2014); (iii) phenotyping for carotenoid content as well as

chlorophyll traits including chlorophyll a, chlorophyll b and total chlo-

rophyll content estimated through HT canopy spectral reflectance in

soybean (Dhanapal et al., 2015, 2016); (iv) phenotyping for salinity

tolerance in rice using high-throughput visible and fluorescence imag-

ing (Al-Tamimi et al., 2016; Campbell et al., 2015).

5. Limitations of GWAS

Although the approach of GWAS has proved useful in identifying

large numbers of loci for a variety of traits, both in humans and plants, it
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has certain limitations which need to be addressed carefully in order to har-

ness the utility of this approach. These limitations include but are not limited

to population structure, familial relatedness, computational speed, multiple

testing problem, “large p small n problem” and FDR, markers with rare

alleles and rare genetic variants. While these issues have been discussed by

us earlier (Gupta et al., 2014) and elsewhere and solutions have been sought

to effectively manage these concerns, we will emphasize on other issues

which were not discussed in greater details earlier. Identification of false pos-

itive (false discovery) associations as well as reproducibility of identified

loci and family-wise error rate (FWER) are now considered the major lim-

itations of this approach and are discussed here in brief.

5.1 False discovery, reproducibility and family-wise error rate
(FWER) in GWAS

Besides other limitations discussed earlier, following are the two other major

limitations of GWAS, which need further discussion: (i) validity of FDR

corrections and (ii) lack of reproducibility. As discussed earlier, for FDR,

generally Bonferroni’s correction and Storey’s FDR correction are used,

which often represent a trade-off, because when the correction is applied,

it leads to excessive false negatives. Similarly, if a particular study is repeated

in the same or another laboratory using the same population for the same

trait, the reproducibility has been found to be no more than 30%, and some-

times as low as 4% (Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002).

Therefore, experiments have been conducted to test not only the validity of

FDR correction, but also to estimate the reproducibility rate (RR) versus

false irreproducibility rate (FIR) ( Jiang, Xue, & Yu, 2015). RR is the con-

ditional probability that measures the likelihood of primary association being

also positive in the replication study, whereas FIRmeasures the likelihood of

primary positive association being true positive, even if it is not positive in

the replication study.

Hirschhorn et al. (2002) reviewed the work involving reproducibility of

GWAS results and found that of the 600 associations that were found pos-

itive between common gene variants and diseases in humans, majority of

themwere not robust. Only six associations from among the 166 associations

which were studied three or more times were found to be consistently rep-

licated, while >50% of the remaining 160 associations were observed only

in one or more studies again. They studied the possible causes for this
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irreproducibility and also provided guidelines for conducting and inter-

preting such studies.

5.2 How to reduce false positives and how to validate FDR
corrections

In order to reduce false positives, corrections are generally used but additional

evidence is often needed to validate the results of FDR corrections. Com-

monly, there are two strategies used to verify associations discovered using

GWAS: one is joint analysis and the other is replication based analysis.

(i) Joint analysis uses all available GWAS data for the same trait (e.g., disease)

in the same population to find associated SNPs, either by poolingmultiple stage

genotyping data (mega-analysis) or by using meta-analysis; additional biological

experiments are needed to verify the associations. (ii) Replication-based analysis

splits the data into two parts, one for discovery (commonly called primary

study) and the other for validation (commonly called replication study). Since

only a subset of available data is used each in the primary study and the repli-

cation study, the replication-based analysis is less powerful than joint analysis

(Skol, Scott, Abecasis, & Boehnke, 2006). However, it gives us an alternative

way to examine findings without carrying out additional experiments

(Chanock et al., 2007; Kraft, Zeggini, & Ioannidis, 2009). Thus, replication-

based analysis is a common method of choice, which is also cost-effective.

5.3 Reproducibility of GWAS results
A number of examples of lack of reproducibility of the results of GWAS

have been reported in humans (Hong et al., 2012). Some results of lack

of reproducibility are also available in plants. For instance, in maize, limited

reproducibility of small effect associations involving the trait southern leaf

blight resistance was observed using an improved NAM population. While

examining several factors, the effect of marker density was found to have the

maximum effect on the accuracy of results of QTL interval mapping and

GWAS; the study also facilitated identification of CGs for southern blight

resistance (Bian, Yang, Balint-Kurti, Wisser, & Holland, 2014).

5.4 FDR versus FWER and power
We know that multiple testing in GWAS leads to false positives at a rate

much higher than in the normal cases. Therefore, often we make estimates

of the “probability (P) of having one or more false significant tests.” This is
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described as family-wise error rate (FWER). Many times FDR is also used

as an alternative to the commonly used FWER (Xu & Iglewicz, 2016).

Although different approaches of multiple testing have been proposed with

the same goal, but each of these methods deal with this problem in different

ways. FWER approach may be more appropriate when one wants to have

stringency in the results by avoiding any false positives (for example, in case

of human genetics). However, in practice using genomics data, one can

expect at least certain number of false positives (for example, plant geno-

mics). Under this scenario, approach of FDR is more relevant. Recently,

Stevens, Al Masud, and Suyundikov (2017) compared different methods

underlying principle of either FDR or FWER. Based on simulation studies,

they concluded that different methods differ in power depending on the

sample size and the number of tests involved, so that one method cannot

be suitable in all scenarios and one should consider the trade-off between

specificity and the sensitivity of the method.

6. Rare variants and missing heritability

During GWAS, markers with rare alleles are often excluded from the

analysis (Marjoram&Thomas, 2014). This is also considered to be one of the

several reasons attributed for the missing heritability (Manolio et al., 2009).

It may be possible that at least some of these markers are associated with

desirable traits, although it is still not known as to what extent these rare

genetic variants actually contribute to the target traits both in humans and

plant systems. Therefore, rare alleles/variants analysis has become an impor-

tant area of research, and will be discussed in relatively greater detail.

6.1 Types of variants and MTAs: Common variants with small
effects versus rare variants with large effects

The variants commonly used for GWAS have often been classified into the

following three groups: (i) common variants [with minor allele frequency

(MAF)>5%], (ii) less common variants (MAF, 1%–5%) and (iii) rare variants
(MAF<1%; Hoffmann &Witte, 2015). There are also two views regarding

large proportions of variants that account for majority of MTAs: common

variants with small effects, or rare variants with large effects. There are

arguments for and against each of these two views (Gibson, 2012).

However, except for a trait like human height, no rare variants with large
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effects have been reported (Marouli et al., 2017). This is sometimes attrib-

uted to the low power of the currently available methods, so that efforts are

being made to increase the power of detection of these associations in GWA

studies (Korte & Farlow, 2013). It has also been shown that some derived traits

(e.g., sum of or ratios between absolute levels of different metabolites) can also

provide useful information about the genetics of a metabolic network

(Angelovici et al., 2017) (see step (b) in Section 7.2.5). Since the hypothesis

of “common disease common variant (CDCV)” has now been rejected, at

least for humans, three different models which could explain the genetics

of complex traits have also been proposed in different studies (Gibson,

2012). These include (i) the infinitesimal model which suggests that there

are large number of common variants each having small effect, (ii) the rare

allele model which suggests that there are large number of rare variants, each

having large effect or (iii) the broad sense heritability model which suggests

that there are some combination of genotypic, environmental and epigenetic

interactions. All these models have been explained in detail by Gibson (2012).

One would like to know which one or more of these models really holds

good. In order to study this, it is necessary to find methods with enhanced

power for detection of association between rare alleles and rare variants with

targeted traits.

6.2 CVAS and RVAS
Since rare variants may sometimes represent the desirable variation, it has been

suggested that common variants association study (CVAS) and rare variants

association studies (RVAS) be conducted separately, independent of each

other (Zuk et al., 2014). Methods have also been suggested, where analysis

of rare variants can be combined with that of common variants, by giving

weightage to different variants on the basis of frequency of the marker allele.

Therefore, the analysis of rare and low frequency variants explaining missing

heritability has become an important area of research (Asimit &Zeggini, 2010;

Auer & Lettre, 2015). However, in order to explain this missing heritability,

fairly large sample size will be required for identification of such variants

(Auer & Lettre, 2015; Lee, Abecasis, Boehnke, & Lin, 2014; Zuk et al.,

2014). The appropriate sample size for RVAS depends on the mutation

rate, selection coefficient, and the size of the effect for null alleles in the gene

(Zuk et al., 2014).

Majority of the issues related to rare variants have been discussed using

results of studies carried out in humans. More such studies need to be
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undertaken in plants, where whole genome sequences are already available.

The above findings also suggest the need for improving the existing methods

in terms of their power.

6.3 Sequence-based rare variants GWAS
Sequence-based rare variants GWA studies have also been undertaken using

NGS technologies, particularly in humans. This allows direct testing of

the association between an individual minor/rare allele and the target trait.

In a recent study in humans as part of the UK10K project, it was shown

that the increase in sequencing depth also increases power to identify rare var-

iants, and that the power to detect association between rare variants and

target trait (occurrence of disease) increases with sample size (The UK10K

Consortium, 2015). In this study, 10,000 individuals from population-based

and disease-based collections were sequenced at the levels of whole genomes

(with read depth of 7�) and exomes (with read depth of 80�). These data

were used for a detailed study involving markers with rare alleles.

Rashkin et al. (2017) studied the power of association tests using different

study designs which included sequencing at low and high read depth on

varying sample sizes, frequencies of singletons, and relative risks and prev-

alence of disease. They observed that for a fixed cost, power of detecting

association is maximum at a read depth of 15–20�, while it decreases with

increase in coverage of sequencing beyond this threshold.

