Ab-initio study of 'N'-hydroxy-pyrimidine-2-carboximidamide by Density Functional Theory

Anoop kumar Pandey¹, Rashmi Dewangan², Apoorva Dwivedi ^{3*}

Cite this article: J. Sci. Res. Adv. Vol. 2, No. 4, 2015, 158-162.

The present work deals with the quantum mechanical study of the molecular structure of N'-hydroxypyrimidine-2-carboximidamide. The equilibrium geometry, harmonic vibrational frequencies and 10 HOMO-LUMO gap have been calculated by the density functional theory (DFT), employing 6-311 G (d, p) as the basis set. A detailed interpretation of the calculated spectra of N'-hydroxy-pyrimidine-2carboximidamide has been discussed in terms of the normal mode analysis. The thermodynamic calculations related to the title compounds were also performed at B3LYP/6-311 G (d, p) level of theory. The molecular HOMO, LUMO composition, energy gap, and MESP contours have also been drawn to 15 explain the activity of N'-hydroxy-pyrimidine-2-carboximidamide.

Introduction

An amide also known as an acid amide, is a compound with the functional group RnE(O)xNR'2 (R and R' refer to H or organic

- ²⁰ groups). Most common are "organic amides" (n = 1, E = C, x = 1), but many other important types of amides are known including phosphor amides (n = 2, E = P, x = 1 and many related formulas) and sulfonamides (E = S, x = 2) [1-3]. The term amide refers both to classes of compounds and to the functional group
- ²⁵ (RnE (O) xNR'2) within those compounds. Amide can also refer to the conjugate base of ammonia (the anion H2N–) or of an organic amine (an anion R2N–). For discussion of these "anionic amides", see Alkali metal amides. The remainder of this article is about the carbonyl-nitrogen sense of amide. Pain, fever and
- ³⁰ inflammation have been associated with mankind since beginning. Nonsteroidal antiinflammatory drugs (NSAIDs) are the first choice of drugs in the treatment of pain, degenerative inflammatory joint diseases and rheumatic disorders. In recent years, the dual inhibition of cyclooxygenase and 5-lypoxygenase
- ³⁵ enzymes for treatment of inflammation and pain has been introduced as a novel therapeutic target, and one of the first examples of dual acting analgesic and anti-inflammatory molecules was tepoxalin, a diarylpyrazole derivative. In addition, many studies also focused on pyridazine derivatives for
- ⁴⁰ developing potent and safer NSAIDs without gastric side effects.
 Among these compounds, 4-ethoxy-2-methyl-5-morpholino-3(2H) pyridazinone (emorfazone) is currently being marketed in Japan as an analgesic and anti-inflammatory drug. Dogruer et al. subsequently synthesized [6-(4-methoxyphenyl)-3(2H)-
- ⁴⁵ pyridazinone-2-yl]acetamide and propanamide derivatives and reported that these compounds showed potential analgesic activity [4].

As a part of our ongoing research [5-12], the main objective of the present study is to investigate in detail the vibrational spectra 50 of important biological molecule N'-hydroxy-pyrimidine-2carboximidamide. To the best of our knowledge no detailed DFT calculations have been performed on N'-hydroxy-pyrimidine-2-carboximidamide so far in the literature.

Computational Methods

- ⁵⁵ Initial geometry was generated from standard geometrical parameters and was minimized without any constraint in the potential energy surface. The gradient corrected Density Functional Theory (DFT) with the three-parameter hybrid functional (B3) [13] for the exchange part and the Lee-Yang-Parr
 ⁶⁰ (LYP) correlation function [14] has been employed for the computation of molecular structure, vibrational frequencies, HOMO-LUMO, and energies of the optimized structures, using GAUSSIAN 09 [15]. The calculated vibrational frequencies have also been scaled by a factor of 0.963 [16]. By combining the
- 65 results of the GAUSSVIEW'S program [17] with symmetry considerations, vibrational frequency assignments were made with a high degree of accuracy. We used this approach for the prediction of IR frequencies of title compound and found it to be very straightforward. Density functional theory calculations are
- ⁷⁰ reported to provide excellent vibrational frequencies of organic compound if the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, for basis set deficiencies and for anhormonicity. A number of studies [18, 19] have been carried out regarding calculations of vibrational spectra
- ⁷⁵ by using B3LYP methods with 6-311 G (d, p) basis set. The scaling factor (0.963) was applied successfully for B3LYP method and was found to be easily transferable in a number of molecules. Thus vibrational frequencies calculated by using the B3LYP functional with 6-311G (d, p) as basis set, can be utilized
 ⁸⁰ to eliminate the uncertainties in the fundamental assignment in the IR spectra.

