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Abstract 

In time to failure analysis the word ‘fatigue’ commonly depicts a 
situation that may arise due to shock accumulation or component 
failures. Factors that produce this adversity may be cyclical stress, 
fracture, faulty repair, mechanical overload, overheating, and many 
others. There are variety of statistical distributions which cover time to 
failure analysis as lognormal, Weibull, exponential, Poisson and few 
more but these distributions fails to ensure the failures due to fatigue. 
This failure strengthen the investigation about factors that cause 
fatigue measurements in statistical processes further intend to know 
the status of these processes in-control and later capable. This paper 
exemplifies a procedure to estimate process capability indices through 
a data set containing fatigue measurements. 
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1. Introduction 

Process capability indices PCIs are the unitless and dimensionless 
measures explaining the relationship between actual and allowable spread 
with the functional association of pre-determined specification limit(s) and 
process parameter(s). Estimating PCIs always have been playing vital role 
for quality practitioners. 

Numerous authors proposed, developed and modified various procedures 
and superstructures in diversity of estimating PCIs for symmetric 
distributions; examples are Juran [1], Kane [2], Hsiang and Taguchi [3], 
Chan et al. [4], Pearn et al. [5] and many others. For skewed distributions, 
Pearn and Chan [6], Pearn and Kotz [7] and Perakis and Xekalaki [8] with 
others proposed procedures in the field of estimating PCIs. Ahmed and 
Safdar [9-11] worked on estimating PCIs under diverse distributional 
conditions. 

In viewing the published literature in the field of estimating PCIs it is 
observed that proposed PCIs for diverse distributions can only specify 
failures due to fatigue henceforth a family of distribution is needed which 
specify monotonic failure rates that fatigue distributions do and Weibull does 
not. 

Fatigue life model covers those processes that accumulate shocks or 
stress due to high fatigue measurements, Fleck et al. [12] analyzed crack 
growth due to loading, Bäumel et al. [13] considered material data for cyclic 
loading, Stephens et al. [14] worked on crack nucleation, and many others. 

See for detail Vilca-Labra and Leiva [15]. These fatigue measurements 
are the quality characteristics in time to failure phenomenon and characterize 
fatigue distribution. It is observed that estimating PCIs for these 
measurements is overlooked in published literature although for making 
processes of these fatigue measurements the designers or quality practitioners 
are always been very inquisitive to keep measurements in statistical control. 
This gap initiated to work for those processes that exhibit fatigue 
measurements therefore in this paper a simple and straightforward procedure 
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is presented to identify the status of a controlled process as capable or in-
capable. 

In Section 2 a brief description of fatigue model is summarized. 

2. Fatigue Life Model 

Birnbaum and Saunders [16] derived flexible distribution from a 
phenomenon of physical fatigue where failures were attributed by crack 
growth and named as Birnbaum-Saunders distribution. Later this distribution 
was discussed by Fleck et al. [12], Bäumel et al. [13] and Stephens et al. [14] 
and others. This distribution is very influential and persuasive in its 
proposition as Diaz Garcia and Leiva [17] discussed variety of generalized 
fatigue life models for example as Pearson VII, Cauchy, Kotz type and 
normal. 

This Birnbaum-Saunders distribution is popularly known as fatigue life 
distribution with density function. 
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Figure 1 displays density curves of fatigue distribution with three 
different shape parameters and fixed scale parameter. 
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Figure 1. Density curve of fatigue life distribution. 
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Now the cumulative distribution of fatigue life model will be 
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Here ( )•Φ  is the standard normal cumulative distribution function of t. 

Most convenient and popular generalized model with supposition of a 

standard normal variable y such that ( ) ( ) ,2
1

2
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density function follows standard normal density function. Here α and β are 
shape and scale parameter, respectively. 

It can be shown that equation (1) could be written as 
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Now the cumulative distribution of fatigue life model is 
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Here ( )yΦ  is the standard normal cumulative distribution function. 

Many researchers worked on estimation of parameters of fatigue life 
distribution, Birnbaum and Saunders [16] using likelihood method and mean-
mean-estimator. Chang and Tang [19] used the graphical method by least 
square. Ng et al. [20] worked on modified moment method to estimate the 
parameters of fatigue distributions. 

In Section 3, developed and modified PCIs are summarized proposed 
earlier for normal processes. 

3. Process Capability Indices 

For normal processes Vannman [21] constructed a superstructure form as 
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In this superstructure μ and σ are the process mean and process standard 
deviation respectively, T is target value, ( ) 2LSLUSLd −=  is half length 

of specification interval and ( ) 2LSLUSLm +=  is the midpoint between 

upper and lower specification limits. 

The confidence interval for four basic indices are summarized as under: 

The ( )%1100 α−  confidence interval for ,pC  
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Here 2
2,1 α−χn  and 2

21,1 α−−χn  are the upper 2α  and 21 α−  quantile of a 

chi square distribution with ( )1−n  degrees of freedom, respectively. For 

details see Pearn et al. [5]. 

Confidence interval for pkC  is as follows: 
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see Nagata and Nagahata [22, 23]. 