However, deepWGS of association panels with large samples is still cost-

prohibitive. A variety of approaches have thus been suggested to deal with

this issue (Auer & Lettre, 2015; Bansal, Libiger, Torkamani, & Schork, 2010;

Lee et al., 2014), some of which include the following: (i) low-depth whole

genome sequencing (WGS), (ii) sequencing of exome, (iii) sequencing of

targeted-regions, (iv) custom genotyping arrays, and (v) sampling of

extreme-phenotypes. All these approaches have been used in human genetic

studies and have provided useful information (Auer & Lettre, 2015). In addi-

tion, different methods have also been proposed and explained in detail for

testing of rare-variant associations (Feng et al., 2015; Lee et al., 2014). These

include the following: (i) single-variant test, (ii) gene or region-based aggre-

gation tests of multiple variants, (iii) adaptive burden tests, (iv) variant

component tests, (v) omnibus test, (vi) The EC-tests and (vii) meta-analysis.

Wei et al. (2016) proposed robust adaptive sum of powered score (aSPUr)

method for analysis of rare variants for the non-normal distributed traits and

found this method to bemore effective than the existing methods like SKAT

in controlling type-I error rate.
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7. Post-GWAS analysis

With the advances inmethodology and statistical tools that became avail-

able, meaningful further work in the post-GWAS era can be undertaken either

usingGWAS summary statistics, or by designing new experiments based on the

results of earlier studies. Following approaches are already being used in the

post-GWAS era. (i) conditional analysis or, joint multiple SNP analysis or con-

ditional and joint multiple SNP analysis (COJO) at a top individual locus or on

whole genome level, using Genome-Wide Complex Trait Joint Analysis

(GCTA-COJO); (ii) use of several diverse panels for GWAS; (iii) meta-analysis

(within an individual study or involving several studies); (iv) rare alleles/variant

analysis (discussed in earlier section); (v) use of associated markers in the coding

versus non-coding regions; (vi) annotation of candidate genes/alleles, some-

times using TILLING or Eco-TILLING; (vii) use of non-phenotypic variation

[RNA-seq and eQTLs (cis-eQTLs and trans-eQTLs)], DNA methylation and

mQTL, metabolite analysis for GWAS. The approaches for Post-GWAS

analyses will be discussed in this section under the following six heads:

(i) Identification of causal variants among GWAS signals; (ii) prioritization

of the identified GWAS signals; (iii) identification and functional characteriza-

tion of candidate genes; (iv) gene-based and gene-set based associationmapping

(GBAM, GSBAM); (v) GWAS using machine learning; (vi) use of high-

dimensional data for molecular networking.

7.1 Identification of causal variant
In GWAS, often a trait-associated SNP is not causal, but is simply in LDwith

the causal SNP. Therefore, identification of causal variant among GWAS

signals becomes important. For identification of causal variants following

approaches can be utilized: (i) fine mapping, (ii) localization success rate

approach, and (iii) conditional analysis.

7.1.1 Fine mapping of GWAS signals
For fine mapping of a GWAS signal, dense genotyping or sequencing of

associated genomic region is required. High confidence imputation may

also help in generating dense genotyping data (Spain & Barrett, 2015).

In order to increase the power of fine mapping that can differentiate among

several SNPs in LD, a large population is required. In case of humans, large

consortia have been developed by combining datasets of custom-designed

genotyping arrays with up to �200,000 variants. For this purpose,

31Association mapping in plants

ARTICLE IN PRESS



“Cardio-Metabochip Consortium” focused on diabetes and coronary artery

disease, and “Immunochip Consortium” utilized variants selected for

immune-mediated phenotypes. These consortia enabled genotyping of all

samples on a solitary chip and were thus suited for fine mapping of associ-

ation signals. In case of plants, such platforms (custom chip for particular

phenotype) and collaborations are yet to be developed. However, with

the advances in HT marker techniques, it is expected that such consortia

in plants will also be developed.

Following dense genotyping, the major challenge is to distinguish true

causal SNP from other associated SNPs. A simple approach considers all

SNPs with a certain cut-off of p-value for causality. This approach is not

always suitable, since p-value is affected by several factors like power, minor

allele frequency and the effect size. It is also to be understood that p-values

from different studies are not always comparable and can have different

implications for the possibility of true association (Stephens & Balding,

2009). Graphical tools like LocusZoom which can provide the extent of

an association signal and the position relative to nearby genes in a GWA

study can also be useful (Pruim et al., 2010). Bayesian approaches have also

been used for the identification of causal SNPs, where Bayes factor is used for

calculating the posterior-probability for each variant (Spain & Barrett,

2015). In a recent review, Schaid et al. (2018) described in detail various

other approaches for fine mapping, which include the following:

(i) Heuristic approach, which involves filtering SNPs based to their pairwise

correlation (r2) with the lead SNP or hierarchical clustering of all SNPs in a

region based on their pairwise r2 values or study of pair-wise LD among

SNPs within haplotypes. (ii) Penalized regression approach, which involves

joint analysis of all the SNPs in a region using regressionmodel. (iii) Bayesian

fine mapping approach, which involves incorporation of prior information

in the analysis (see Section 4.1.6.). (iv) Multi-region fine mapping, which

involves use of multiple loci. (v) Trans-ethnic fine-mapping, which involves

combining GWAS results of same trait from genetically diverse populations;

this will be equivalent to the use of multiple panels for GWAS for fine map-

ping. Besides this, they have also discussed the factors which can influence

the fine-mapping.

7.1.2 Localization success rate (LSR)
LSR is the probability of the causal SNP being top-ranked within an asso-

ciated region. Often, LSR can be improved through a use of multiple

populations for a joint analysis, rather than a single large population.
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Zaitlen, Paşaniuc, Gur, Ziv, and Halperin (2010) proposed an approach,

where LSR can be improved without using a very large population and very

dense genotyping data. This approach considers following two issues, while

conducting analysis: (i) structure of the LD in the population being studied,

and (ii) identification of the population(s) achieving an increase in LSR for

fine mapping. Zaitlen et al. (2010) observed that studies which involve a set

of two or three populations give higher average LSR than those which are

based on single population.

7.1.3 Conditional analysis
Statistical methods are now available for conditional analysis, which can iden-

tify a causal SNP from amongmany correlated variants within a LD block or a

haplotype. Such conditional analysis may be conducted at the level of an indi-

vidual locus representing a genomic region or on whole genome level. Some-

times, conditional analysis may also involve a network, where a set of other

genes (involved in the network) are selected on the basis of prior knowledge

about the biological network, and used for conditional analysis.

(a) Conditional analysis (cGWAS) at a locus or in an LD block

In GWAS, if we have a primary lead SNP (say SNP A) associated

with the trait, and also find within the same locus/interval another sec-

ondary associated SNP (say SNP B) that is correlated with SNP A, one

may like to find out whether or not the association of SNP B is inde-

pendent of correlated SNP A, although both SNPs are within the same

genomic region. In such cases, we may conduct GWAS, after adjusting

the model for SNP A. Such analysis can be used as a tool to identify

secondary association signals, which are independent of the primary sig-

nals. This will involve analysis, conditioning on the primary associated

SNP (SNP A in this case) at the locus, to test whether within the same

region, there are one or more other SNPs significantly and indepen-

dently associated with the trait. Many times, it may be possible that

there are several genes in the interval of one GWAS locus (including

humans andmaize) and only one of this may contribute to the identified

MTA. However, a follow-up analysis of GWAS loci as well as addi-

tional experiments will be required to pin-point the causal genes

(Huang & Han, 2014).

(b) Conditional analysis (cGWAS) of whole genome

A conditional analysis is often also conducted at the level of whole

genome, using the top associated SNPs, which can be followed by a

step-wise procedure to select additional SNPs sequentially based on
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their conditional p values. This strategy can be useful for the identifi-

cation of more than two associated SNPs at each individual locus,

and may also allow identification of one or more causal SNPs (Huh,

Kwon, & Park, 2015; Yang et al., 2012). This will also help in the iden-

tification of haplotypes associated with a particular trait.

(c) Network-based conditional analysis (cGWAS)

A network-based cGWAS has also been suggested, where the

impact of genetic variants on more than one omics phenotypes is exam-

ined. In such a case, for each trait of interest, a set of other traits are

selected (based on biological network), and used as covariates in

GWAS. The network could be reconstructed either from biological

pathway databases or directly from the GWAS data. Such an approach

has been used in humans using metabolomics data (151 metabolites),

where it was shown that additional loci (not detected by conventional

GWAS) can be detected through this approach (Tsepilov et al., 2018).

(d) Conditional analysis using GWAS summary statistics

In addition to the approaches described above, where original

individual-level data are used for conditional GWAS, methods have also

been proposed, where conditional analysis can be applied to GWAS

summary data. These methods include the following: (i) Genome-wide

ComplexTrait Analysis—Conditional and Joint Effect Analysis (GCTA-

COJO) (Yang et al., 2012); (ii) Sequential Sentinel SNP Regional Asso-

ciation Plots (SSS-RAP) (Zheng, Gaunt, &Day, 2013). (iii) “HAPlotype

Regional Association-analysis Program” or HAPRAP (Zheng et al.,

2017). Although, each of these methods has been designed to suit a

specific situation, it was shown that HAPRAP outperforms other two

methods and had an increased power for fine mapping (Zheng

et al., 2017).

7.2 Prioritization of GWAS signals
Although hundreds of MTAs for different traits have been identified in dif-

ferent crops using GWAS, not all of them can be used in practical plant

breeding program. It is therefore imperative to prioritize the most important

loci for their functional characterization as well as for possible use in crop

improvement program. Sometimes the terms “prioritization” and

“identification of causal variant” are used interchangeably, which may

not be desirable. Identification of a causal variant refers to distinction

between a true causal variant and an association that arises just due to LD
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with causal one (for details see above). The term “prioritization,” on the

other hand, refers to selection of an associated marker that allows identifi-

cation and selection of a CG for functional characterization. Different

approaches have been proposed for prioritizing the most important loci

identified through GWAS. Most of these approaches have been suggested

for post-GWA studies in humans, and only limited literature is available

on prioritization of GWAS signals in plants. However, with suitable mod-

ifications, the approaches used in humans can also be used in plants (Table 4).

As can be seen from the data presented in Table 4, the most important

prioritization approaches rely on calculating prioritization score based on

p-values. Prioritization methods, which do not require calculation of prior-

itization score are also available and include the following: (i) meta-analysis;

(ii) analysis of eQTLs and interacting QTLs (Cantor, Lange, & Sinsheimer,

2010); (iii) study of DNA methylation pattern (Heyn et al., 2013);

(iv) application of newer omics approaches; (v) haplotype-based analysis

(see Section 7.2.6.); (vi) transcription factor binding sites; (vii) DNase hyper-

sensitive sites; (viii) histone modifications (Edwards, Beesley, French, &

Dunning, 2013; Hou & Zhao, 2013), etc. Other approaches have also been

suggested in case of human beings, which include Network Interface Miner

forMultigenic Interactions (NIMMI) (Akula et al., 2011), use of functionally-

coherent sub-networks (Taşan et al., 2015), guilt by association (Lee, Blom,

Wang, Shim, & Marcotte, 2011) and network-assisted analysis ( Jia & Zhao,

2014). Some of these approaches are also available in the form of tools like

GWASrap (Li, Sham, & Wang, 2012) and cepip (Li, Li, et al., 2017). Several

bioinformatics pipelines have also been proposed for this purpose in humans

(Cheng et al., 2015; Hiersche, R€uhle, & Stoll, 2013; Uren et al., 2017; Vaez

et al., 2016). However, not all approaches proposed in the context of human

system are suitable for plants. The approaches, which have been used or are

likely to be used in plant system, are described in this section in relatively

greater detail.

7.2.1 Meta-analysis
GWASmeta-analysis should not be confused with meta-QTL analysis that is

frequently practiced using the results of multiple QTL interval studies for the

same trait, using the samemarkers. This gives us metaQTLs, which are more

robust and reliable for MAS. On the other hand, GWAS-meta-analysis is

used for the following two purposes, and may involve one study or several

studies involving the same trait: (i) discovery analysis for identification of

new MTAs, and (ii) replication analysis for confirming MTAs already
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Table 4 List of prioritization approaches used for post-GWAS analysis in humans which
can potentially be used in plants with suitable modifications.
Approach Steps involved Reference

GIN (genomic

information network)

• Prioritization score (S) is calculated for

each SNP which is a cumulative measure

of scores derived from pathway

information, comparative genomics,

linkage scan, and results of other

independent GWAS studies. The

weights are decided by the strength of the

linkage between the SNP and the

annotations (closer an SNP with the

gene, more will be the score)

• SNPs are ranked according to their score

for further study

• The approach has been implemented in

SNP prioritization online tool (SPOT)

Saccone et al.

(2010, 2008)

Functional priority

of the p-values

(fpp-value)

approach

• Functional priority of the p-values (fpp-

values) of a selected locus is determined

from prepared p-values of interactions

between (i) SNPs and gene expression

patterns, and (ii) genetic loci and gene

expression for target phenotypes

Paik et al. (2012)

Prioritization using

Bayesian

probability

• Important signals are prioritized using

genome-wide data, SNP information

from bioinformatics databases, empirical

SNP weights, and the researchers’

subjective prior probabilities

• Prior probabilities are combined with

GWAS data to calculate posterior

probabilities

Thompson et al.

(2013)

GPA (Genetic

analysis

incorporating

Pleiotropy and

Annotation)

• Integration of GWAS data of multiple

genetically related phenotypes and

incorporation of required biological

information in the analysis to prioritize

GWAS results

• Testing for the presence of pleiotropy

• A modified version of this approach is

available in the form of graph-GPA

• The basic idea is that genetic basis is not

shared only within a phenotype group

but also between phenotype groups

Chung et al.

(2014) and

Chung, Kim,

and Zhao (2017)
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identified. Meta-analysis may also involve prioritization through integration

of information of multiple complimentary studies from the same or closely

related populations (Cantor et al., 2010; Evangelou & Ioannidis, 2013; Lee,

Kim, Choi, Huh, & Park, 2015; Magi & Morris, 2010; Tang & Lin, 2015).

GWAS meta-analysis have already been conducted in humans (e.g., height

and BMI), but its use in plants has yet to realized. A distinction has also been

made between GWAS meta-analysis and mega-analysis.

(a) Meta-analysis and mega-analysis

Meta-analysis is generally conducted using summary-statistics using

the data from one study or several studies. If the individual-level data

from different studies are also available, one can perform the mega-

analysis. In meta-analysis, the results reported in a number of earlier

studies, or those obtained by several collaborators are utilized. Some-

times, all results are not reported in a publication, so that mega-analysis

involving original data of individual studies may be more rewarding.

(b) Discovery analysis and replication analysis

Based on the purpose of the study, meta-analysis that is conducted fol-

lowing GWAS can be classified in the following two groups: (i) discovery

analysis for the discovery of new variants, and (ii) replication analysis for

the replication of earlier findings.While the purpose of discovery analyses

is to look for new variants across the whole genome, replication analyses

usually focuses on a limited number of pre-specified variants. However,

Table 4 List of prioritization approaches used for post-GWAS analysis in humans which
can potentially be used in plants with suitable modifications.—cont’d
Approach Steps involved Reference

GenoWAP

(Genome Wide

Association

Prioritizer)

• Integrated analysis of GWAS p-values

and genomic functional annotation as

well as pleiotropic effects

• Integrates functional prediction and each

SNP is assigned a new score that

measures its importance

• For prediction of the functional potential

of each nucleotide of human,

GenoCanyon is used which can

distinguish true signals from among

highly correlated SNPs.

• The method can reduce noises caused

due to LD and can also identify marginal

signals in studies having insufficient

sample sizes

Lu, Yao, Hu,

and Zhao (2016)

and Lu et al.

(2017)
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depending on the situation, both these methods can be combined as part

of hybrid design wherein, one would first replicate the previous findings

and then the results are used to identify new candidate regions. Accord-

ingly, a typical meta-analysis involves the following different stages:

(i) processing of the preliminary data to understand between-study het-

erogeneity; (ii) replication of previous discoveries; (iii) actual discovery of

new variants, and (iv) replicating these new discoveries.

(c) Heterogeneity in component studies

Meta-analysis also involves identification of heterogeneity in the size

of the effects across different studies that are used for meta-analysis (Lee

et al., 2015; Panagiotou, Willer, Hirschhorn, & Ioannidis, 2013). Differ-

ent factors causing heterogeneity have been discussed (Bush & Moore,

2012; Gogele et al., 2012; Han & Eskin, 2012; Lee et al., 2015). Some

of the factors which are relevant in the context of plant systems include

the following: (i) use of different study designs in different studies leading

to variation in the genetic effects across populations; (ii) differences in the

genotyping platforms used and different thresholds for genotyping quality

control procedures; (iii) quality of imputation, particularly for the data

involving low-frequency variants; (iv) population structure in association

panels that are used and (v) publication-bias caused due to incomplete

reporting of quality criteria in the individual analysis. An important het-

erogeneity test is the Cochran’s Q test, which can be used to identify if

the differences between the primary studies really exist or are due to

chance (Whitehead & Whitehead, 1991). Heterogeneity can also be

tested using I2 value, which is independent of the number of studies

or the type of output data (Higgins & Thompson, 2002).

(d) Methods of GWAS meta-analysis

The methods that are used for GWAS meta-analysis were reviewed

by Evangelou and Ioannidis (2013) and include the following: (i) use of

P-values accompanied either with or without weights, and (ii) use of

fixed/random effects model for combining the size of effects. The

P-values can be used either by Fisher’s P-method, where all studies

are weighed equally or by Z-score method (Z-scores are calculated

by transforming P-values); this will allow attaching different weights

to different studies (Cantor et al., 2010; De Bakker et al., 2008). Also,

the choice of appropriate model for meta-analysis is dependent upon

the presence/absence of heterogeneity, so that a fixed effects model

is suited in the absence of heterogeneity, while a random effects model

is used in the presence of heterogeneity (Lee et al., 2015). It is known
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that in the presence of heterogeneity, interpretation of results is diffi-

cult. A new statistic calledM-value has been suggested for this purpose

(Han & Eskin, 2012).

(e) Crop-wise consortia for meta-analysis in crops

Studies involving meta-analysis of GWA data in humans have

mainly been benefited by powerful consortia between different research

groups as well as advances in the technique of data imputation. Utility of

such studies is also seen from the fact that several studies in humans have

identified associations that could not be identified in any individual

study. However, despite its demonstrated success in human GWAS,

such studies have not been conducted in plants. One of the major rea-

sons for this can be the non-availability of common sets of markers

across different GWA studies in plants; another reason can be hetero-

geneity in the results caused due to various reasons mentioned above.

The success of meta-analysis in humans suggests that it will be desir-

able to have strong consortia for individual crops. This will help in pri-

oritization of associations reported in earlier studies, and can be

followed by mega-analyses. Important crop plants like maize, rice

and wheat, where major international consortia for genome sequencing

already exist can be the starting point for such studies. The advances

made in techniques involving data imputation and variety of computer

programs enabling meta-analysis in humans can facilitate such studies in

plants. Excellent reviews describing different methods of meta-analysis

along with issues related to it are already available (Begum, Ghosh,

Tseng, & Feingold, 2012; Bush & Moore, 2012; Evangelou &

Ioannidis, 2013; Han & Eskin, 2012; Panagiotou et al., 2013). In order

to handle the computational challenge involving meta-analysis, large

numbers of software packages are also available, which have been dis-

cussed and compared by Evangelou and Ioannidis (2013). Grimm et al.