Confidence interval for pmC  will be 
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see Boyles [24], Subbaiah and Taam [25] and Patnaik [26]. 
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An asymptotically unbiased interval for pmkC  is 
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Here 2ˆ pmkσ  is the asymptotic estimator of ( ) 2,ˆ
αzCVar pmk  is the upper 2α  

quantile of the standard normal distribution, 
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See for details Chen and Hsu [27]. 

Here in this article PCIs based on fatigue life model are estimated on two 
main lines: first translate fatigue life density function to normal (see equation 
(2)) and second estimate four basic PCIs with their respective confidence 
intervals earlier developed for normal processes. 

Based on these two lines a program is listed and the required analysis is 
followed by R- with required packages gbs and VGAM in R-3.0.3 [28]. 

In Section 4, a straightforward procedure is written to estimate PCIs of 
fatigue measurements. 

4. Steps for Estimate PCIs for Fatigue Life Model 

The steps involved in estimating PCIs using this model are as follows: 

(i) For data whose measurements come from two parameter fatigue 
distribution ( )βα,;tf  specify tolerance region of quality characteristics i.e. 

preset values; target T, mid-point m and specifications (LSL, USL). 
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(ii) Estimate shape and scale parameters ( )βα ˆ,ˆ  of fatigue measurements 

by maximum likelihood estimation (MLE) method [18], draw a density curve 
and simulate fatigue samples “t” of size 100, 200, 500 and 1000. 

(iii) Apply chi-square goodness of fit test to asses each simulated sample 
“t” exhibiting fatigue distribution and transform each sample and preset 
values to standard normal “y” as in equation (2). 

(iv) Construct histogram and QQ-plot for graphical assessment and apply 
Shapiro-Wilk (SW) normality test for statistical assessment to check 
assumption of normality for both samples of “t” and “y”. 

(v) Make subgroups of each sample ‘y’ of size 10 and construct RX −  
control chart to check the second assumption of estimating PCIs that 
measurements should be in statistical control. (The program is designed so 
that it exclude those observations which are beyond the control limits and 
reconstruct control charts.) 

(vi) Estimate PCIs for each transformed fatigue sample ‘y’ from equation 

(5) and from control charts using Y  as an estimator of process mean and 

2ˆ dR=σ  R(  is the mean of ranges of each sample and 2d  is a constant for 

size of the sample 10) as an estimator of process standard deviation. 

(vii) Construct 95% and 99% confidence intervals of each PCIs under the 
assumption that for each sample ‘y’, the target value, T and midpoint of 
specification intervals ‘m’ are set to be equal using equations (6) to (9). 

In Section 5, an example for a fatigue data set is presented. 

5. Illustration Example 

A data set psi21 is earlier used by Birnbaum and Saunders [16] (BISA) 
as fatigue life (T) of 6061-T6. Aluminum coupons cut parallel to the 
direction of rolling and oscillated at 18 cycles per second were exposed to 
pressure with maximum stress of 21,000 psi (pounds per square inches). 

For that data set the preset specification limits are assumed as =LSL  
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415, 2417=USL  and estimated fatigue parameters using MLE are =α̂  

0.31, .377.1336ˆ =β  

Table 1. Fatigue time of aluminum coupons exposed stress (psi21) 
370 706 716 746 785 797 844 855 858 886 
886 930 960 988 999 1115 1120 1134 1140 1199 

1115 1120 1134 1140 1199 1115 1120 1134 1140 1199 
1200 1200 1203 1222 1235 1238 1252 1258 1262 1269 
1270 1290 1293 1300 1310 1313 1315 1330 1355 1390 
1416 1419 1420 1420 1450 1452 1475 1478 1481 1485 
1502 1505 1513 1522 1522 1530 1540 1560 1567 1578 
1594 1602 1604 1608 1630 1642 1674 1730 1750 1750 
1763 1768 1781 1782 1792 1820 1868 1881 1890 1893 
1895 1910 1923 1924 1945 2023 2100 2130 2215 2268 
2440          

Figure 2 displays the fatigue density curve for measurements of time of 
aluminum coupouns exposed stress psi21. 
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Figure 2. Density curve of fatigue time of aluminum coupons (psi21). 

Before estimating PCIs, histograms and QQ-plots are constructed to 
graphically assess the normality assumption and for statistical assessment 
Shapiro-Wilk normality test is performed for both samples “t” and “y” of 
each size. Form Figure 3, it is shown that fatigue samples violate the 
assumption of normality where transformed fatigue sample do not. 
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Figure 3. Histogram and QQ-plot of t and y (psi21) of size ,100=n  200, 
500, and 1000 (from left to right). 

Furthermore in Table 2 SW-test corroborated the graphical assessment 
that transformed fatigue measurements are normally distributed. 

Table 2. Shapiro-Wilk (SW) normality test (psi21) 
n 100 200 500 1000 

Distribution t y t y t y t y 
SW-statistics 0.960 0.991 0.966 0.989 0.959 0.997 0.961 0.999 

P-value 0.004 0.741 0.000 0.146 0.000 0.538 0.000 0.697 

Figure 4 shows RX −  control charts for standard normal samples of 
each size to assess the foremost assumption of estimating PCIs that the 
measurements should in statistical control. 
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Figure 4. Control charts of transformed fatigue samples (psi21) for size of 
the sample ,100=n  200, 500 and 1000 (top to bottom). 