(2017) developed a cloud-based platform called easyGWAS, which can

be used for meta-analysis, and also for comparison of results from dif-

ferent GWA studies. It can also compute, store, share and annotate

GWAS results across different experiments and different species. This

is probably the first such interactive resource for GWA studies in plants

and will facilitate more such studies in future.

7.2.2 Pathway-based analysis
Pathway-based analysis is a promising post-GWAS approach to understand

genetic basis of the trait of interest (Wang, Li, & Bucan, 2007). The approach
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focuses on the study of the combined effect of several genes which are

grouped based on their shared biological function. Following steps are

involved in this analysis: (i) information is collected for all genomic regions

and genes associated with the trait of interest, directly or indirectly;

(ii) screening of available transcriptome data (this may sometimes involve

identification of eQTLs); (iii) grouping of genes on the basis of gene ontol-

ogy; (iv) analysis of groups of genes to identify the possible pathway that may

be associated with the trait of interest. Initially, the approach was based on

single or few genes, which were differentially expressed at the highest level;

the approach, therefore, was then called gene-based analysis (Liu et al., 2010;

Tang, Perkins, Williams, & Warburton, 2015). Later, modifications were

made to extract more information regarding genetic architecture of trait

of interest, so that detailed pathways involved in the expression of a specific

trait could be worked out in some cases.

Pathway-based analyses are routinely used for human genetic studies

involving complex diseases (Carlson, Eberle, Kruglyak, & Nickerson,

2004; Kwak & Pan, 2017; Li, Jiao, et al., 2015; Torkamani, Topol, &

Schork, 2008; Weng et al., 2011). However, in case of plants, only few such

studies have been conducted (Lu, Liu, et al., 2015; Tang et al., 2015). The

first such study in plants was conducted in maize and involved identification

of defense mechanism against aflatoxin accumulation which is caused due to

infection of fungus Aspergillus flavus in maize kernel (Tang et al., 2015). It

was found that jasmonic acid pathway is the most important pathway asso-

ciated with aflatoxin resistance. It was also observed that the inbred lines of

GWAS panel with desirable alleles of genes involved in jasmonic acid path-

way had reduced level of aflatoxin. However, other genes that were not

involved in this pathway were also identified, which reduced aflatoxin con-

tent and coded for the different gene products.

(a) Phenome-based GWAS (PheGWAS)

Pathway-based approach may sometimes also involve the so-called

phenome-based GWAS (PheGWAS; Denny et al., 2010). The

approach facilitated identification of causal SNPs involved in regulatory

functions, since large number of SNPs identified through GWAS are

present in either intronic regions or intergenic regions; this aspect is

poorly understood and cannot be studied through conventional GWAS

involving genomic data (van der Sijde, Ng, & Fu, 2014).

PheWAS was used in humans to interpret the results of GWA stud-

ies for several diseases, based on International Classification of Disease

(ICD9) clinic codes (Denny et al., 2010). PheWAS was also used for

identification of enzymes and metabolites involved in specific pathways
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(Denny et al., 2013). R package is also available for automatic run of

PheWAS (Carroll, Bastarache, & Denny, 2014).

A metabolic pathway-based PheGWAS (M-PheGWAS) was also

proposed and utilized in rice (Lu, Liu, et al., 2015). In this approach,

GWAS is first conducted involving metabolites to identify SNPs asso-

ciated with metabolites. Identified SNPs were then used to identify

corresponding eQTL (using expression QTL analysis and genetical

genomics approach). The eQTL analysis was followed by pathway

analysis, leading to identification of a specific pathway involved in reg-

ulation of trait variation. In this study, results of two earlier studies were

utilized, one involving metabolite dataset with 840 distinct metabolites

from leaves (Chen et al., 2014) and the other involving eQTL dataset

with more than 13,000 eQTLs for over 10,000 e-traits (Wang et al.,

2014). The study successfully demonstrated the functional relationships

among metabolites, which play an important role in downstream reg-

ulation (flavonoids and enzymes, which regulate transcript level).

(b) Topologically association domain (TAD) pathway-based approach

TADs are defined as regions with DNA sequences, which physically

contact and interact with each other more frequently than with

sequences outside the TAD. Thus, TADs define the boundaries of an

interactome and can aid in defining the limits withinwhich an association

impacts gene function. These TADs can range in size from thousands to

millions of base pairs.

In “TAD pathway-based approach,” TADboundaries are first iden-

tified and then gene ontology analysis is performed using all the genes

present within TAD boundaries. In many cases, this method identified

a gene other than the gene that is nearest to the associated marker

identified through GWAS, thus demonstrating its utility. While con-

ducting GWAS for “bone mineral density (BMD)” in humans, Way,

Youngstrom, Hankenson, Greene, and Grant (2017) successfully iden-

tified “skeletal system development” as the top ranked pathway. This

approach helps in developing an understanding of the inter-relationship

between causal genes and associated signals present in coding as well as

non coding regions.

7.2.3 Methylation QTL (meQTL) in the post-GWAS era
It is widely known that in genomic DNA, 20–40% of cytosine residues in CG

islands in humans and CG, CHG and CHH (H¼ any base other than G)

islands in plants are methylated (Gruenbaum, Naveh-Many, Cedar, &

Razin, 1981;Messeguer, Ganal, Steffens, & Tanksley, 1991). This methylation
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controls the expression of gene, thus leading to changes in phenotypes, both in

humans and plant systems (for details, see Kalisz & Purugganan, 2004; King,

Amoah, & Kurup, 2010; Long et al., 2011; Suzuki & Bird, 2008). In humans,

correlations were also reported between SNPs identified through GWAS and

differential DNA methylation, suggesting that methylated SNPs identified

through GWAS may regulate gene expression and control phenotype

(Heyn et al., 2013). In two recent studies in humans, methylation QTL

(meQTL)was identified; in one of these two studies, one-third of the loci asso-

ciated with schizophrenia identified through GWAS were found to be meth-

ylation QTL (meQTL; Jaffe et al., 2016). In the other study, involving asthma,

most methylated CpG sites were found to be associated with SNPs manifesting

cis-effects (Kumar et al., 2016).

In higher plants, changes in DNA methylation due to vernalization and

due to treatment with azacytidine (a DNA demethylating agent) was shown

to alter phenotype (for a review, see Horvath et al., 2002). For instance, in

Perilla frutescens, flowering was induced by azacytidine (Kondo, Ozaki, Itoh,

Kato, & Takeno, 2006). In model plant Arabidopsis, epiRILs were also

developed using mutants for met1 (DNA methyltranferase) and ddm1

(decrease in DNA methylation) genes ( Johannes et al., 2009; Reinders

et al., 2009). Trans-generational epigenetic variation involving DNA meth-

ylation has also been reported in many plant systems including model plant

Arabidopsis (Amoah et al., 2012; Garg, Chevla, Shanker, & Jain, 2015;

Johannes et al., 2009; Reinders et al., 2009). A hypomethylated population

was also developed in Brassica using azacytidine, where mutants for methyl-

ation were not available (Amoah et al., 2012).

Whole genome methylation studies have also been conducted in several

plant systems including Arabidopsis, wheat, brassica, cotton, rice, etc.,

where epigenetic variants were shown to affect phenotype (Chen et al.,

2015; Gardiner et al., 2015; Hu, Chen, Zhang, & Ding, 2015; Lu, Liu,

et al., 2015; Lu, Zhao, et al., 2015; Zhang et al., 2006). However, in case

of plants, no study is available where epigenetic analysis is utilized in order

to interpret the GWAS results. Integration of GWAS and methylome may

provide better insights into genetic architecture of traits.

7.2.4 Prioritization of variants in the non-coding regions
Themarkers associated with traits of interest may often lie in the non-coding

region of the genome, so that such variants in the non-coding region need

special treatments. The examples of such variants include e-QTL, miRNAs

and lncRNAs.
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(a) Expression QTL (eQTL)

It is known that most associated SNPs (identified using GWAS) for the

trait of interest are often present in the non-coding region of the genome

(Atanasovska, Kumar, Fu, Wijmenga, & Hofker, 2015; Schaid et al.,

2018). Therefore, it is possible that some of these SNPs are actually in

LD with regulatory regions of structural genes. However, in many cases

the gene nearest to the associated SNP is not the causal gene (French et al.,

2013; Zhou et al., 2012). For instance, in a study on obesity in humans, it

was shown that a causal gene is not the nearest gene (Claussnitzer et al.,

2015; Smemo et al., 2014). These associated SNPs often represent the

so-called expression QTL or eQTL ( Jansen & Nap, 2001), which can

be cis-QTL or trans-eQTL. In actual practice, it has been shown that

eQTL analysis is a powerful tool for identification of causal genes

(Nica & Dermitzakis, 2013; Zhu et al., 2016). Although most of these

studies on eQTL analysis involved use of mapping populations (DH or

RIL populations) for interval mapping, there are also reports of GWAS

involving eQTL analysis both in human beings (Westra & Franke,

2014) and in plants (Bajaj et al., 2015; Cubillos, Coustham, & Loudet,

2012; Kliebenstein, 2009; West et al., 2007).

GWA studies have also been conducted using transcriptome data

leading to the identification of eQTL carrying the associated SNPs.

Since most traits are complex in nature, very large populations are

needed to detect genetic variants/gene expression. This makes it diffi-

cult to phenotype and to perform eQTL GWAS (genetical genomics)

in a population with large numbers of genotypes. To overcome this

limitation, Zhu et al. (2016) proposed “Summary Data-Based Mende-

lian Randomization (SMR)” approach to identify causal genes using

summarized data of GWAS and eQTL studies, which are available in

public domain. This is a useful tool to prioritize genes with known

MTAs for functional studies.

While studying the genetics of a complex trait involving expression

data along with genotyping and phenotyping data that is routinely used,

we may have two possible scenarios: (i) a genetic variant may be an

eQTL and controls the expression of another gene [adjoining gene

(eQTL) or a distant gene (trans-eQTL)], thus indirectly influencing

the trait of interest; this is described as causal relationship between

the gene and the phenotype (even though it is through expression);

(ii) a genetic variant may have direct effect on both, the expression
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and the phenotype (this is pleiotropy); alternatively this genetic variant

controlling expression may be in close linkage with another gene con-

trolling the phenotype. “Heterogeneity independent instruments”

(HEIDI) test is generally used for discriminating between pleiotropy

and linkage.

In higher plants, thousands of eQTL have been identified that

regulate expression of genes associated with complex traits (Cubillos

et al., 2012; Kliebenstein, 2009; West et al., 2007). However, informa-

tion from only few of these eQTL has been utilized to interpret GWAS

(Chan, Rowe, Corwin, Joseph, &Kliebenstein, 2011; Yang et al., 2014).

In Arabidopsis, through combination of GWAS and eQTL analysis,

Chan et al. (2011) cloned some novel genes involved in glucosinolate

(GSL) synthesis. For this purpose, they used 96 Arabidopsis accessions

and 230,000 SNPs to conduct GWAS for more than 40 GSL traits.

Through co-expression network approach using eQTL, candidate genes

(identified through GWAS) were prioritized and then several genes asso-

ciated with GSL synthesis were characterized and cloned. In another

study in maize, out of six CGs associated with agronomic traits identified

through GWAS, one was found in the region of eQTL and was prior-

itized for further study (Yang, Lu, et al., 2014). Such studies need to be

extended to other important crops like wheat, rice, etc., to prioritize

MTAs identified through GWAS for further functional validation and

for their utilization in crop improvement programs.

(b) Integration of GWAS and eQTLs

In order to overcome some of the limitations of traditional GWAS,

integration of GWAS with eQTL has been recommended using follow-

ing twomethods: (i) PrediXcan [for individual level data (Gamazon et al.,

2015) and for summary data (Torres et al., 2017)] and (ii) transcriptome-

wide association study (TWAS) (for individual level and summary statis-

tics data+eQTL; Gusev et al., 2016). By incorporating information on

gene regulation from a set of markers, PrediXcan increases power of

association analysis over that of traditional GWAS and gene-based tests.

On the other hand, TWAS identifies genes whose cis-regulated expres-

sion is associated with complex traits by integrating gene expression data

with that of the GWAS summary statistics. However, under certain

common situations, both these methods suffer from loss of power.

Recently, Xu, Wu, Wei, and Pan (2017) has proposed a new test

called TWAS-aSPU, which is based on the reformulation of PrediXcan
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and TWAS and can integrate single or multiple sets of eQTL data with

GWAS individual-level data or summary statistics and has been proven

to be more powerful than the original methods. Using lipid GWAS

summary data from large number of samples, this new method identi-

fied novel trait-associated genes and also showed much improved

performance (Xu et al., 2017). R package for this method is also freely

available.

(c) Micro-RNA (miRNA)

Since presence of trait-associated SNPs in non-coding region is a

rule rather than exception, one would expect the presence of GWAS

SNPs in miRNAs regulome also. During the last 5 years, several strat-

egies, bioinformatic tools, online databases have been developed that

enabled identification of GWAS signals, which alter miRNA regulome.

For instance, in humans, target site of miR196 was shown to be asso-

ciated with Crohn’s disease through GWAS (Georges, 2011). In several

other studies in humans, SNPs detected throughGWASwere found to be

present within the regions of miRNA regulome (Goulart et al., 2015).

This allows one to better understand and prioritize the GWAS signals

and genetic architecture of complex traits (Bulik-Sullivan, Selitsky,

& Sethupathy, 2013; Thomas, Saito, & Saetrom, 2011; Ziebarth,

Bhattacharya, Chen, & Cui, 2012). A recent development is the integra-

tion of expression data of miRNAs and their targets with data onmRNAs

and GWAS in a database to enable user to prioritize and select functional

SNPs (Gong et al., 2015). However, only limited efforts have been made

in plants to study the involvement of GWAS SNPs in miRNA regulome.

Efforts, therefore, are needed to collect all the information related to

miRNA and its targets and expression analysis that may be relevant to

examine further the results of GWAS in post-GWAS era for a number

of traits in a variety of crops. For this purpose, statistical and bioinformatics

tools as well as databases are also need to be developed.

(d) Long noncoding RNA (lncRNA)

Since many GWAS SNPs are present in non-coding regions,

lncRNAs may also be involved in associations identified through

GWAS. In humans GWA studies, association of lncRNA was reported

with several diseases including the following: intellectual disorder

(D’haene et al., 2016), lung cancer (Yuan et al., 2016) and car-

diometabolic diseases (Dechamethakun &Muramastu, 2017). However,

in case of plants, no such association of lncRNA has been reported in

post-GWAS studies, although there is no reason why such an association

of lncRNAs should not be available.
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7.2.5 Application of omics approaches
In the post-GWAS era, omics approaches (including genomics, trans-

criptomics, proteomics and metabolomics) will also be increasingly used

in association mapping. Some progress has been made in this area, which

will be covered briefly in this section.

(a) Associative transcriptomics and transcriptome based GWAS (TWAS)

RNA-Seq is often used for a study of transcript abundance and for

providing functional information such as quantitative variation in expres-

sion and indications of epigenetic silencing (Bancroft, 2013). With the

advances in NGS techniques, RNA-Seq is becoming increasingly pop-

ular. The advantage with this technique is that the complexity associated

with sequencing large/polyploid genomes is reduced by sequencing only

the transcribed region of the genome (Harper et al., 2012). In addition, it

can provide a means to conduct GWASwith a single sequence data set to

analyze variation in gene sequences (as SNP markers) and regulatory

sequences (as gene expression markers¼GEMs) (Bancroft, 2013). This

technique of rapid identification of molecular markers associated with

trait variation due to gene sequences and regulatory sequences has been

described as associative transcriptomics (AT) (Harper et al., 2012). The

approach can be used even in species where limited genomic resources

are available.

The technique of AT has already been utilized in Brassica napuswhich

led to identification of genomic deletions associated with two QTLs for

seed glucosinolate content (Lu et al., 2014) and anion homeostasis

(Koprivova, Harper, Trick, Bancroft, & Kopriva, 2014). It has also been

successfully utilized in wheat for identification of the novel causative

genes contributing to stem strength and plant height (Miller et al.,

2016) and in European ash (Fraxinus excelsior, a tree) for identification

of genes providing tolerance against dieback disease (Harper et al.,

2016). The technique allows identification of important associations

even in a smaller set of genotypes, as against a GWA study, where a larger

sample size is needed. The SNPs andGEMswhich have been found to be

associated with the traits using AT can be converted into user-friendly

markers for use in future breeding programs (Miller et al., 2016). The

limitation of this technique, however, is that one should have a draft

genome sequence scaffolds from a related species in order to establish

a hypothetical marker order (Bancroft, 2013).

(b) Metabolite based GWAS (mGWAS)

In recent years, the focus of genetic studies has shifted toward iden-

tifying associations with the intermediate or end products of enzymatic
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reactions which have a direct effect on the phenotype. These products are

called as metabolites and the plant metabolome serves as the link between

the “genome and its phenome” (Luo, 2015). The abundance of a specific

metabolite in the genotypes of a population can be treated as a trait and

can be used to perform metabolite-based GWAS (mGWAS).

This new approach of mGWAS is emerging as one of the powerful

alternative genetic strategies to elucidate the genetic and biochemical

bases of metabolism in not only model plants but also in important crop

plants. The significance of metabolites in plants is also evident from

their diversity which is far greater than that found in other organisms

(Riedelsheimer et al., 2012).

Metabolite based GWA studies have been carried out using natural

populations leading to identification of significant MTAs. Metabolome

profiling of plants accompanied with advances in quantitative genetics

and genomics can significantly aid in identification of the causal genes

controlling natural variation in metabolome profile and the variation in

abundance of individual metabolites. This is evident from such studies

carried out in maize (Riedelsheimer et al., 2012; Wen et al., 2014), rice

(Chen et al., 2014; Matsuda et al., 2015) and tomato (Sauvage et al.,

2014; Zhao et al., 2016), which suggested that metabolites serve as

the vital links between the genotype and the phenotype. Wen et al.

(2014) combined the mGWAS approach with the expression profiling

(RNA-seq) data for 983 metabolite features and identified important

MTAs for kernel weight in maize. Following the re-sequencing and

CG based analysis, they identified potential causal variants for five

CGs involved in metabolic traits. Similarly, in a recent study, Zhang,

Warburton, et al. (2016) identified, genetic determinants of metabolic

response to drought stress using a high density SNP set in maize. The

important candidate loci identified in such studies, if validated func-

tionally, can yield important insights about the genetics of these traits.

More such studies are needed to be carried out on large scale in other

crop plants to harness the potential of this approach.

(c) Network-guided GWAS

Although, in many studies mentioned above, absolute values of

metabolites have been used as traits in GWAS (mGWAS), it is now

known that derived traits which are generated from absolute values

of metabolites can offer unique understanding about the metabolic net-

work and can be used as a trait for genetic dissection of a trait like free

amino acids (FAAs) (Angelovici et al., 2017). These derived traits can

either be the ratio of two related metabolites or the sum of related
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metabolites. In many GWA studies, it has also been shown that these

derived traits have exhibited more significant associations over those

obtained using absolute levels of metabolites (Angelovici et al., 2013;

Gonzalez-Jorge et al., 2013; Lipka et al., 2013; Owens et al., 2014).