The program in R is listed so that it excludes those samples which make 
the process not in statistical control and reconstruct control charts. 

From the control chart for 200=n  i.e. 20 samples of size 10 upper 

control limits for RX −  chart is found to be ,9357.0=XUCL  where the 
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mean subgroup 2 is found exceeding upper control limit and make the 
process out of control. To make the process in-control we exclude those 10 
measurements for which the sample mean is found to be greater than UCL 
and re-construct the control charts for remaining 190 observations which 
make 19 subgroups each of size 10. We again obtain the control limits for 19 
subgroups which are found to be 

.87468160.0,0478959.0,9704734.0 =−=−= XXX UCLCLLCL  

We observed that after excluding 10 measurements for new control limits 
the process lies in statistical control. 

Now four basic PCIs based on Vannman [21] superstructure in equation 
(5) along with their respective confidence interval using equations (6) to (9) 
are obtained. 

Table 3 comprises the results of PCIs for each simulated transformed 
fatigue sample with the assumption of .mT =  

Table 3. PCIs of transformed fatigue samples 
n Cp Cpk Cpm Cpmk 

100 0.971 0.595 0.645 0.395 
190 1.004 0.656 0.694 0.454 
500 1.042 0.647 0.672 0.417 

1000 1.009 0.641 0.677 0.430 

Table 4 comprises the results of PCIs where process mean and process 
standard deviation are estimated from control charts for each simulated 
transformed fatigue sample with the assumption of .mT =  

Table 4. PCIs of transformed fatigue samples based on control chart 
n Cp Cpk Cpm Cpmk 

100 0.971 0.595 0.645 0.395 
190 1.004 0.656 0.694 0.454 
500 1.042 0.647 0.672 0.417 

1000 1.009 0.641 0.677 0.430 
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Tables 5 and 6 summarize 99% and 95% confidence interval for four 
basic PCIs for each simulated transformed fatigue sample with the 
assumption of .mT =  

Table 5. 99% CI of PCIs of transformed fatigue samples (psi21) 
Indices Cp Cpk Cpm Cpmk 

n LL UL LL UL LL UL LL UL 
100 0.809 1.169 0.465 0.745 0.533 0.769 0.339 0.458 
190 0.899 1.173 0.583 0.805 0.629 0.819 0.436 0.533 
500 0.934 1.1 0.567 0.696 0.611 0.72 0.385 0.441 
1000 0.95 1.066 0.594 0.685 0.638 0.716 0.409 0.45 

Table 6. 95% CI of PCIs of transformed fatigue samples (psi21) 
Indices Cp Cpk Cpm Cpmk 

n LL UL LL UL LL UL LL UL 
100 0.849 1.124 0.498 0.712 0.559 0.739 0.353 0.444 
190 0.931 1.139 0.609 0.778 0.65 0.796 0.448 0.521 
500 0.954 1.08 0.583 0.68 0.624 0.706 0.392 0.434 
1000 0.963 1.051 0.605 0.675 0.647 0.706 0.414 0.445 

Tables 7 and 8 summarize 99% and 95 % confidence interval based on 
control charts for each simulated transformed fatigue sample with the 
assumption of .mT =  

Table 7. 99% CI of PCIs based on RX −  charts (psi21) 
Indices Cp Cpk Cpm Cpmk 

n LL UL LL UL LL UL LL UL 
100 0.796 1.15 0.457 0.734 0.547 0.742 0.337 0.454 
190 0.875 1.134 0.552 0.76 0.617 0.772 0.408 0.499 
500 0.958 1.128 0.582 0.713 0.628 0.717 0.389 0.446 
1000 0.951 1.067 0.595 0.687 0.645 0.71 0.41 0.45 

Table 8. 95% CI of PCIs based on RX −  charts (psi21) 
Indices Cp Cpk Cpm Cpmk 

n LL UL LL UL LL UL LL UL 
100 0.836 1.106 0.49 0.701 0.57 0.718 0.351 0.44 
190 0.905 1.102 0.577 0.735 0.635 0.753 0.419 0.488 
500 0.978 1.107 0.598 0.697 0.638 0.706 0.396 0.439 
1000 0.965 1.053 0.606 0.676 0.652 0.702 0.415 0.445 
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6. Concluding Remarks 

Life time distributions which have been used in reliability, estimation of 
survival time or obtaining capability indices are encountered with failures 
which may be attribute due to assignable causes. Exponential, Weibull, 
lognormal and Poisson distribution cover mostly problems of failure analysis 
but for monotonic failure rates which may produce due to high fluctuation 
fatigue distribution has significance. This reason enquired to knowing the 
status of a fatigue process as capable or incapable in a very logical, 
straightforward and simple way. 

Variety of fatigue generalizations are already proposed, and henceforth 
we use the simple transformation which translate this complicated 
distribution in standard normal distribution and allow using the conventional 
procedures developed for normal populations. 
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