One such study in Arabidopsis involved use of traits like branched-

chain amino acid (BCAA) and other related seed traits, including ratio

of isoleucine (Ile) either with the amino acids of the BCAA family or

with the total amino acids (Angelovici et al., 2013). This study identi-

fied BCAT2 (BRANCHED-CHAIN AMINO ACID TRANSFER-

ASES) as the key-locus associated with variation in seed BCCA.

Similarly, Lipka et al. (2013) observed highly significant association

with a known tocochromanol biosynthesis gene for the ratio of

δ-tocotrienol to the sum of γ- and α-tocotrienols in maize grain as

compared to that of the absolute levels of tocotrienol. In another study

in maize, utilizing a NAM panel, Richter et al. (2016) identified a new

cytochrome P450 gene for the ratio of two homoterpenes using a joint-

linkage-assisted GWAS. Using this network-guided approach involv-

ing a panel of 313-ecotypes of Arabidopsis, Angelovici et al. (2017)

performed GWAS for 98 traits which were derived from known met-

abolic pathways of amino acids. The results were compared with those

obtained from 92 traits which were generated from the analysis of an

unbiased correlation-based metabolic network. It was found that the

latter approach was superior over the former approach as additional

novel metabolic interactions as well as SNP-trait associations for FAAs

were identified with this approach. This shows the potential application

of network-based approach in elucidating the genetic basis of a com-

plex metabolic network.

7.2.6 Haplotype-based analysis
Prioritization of GWAS signals can also be achieved through the use of

haplotype-based analysis. It is well known that the patterns of variation pre-

sent in the genomes are inherited as blocks. Therefore, it will be more

appropriate to cluster the markers into haplotypes for analysis. This ulti-

mately can improve statistical power and can identify novel associations

(N’Diaye et al., 2017). There are several advantages with this approach.

For instance, one can use information on multiple markers simultaneously,

which leads to increased power of the analysis. It has also been observed that

the haplotype approach leads to an increase in the PVE (up to 50%) as well as

the allelic effect (up to 34%). Both, simulation based as well as empirical studies
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have shown that the power of QTL detection and the mapping accuracy can

be improved by grouping of markers into haplotype blocks (Barrero,

Bellgard, & Zhang, 2011; Calus et al., 2009; Hamblin & Jannink, 2011;

Hao et al., 2012; Lipka et al., 2013; Lorenz, Hamblin, & Jannink, 2010;

Lu et al., 2012; N’Diaye et al., 2017).

By haplotyping the entire genome, tag-SNPs can also be identified rep-

resenting haplotype blocks that are used in genetic studies, because the hap-

lotype blocks can describe common patterns of genetic variation. This

reduces the expense and time spent on GWAS, since it eliminates the need

to study every individual SNP. Several GWA studies have demonstrated the

importance of this approach in identification of associations with the traits.

Recently, this approach has been used for grain quality traits in wheat and it

was observed that by combining multiple SNPs into haplotype blocks the

average PIC increased from 0.27 per SNP to 0.50 per haplotype. In rice also,

using a set of 258 genotypes, when haplotype-based GWAS was conducted,

this allowed identification of a number of important QTL and CGs for

cooking characteristics and protein content (Wang, Pang, et al., 2017). In

future, with the advances in the HTP techniques and availability of large

numbers of SNP markers, haplotype-based GWAS will be the promising

technique (for a review, see Gupta et al., 2014).

7.3 Functional characterization of candidate genes (CGs)
Identification of causal markers and prioritization of associated markers

should generally be followed by identification and functional characteriza-

tion of candidate genes through bioinformatics analysis. But for validation

and functional characterization, reverse genetics technologies are often used,

where the effect of variations/alterations in a gene on phenotype is exam-

ined (Heikoff, Till, & Comai, 2004).

7.3.1 Targeting induced local lesions in genomes (TILLING)
Validation and functional characterization of CGs identified using GWAS

is often achieved using TILLING,where a mutagenized population is exam-

ined for the presence of a rare allele of a CG and its effect on the phenotype

(Heikoff et al., 2004; Stemple, 2004). A modified approach is called Eco-

TILLING, where a germplasm collection (e.g., association panel) or a nat-

ural population is used for allele mining. This will allow validation of the

function of a CG without the need for producing transgenic plants for this

purpose.
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7.3.2 Insertional mutagenesis, VIGS and RNAi
Insertional mutagenesis involving transposon tagging is another approach to

validate gene function of a CG identified using GWAS (Kim et al., 2004;

Kuromori, Takahashi, Kondou, Shinozaki, & Matsui, 2009). In one such

study in Arabidopsis, GWASwas used to identify new effector genes respon-

sible for accumulation of proline under drought condition which were sub-

sequently validated using reverse genetic approach with the help of T-DNA

insertion mutants (Verslues, Lasky, Juenger, Liu, & Kumar, 2014).

Post-transcriptional gene silencing involving RNAi and virus-induced

gene silencing (VIGS) and promoter-mediated overexpression/mis-

expression approaches are also widely used for functional characterization

of genes in plant systems like wheat, cotton, etc. (Barro et al., 2016;

Czarnecki et al., 2016; Lu et al., 2003; Waterhouse, Wang, & Lough,

2001; Younis, Siddique, Kim, & Lim, 2014). VIGS has been used in plant

systems including tomato (Fantini, Falcone, Frusciante, Giliberto, &

Giuliano, 2013), tobacco (Senthil-Kumar & Mysore, 2014), Arabidopsis

(Manhaes, de Oliveira, & Shan, 2015), soybean (Zhang, Whitham, &

Hill, 2013), barley (Yuan et al., 2011), wheat (Scofield & Brandt, 2012),

maize (Mei, Zhang, Kernodle, Hill, & Whitham, 2016), rice (Kant,

Sharma, & Dasgupta, 2015), etc.

7.3.3 Genome editing and base editing
In recent years, the genome editing techniques (also called targeted muta-

genesis), including those involving clustered regulatory interspaced short

palindromic repeats (CRISPR/Cas), zinc-finger nucleases (ZFNs) and tran-

scription activator-like effector nucleases (TALENs), have been developed

for functional characterization of genes, and have been widely discussed in

published literature. CRISPR/Cas has become the most popular approach

for gene targeting, and has already been utilized in a number of plant systems

including Arabidopsis (Feng et al., 2013; Mao et al., 2013; Osakabe et al.,

2016), tobacco (Gao et al., 2015; Nekrasov, Staskawicz, Weigel, Jones, &

Kamoun, 2013), rice (Mao et al., 2013; Miao et al., 2013; Shan et al., 2013;

Wang, Wang, et al., 2016), wheat (Wang, Cheng et al., 2014; Zhang, Lian,

et al., 2016) and tomato (Pan et al., 2016). Amodified CRISPR/Cas approach

termed base editing has also been developed recently (Komor et al., 2016), and

will be increasingly used in future, where it will be possible to validate even

an individual causal SNP. Appropriate bioinformatic tools have also been

developed to select for the best possible CRISPR/Cas target sites (Belhaj,

Chaparro-Garcia, Kamoun, Parton, & Nekrasov, 2015).
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In all the above approaches, the first generation plants (M1 orT0) are usu-

ally heterozygous for the modified genomic region. Therefore, to validate

their phenotypic effect, one or more generations will be required for

obtaining homozygous recessives. In order to overcome this limitation,

Shen, Pan, and Lubberstedt (2015) proposed haploid scheme of mutagenesis

for functional validation of a single mutation. This approach has the advan-

tage of reducing cycle time either through pollen mutagenesis or through

pollen culture.

7.4 Gene-based and gene-set based association mapping
(GBAM, GSBAM) for quantitative traits

With the availability of NGS technology in recent years, millions of SNPs with

large populations could be used for GWAS, so that in each study, one had to

face “multiple testing” and “large p small n” problems. Haplotype-based asso-

ciation mapping was proposed and successfully used to only partially overcome

these problems. Therefore, gene-based association mapping (GBAM) and

gene-set based association mapping (GSBAM) have been recently proposed

and used to overcome the limitations of single SNP-based and haplotype-based

analysis.

GBAM or GSBAM makes use of variants within each CG or gene-set

(gene or gene-set is used as a unit of test), which is generally identified using

the results of GWAS based on SNPs or haplotypes. These approaches have

increased power, and can also be used for the study of the biological pro-

cesses involved in any complex trait. GBAM was first proposed by Neale

and Sham (2004) and has the following advantages, which are also shared

by GSBAM. First, it increases the power by using all the associated SNPs

within a gene together, because a gene for a trait may contain multiple inde-

pendent causal variants. Second, it may increase the power of GWAS by min-

imizing the multiple testing problem, since instead of testing several million

SNPs only thousands of genes or hundreds of gene sets are tested. Third, it

can also deal with the problem of allelic heterogeneity by using multiple

SNPs within a gene together; this results in more consistent results across

studies. Fourth, it can provide greater insight into the biology of the trait,

since the genes are basic functional units of the genome, and finally, it can

be readily extended to pathway or network-based analysis of GWAS (see

Section 7.2.2). In view of these merits, GBAM and GSBAMwill be increas-

ingly utilized in future, when GWAS summary results become publicly

available for a number of traits in each important crop.
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Because of the apparent similarity between GBAM and GSBAM, similar

chi-square tests are used for both. These tests can be classified into twomajor

types (univariate and multivariate tests): (i) The univariate tests involve chi-

square tests, each involving a set of single SNPs which are then combined.

The best approach for combining the results of individual tests is to first

obtain the minimum p-values as measures of significance and utilize these

values in Fisher’s method for combining chi-square-based p-values.

(ii) The multivariate chi-square tests involve testing all the variants in a gene

together, which increases the power for prediction of an unobserved causal

variant. A number of methods have been suggested and reviewed for this

purpose (Wang, Huang, et al., 2017) and are given in Table 5. Some of these

methods have already been referred in earlier sections. A comparison

between different such methods proposed for analysis of rare variants has

been made by Moutsianas et al. (2015). The steps involved in performing

gene-set analysis using GWAS data have also been described in published

literature (Mooney & Wilmot, 2015).

Entropy-based statistics have also been designed for GBAM and

GSBAM, and have been found to have higher power than a chi-square based

statistic. The basic purpose of using entropy is to amplify the difference in

allele frequencies between contrasting phenotypes, so that even if this dif-

ference is minute and difficult to detect, entropy will allow its detection

by amplification of this difference. Non-linear transformations are used to

amplify the difference in allele (or haplotype) frequencies between contra-

sting phenotypes.

7.5 GWAS using machine learning
The most common methods of GWAS discussed above either deal with

analysis of single-locus at a time or multiple-loci at a time. However, in both

these cases, the methods involved in analysis rely on making certain assump-

tions and building a mathematical model for analysis. This in turn increases

the computational demand. Moreover, the predictive power of the analysis

is inversely proportional to the number of assumptions made.

The recent progress in genotyping techniques, however, enabled collec-

tion of enormous and high dimensional data. These data are being regularly

used for GWAS. The methods to deal with this volume of data are also being

developed regularly. In this wave of big data, methods which involve min-

imal human efforts in making assumptions and which can learn from data

without relying on rules-based programming are therefore needed in the

post-GWAS era for rapid analysis of the data and for increasing the predic-

tive power of the analysis.
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Table 5 Different tests available for gene-based association mapping and gene-set
based ssociation mapping.
SN Test Features Reference

1 Smallest p-value

method

The smallest P-value over all SNPs

within a gene is used as an overall gene-

based P-value

Wang et al.

(2007)

2 Weighted Fourier

transform Test

Multivariate test; reduces degrees of

freedom by transforming genotyping by

weighted Fourier transformation

Wang and

Elston (2007)

3 Fisher’s combination

of p-values test

Combines results from several

independent tests using the same null

hypothesis; particularly suitable, when

there are multiple independent causal

SNPs within a gene

Curtis, Vine,

and Knight

(2008)

4 Versatile Gene-

based Association

Study (VEGAS)

Based on a multivariate distribution and

computes a gene-level p-value without

requiring raw genotype data; does not

require permutation analysis

Liu et al.

(2010)

5 Gene-based

Association Test

using Extended

Simes (GATES)

Calculates gene-level p-value without

using permutation or simulation; not

suitable when multiple independent

causal variants are present in a gene

Li, Gui,

Kwan, and

Sham (2011)

6 PrediXcan Incorporates information on regulation

of gene using a set of markers; has

increased power than SNP-based GWAS

and known gene-based tests; suitable for

analysis of transcriptome data

Gamazon

et al. (2015)

7 Multivariate Gene-

based Association

test by extended

Simes (MGAS)

Allows efficient testing of multivariate

phenotypes in unrelated individuals;

available as KGG v3.0

Van der Sluis

et al. (2015)

8 Flexible and

Adaptive test for

Gene Sets (FLAGS)

Takes into account the unique

association patterns of gene sets; Suitable

for GSBAM

Huang et al.

(2016)

9 Combined gene-

Based Association

Test (COMBAT)

Requires only SNP-level p-values and

correlations between SNPs from

ancestry-matched samples for analysis;

makes use of the strengths of several

gene-based tests listed above; superior

performance over many other tests

Wang,

Huang, et al.

(2017)

53Association mapping in plants

ARTICLE IN PRESS



Machine-learning (ML) methods make use of iterations, where computer

tries to find out the patterns hidden in data which is then subsequently

used to predict future data (Murphy, 2012). ML algorithms provide several

alternatives to perform multi-SNP analyses. One such method called

“penalized regression method” extends technique of standard regression for

analysis of correlated variables (Szymczak et al., 2009). ML approaches are

also shown to be useful in handling small n, large p problem, as well as LD

structure between the SNPs resulting in correlated variables (Szymczak

et al., 2009).

Machine learning can be divided into two types: supervised learning and

unsupervised learning (Murphy, 2012; Tarca, Carey, Chen, Romero, &

Draghici, 2007). In supervised learning, the aim is to establish a link from

input to output given a dataset consisting of labeled pairs of input and output.

In unsupervised learning there are no pairs of data, but only have data in

which we attempt to find some kind of structure; this would, however,

not be applicable to this setting. Both these approaches can be used in the

Post-GWAS setup in either protein function prediction or constructing

gene networks from gene expression data (Caragea & Honavar, 2009).

ML models can also deal with genetic interactions, which will not be

possible in single-locus association studies (Okser et al., 2014).

In recent years, the use of ML approaches is becoming common in

the analysis involving GWAS and GS. In one such application, a method

called COMBI, combining ML and statistical testing was proposed which

takes into account the correlations within the set of SNPs used in the study

(Mieth et al., 2016). It is a two-step process in which a support vector

machine is trained first and a subset of candidate SNPs is identified

followed by a hypothesis test along with appropriate threshold correction.

Similarly, a software GenAMap has been developed making use of

ML approach and can detect different associations among genotypes, gene

expression data, and clinical or other macroscopic traits in addition to pro-

viding many other features (Xing et al., 2014). PILGRM (Platform for

Interactive Learning by Genomics Results Mining) is another platform

which uses ML methods and is being utilized for genetic analysis and

allows its users to utilize their own knowledge and genome wide data

for designing the future experiments (Greene & Troyanskaya, 2011). It

contains a compendium of gene expression data which can be used by

the researcher based on their research needs. Recently, this platform was

successfully used in Drosophila and genes involved in learning and memory

were identified (Kacsoh, Greene, & Bosco, 2017). There is no doubt
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that ML approaches are becoming very popular for efficient analysis and

making sense of the ever-growing databases of biomedical nature

(Szymczak et al., 2009) and will prove important in the post-GWAS

era. Sufficient literature is now available on this aspect, but a more detailed

treatment of this subject is beyond the scope of this review. However, as

with any other approach, caution should be exercised when judging the

superiority of some ML approaches over other methods (Tarca et al.,

2007). Several methods employing ML are available, which have been

described and compared (Szymczak et al., 2009).

7.6 Use of high-dimensional data for molecular networking in
the post-GWAS era

A complex trait is often a manifestation of a large number of related pheno-

types, which are not independent of each other. Thus, identification of

causal genetic variations and understanding the mechanisms underlying such

complex traits requires a joint analysis of different interactions (including

pleiotropic, epistatic and plastic) and integration of information of different

omic data (Xing et al., 2014). This will require use of high-dimensional

data, which is being generated and used for molecular networking in the

post-GWAS era.

7.6.1 High-dimensional multi-omics data
It is also known now that a large number of SNPs associated with a complex

trait are likely to be eQTLs. Therefore, it is necessary to include gene expres-

sions and/or phenotypic traits as association responses. A major approach,

which will receive major attention in the post-GWAS era, includes the anal-

ysis of complex traits using high dimensional structured phenotypes including

multi-omics data to construct the molecular networks (Runcie &Mukherjee,

2013). For this purpose, in the post-GWAS era, following different data are

now often available for more detailed association mapping: (i) genome-wide

SNP genotyping data; (ii) NGS based whole-genome transcription data,;

(iii) expression data for individual genes using microarrays (used for eQTL

analysis); (iv) chromatin immunoprecipitation (ChIP) sequencing data

(used for epigenetics) and (v) imaging data involving phenomics. Among

these, the use of data from different areas including genotyping, trans-

criptomics (including gene expression data and eQTL analysis), metabolomics

and phenomics has already been discussed earlier. However, the success of the

studies focusing on the individual omic level data will remain restricted if one

set of data is used in isolation. Moreover, these single omic layer analyses do
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not directly explain interaction across multiple omic layers. It has nowbecome

possible to integrate data at different molecular levels so that the biological

processes associated with them can be described in detail (Carreno-

Quintero, Bouwmeester, & Keurentjes, 2013).

Several methods have been proposed to conduct GWAS using high

dimensional molecular data like transcriptome, metabolome, etc. The sim-

plest approach is to conduct association between each pair and then apply a

stringent cut-off, but this approach requires very large population size to

capture minor effects. Sparse regression model (Kim & Xing, 2009) and

latent variable regression model have been proposed for GWAS using high

dimensional phenotypes and successfully utilized in case of humans (Fusi,

Stegle, & Lawrence, 2012; Stegle, Parts, Durbin, &Winn, 2010). Canonical

correlation analysis (CCA) is another statistical technique to deal with multi-

variate data in GWAS (Ferreira & Purcell, 2009). In CCA, association is tested

between two groups of variables rather than testing each pair of variable.

In case, where data set is large enough and cannot fit in CCA model, sparse

CCA can be utilized (Parkhomenko, Tritchler, & Beyene, 2009; Witten &

Tibshirani, 2009). These different methods have also been discussed and com-

pared (Marttinen, Gillberg, Havulinna, Corander, & Kaski, 2013).

7.6.2 Networking of genes
Earlier in this review, we described the identification of causal variants and

prioritization as essential steps in the analysis of the results of GWAS in the

post-GWAS era. However, the knowledge of one or more causal variants

and their prioritization is not enough, because it does not tell us about

the mechanism involved, which connects the gene(s) associated with the

causal variants for the trait. A complex trait is always controlled by intricate

interactions between large numbers of genes, which constitute a network.

Therefore, following conventional GWAS, one can’t stop at the identifica-

tion of a causal variant and its prioritization, and will have to understand the

intricate interactions between different genes involved. The causal variants

for a trait need to be related to other molecular states in a cell in terms of

RNA transcripts, proteome and metabolome data, to construct a network,

which determines the status of the trait. Construction of such a network that

is involved in the expression of the trait is thus becoming an important area

of research in the post-GWAS era. This amounts to using systems biology

approach to define physiological state of the system, which seems to be pos-

sible in view of the availability of complete information about variation in

the DNA, RNA, metabolite and protein. This network provides a direct
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link between causal variants and crop improvement programs by connecting

molecular biology to physiology at the cellular and organismal levels. Such

large-scale data is also becoming available in many cases, which will facilitate

not only the construction of above molecular networks, but also for causal

association of such networks with the physiological states for the trait of

interest. Several studies and reviews are available, which address this subject.

7.6.3 Trans-ome wide association study (trans-OWAS)
Recently, a combination of omics approaches has been proposed and termed

as trans-omics to utilize the benefits of all the omic approaches simulta-

neously and can lead to trans-ome-wide association study (trans-OWAS)

(Yugi, Kubota, Hatano, & Kuroda, 2016). Such multi-omic approaches

make sense as they will allow us to understand the molecular mechanisms

that underlie genotype-phenotype relationships (Li, Pearl, & Jackson,

2015). The trans-OWAS approach proposed by Yugi et al. (2016) includes

information from all the omic layers and aims at identification of the molec-

ular mechanism involved in multifactorial diseases. This approach involves

reconstruction of individual networks from the multiple omic data which is

then used to characterize the phenotypes (Yugi et al., 2016). The important

advantage of this approach over GWAS is that it can associate phenotypes

with genetic as well as environmental factors (Yugi et al., 2016). Although

at the conceptual stage, a few trans-OWAS studies have already been carried

out in humans, but such studies are yet to be carried out in plants. However,

the available individual omics data in crop plants if integrated/networked

carefully, it is expected that in future, such studies will become common

in plants. Model plants like Arabidopsis and maize can be the starting point,

where extensive omic resources are already available.

7.6.4 Structured association mapping (SAM)
While using the multivariate omic data, one of the limitations, that is often

encountered during traditional GWA studies, is that they ignore the structural

information contained in each set of data; another limitation is imposed due to

multiple testing (Marttinen et al., 2013; Xing et al., 2014). This information

involvingmultivariate omic data is valuable in boosting the statistical power of

GWA mapping and should not be ignored. Analysis of such data requires

development of new algorithms, such as structured association mapping

(SAM) algorithms. In the post-GWAS era, one will have to conduct GWAS

with modern statistical and ML technologies and will therefore require soft-

ware and algorithms for this purpose which would also allow SAM.
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Recently, a suit of program called GenAMap (discussed earlier) has been

described which can facilitate SAM (Xing et al., 2014). The utility of this

software has also been demonstrated using yeast and mice data (Xing

et al., 2014). More such software need to be developed which can address

the issue of high-dimensional data in case of plants.

8. Popular resources available for GWAS in plants

Although large numbers of GWA studies have been carried out for a

variety of traits in different plant species and are continuously increasing,

there is no common platform where one can access all these studies. This

is in contrast to the studies carried out in humans where almost every study

is well cataloged in the National Human Genome Research Institute cata-

log. Cataloging of studies is important because using such a catalog, one can

get the information about the most significant associations for different traits

and plan future studies. In plants, although, such comprehensive catalog is

not available, but in model plant speciesArabidopsis thaliana and in important

crop plants maize and rice, efforts have been made to develop user-friendly

platforms, which can facilitate GWA studies in these species. Details of these

resources are given in Table 6.

9. Post-GWAS results for crop improvement

Interval mapping and GWAS are two major approaches, which have

been extensively used to determine MTAs for a variety of traits in all major

crops. Millions of SNPs have been utilized in such studies and thousands of

MTAs have already been identified. These MTAs are being utilized for

marker-assisted selection (MAS), without having any knowledge about

the associated gene(s) that may be involved, and without any causal relation-

ship between the associated marker and the trait or the gene controlling the

trait. In this connection, interval mapping (IM) proved to be more useful

than GWAS, although the latter provides higher resolution, albeit with

no knowledge about linkage relationships. However, recently, in the

post-GWAS era, efforts are being made to find out the causal SNPs from

among a number of correlated MTAs, which are detected in GWAS. Using

these causal SNPs, the CGs and the pathways leading to the phenotype may

be worked out (Fig. 1). Such studies will prove useful not only in
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Table 6 Popular resources available for GWAS in plants.

SN
Plant
species Resource Important features Reference

1 Arabidopsis

thaliana

GWAPP An interactive web-based application to

perform GWAS in A. thaliana; performs

GWAS using linear mixed-model

Seren et al.

(2012)

2 Oryza

sativa

Rice

Diversity

A high-resolution, open-access platform

for facilitating GWAS in rice; provides

collection of diverse germplasm, a high-

density SNP data set, well-documented

analytical strategies, and a suite of

bioinformatics resources

McCouch

et al. (2016)

3 Zea mays MODEM A comprehensive database that contains

multidimensional omics data for maize;

data on 508 diverse inbred lines are

available which can facilitate genetic

mapping; it can be linked with other

databases

Liu, Wang,

et al. (2016)

Activity Approaches

Identification of  causal variants

Prioritization of  GWAS signals

Functional
characterization of

CGs

Molecular
networking

Application in crop
improvement

TILLING
Insertional mutagenesis
Genome editing

High-dimensional multi-omics data
Networking of  genes
trans-OWAS
SAM

Fine mapping of  GWAS signals
Localization success rate
Conditional analysis

Meta analysis
Pathway based analysis
DNA methylation
eQTL/miRNA/IncRNA analysis
TWAS/mGWAS/Network-
guided GWAS
Haplotype-based analysis

Fig. 1 A flow chart showing the activities, which can be carried out in the post-GWAS
era (for details, see text).
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understanding the genetic architecture of the trait, but also for manipulation

of the genes for improvement of the target trait in a specified crop.

In the post-GWAS era, an effort is also being made to provide interpre-

tations for the results of GWA studies that are now being conducted. The

first step in such post-GWA study is the determination of the causal SNPs

and the associated CGs including genes encoding transcription factors. Also,

often these SNPs may be present in the non-coding regions of the genome,

often described as regulome that includes not only the promoter sequences,

but also the sequences that are transcribed into miRNAs, lncRNAs and

other ncRNAs.

The results of GWAS are also being utilized for Phenome-Wide Asso-

ciation Study (PheWAS). For instance, taking metabolite profiles (involving

840metabolites) as phenotypic traits, and 6.4 million SNPs for genotyping, a

metabolic genomewide association study was conducted in rice (Chen et al.,

2014). A modified approach called metabolite pathway-based Phe-WAS

(M-PheWAS) was also conducted in rice (Lu, Liu, et al., 2015). A similar

study for oil biosynthesis in maize was conducted by Li et al. (2013).

10. Conclusions and perspective

During the last decade, significant advances have been made in the

approaches for QTL interval mapping (IM) and GWAS/association map-

ping for identification of marker-trait associations (MTAs). These MTAs

have also been effectively used for marker-assisted selection (MAS) to sup-

plement conventional plant breeding for improvement of simple as well as

complex quantitative traits. Association mapping was initially improved

through linear mixed model (Q+Kmodel; Yu et al., 2006), which was var-

iously modified not only to reduce the computation demand, but also to deal

with the problems of “multiple testing” and “large p small n” that continue

to plague GWA studies (Widmer et al., 2014).

It is widely known that GWA studies identify only genomic regions asso-

ciated with the target trait, and do not discover genes. It is also known that

there would be many markers (e.g., SNPs) within a trait-associated genomic

region; a number of these markers show association with the trait due to LD

with one or few of markers that are causative; one would like to identify

these causal SNPs. Several methods are now available for identification of

these causal SNPs. Approaches like conditional analysis, meta-analysis and

several other approaches discussed in this review can be used in utilizing

the results of earlier GWAS and help for the identification of causal SNPs.
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Approaches also became available for prioritization of MTAs, so that better

MTAs become available for marker assisted selection (MAS) and marker

assisted recurrent selection (MARS).

With an enormous increase in the number of markers (millions of SNPs for

an individual study) that are now available for each GWA study due to NGS

technology, SNP-sets and haplotypes instead of individual SNPs are being

used for GWAS. This partly facilitated in overcoming the problem of multiple

testing. The identification of causal SNPs and SNP-set/haplotype-based

studies also allowed identification of candidate genes (CGs), thus facilitating

gene-based associationmapping (GBAM) and gene-set based associationmap-

ping (GSBAM). A variety of methods were developed for conducting these

GBAM and GSBAM studies, thus increasing the power of GWAS. Availabil-

ity of multi-omics data and their integrated use is also being recommended for

understanding the molecular mechanisms that underlie genotype-phenotype

relationships. Moreover, with the growing interest in the machine learning

techniques, the analysis of multi-dimensional data will be easier in the post-

GWAS era.With these advances and the knowledge generated by these newer

approaches, it has also become possible to develop the networks, whichmay be

involved in the expression of phenotypes of individual traits.

The major advances in GWAS in the post-GWAS era became possible

due to constant development of newer approaches to deal with the limita-

tions of GWAS both in terms of increasing the power of GWAS and also to

conduct basic studies to understand the molecular mechanism underlying a

trait of interest. Thousands of MTAs have already been identified involving

different traits of interest in each of a number of crops. In the post-GWAS

era, these results of GWAS are already being utilized for further analysis

to provide meaningful results about the key elements governing these traits.

In this review, we have tried to discuss different approaches along with

their potential applications for analysis of the results of earlier GWAS in

the post-GWAS era. Majority of these advances have been possible while

working with human system, and their use in plant system is yet to be fully

realized.
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