Result and Discussions

Optimization

Optimized parameters calculated by B3LYP method with 6-31G (d, p) as basis set are listed in Table 1 and are in accordance with the atom numbering scheme as shown in Figure 1. After geometry optimization local minimum energy obtained for ⁵ structure optimization of N'-hydroxy-pyrimidine-2-

- carboximidamide with 6-311G (d, p) basis set is approximately total energy = -488.32717327 a.u. The (C-C) bond length varies between 1.3906-1.4887 Å, while (C-H) bond length, 1.0841-1.0888 Å. (C-N) bond length varies from 1.2955-1.3686 Å, while
- ¹⁰ (N-O) bond length is at 1.4191 Å. (O-H) bond length is at 0.9654 Å, while (N-H) bond length varies from 1.0083-1.0091 Å.
 The (C-C-C) bond angle varies from 116.135-121.4148, while (C-C-H) bond angle is at 120.9112-121.9397. (C-C-N) bond angle varies from 115.1974-122.84, while (N-C-N) bond angle
- ¹⁵ varies from 125.4525-125.9776. (N-C-H) bond angle varies from 115.4574-116.4524, while (N-O-H) bond angle is at 101.7627; whereas (C-N-O) bond angle is at 108.5637 degree.

Fig. 1 Model molecular structure of N'-hydroxy-pyrimidine-2carboximidamide

20

Atomic charge, Polarizability, Hyper polarizability and Thermodynamic Properties:

The Mullikan atomic charges for all atoms of the N'-hydroxy-²⁵ pyrimidine-2-carboximidamide compound are calculated by B3LYP, methods with 6-311G (d, p) as basis set in gas phase and

are presented in Table (2).

Dipole moment (μ), polarizability $\langle \alpha \rangle$ and total first static hyper polarizability β [20, 21] are also calculated (In Table 30 5 and 3) by using density functional theory. They can be expressed in terms of *x*, *y*, *z* components and are given by following equations 1, 2 and 3-

$$\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2} - \dots (1)$$

$$<\alpha >= 1 \setminus 3 \ [\alpha_{xx} + \alpha_{yy} + \alpha_{zz}] - \dots (2)$$

$$\beta_{\text{Total}} = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$

$$= \left[(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yxx} + \beta_{yzz})^2 + (\beta_{zzz} + \beta_{zyy})^2 \right]^{1/2} - \dots (3)$$

The $\boldsymbol{\beta}$ components of Gaussian output are reported in atomic units.

Where
$$(1 \text{ a.u.} = 8.3693 \times 10^{-33} \text{ e.s.u.}).$$

 $\label{eq:carboximidam} \begin{array}{l} \textbf{Table 1} \text{ Bond Lengths (Å) \& Bond Angle of N'-hydroxypyrimidine-2-carboximidamide} \end{array}$

S.No.	Parameters	Experimental Value	Calculated Value
1		1 378	1 3006
2	$C_1 - C_4$	1.378	1.3900
2.	$C_1 - N_6$	0.9500	1.0884
3.	$C_1 - \Pi_{16}$	1 226	1.0004
4.	$C_2 - N_5$	1.330	1.3414
5.	$C_2 - N_6$	1.347	1.3440
0.	C_2 - C_7	1.494	1.400/
7. 8	C N	1.370	1.3904
0.	C H	0.0500	1.0999
9.	С. Ц	0.9500	1.0000
10.	$C_4-\Pi_{15}$	1 205	1.0641
11.	C_7-N_8	1.295	1.2955
12.	C ₇ -N ₉	1.302	1.3080
13.	N8-O10	1.424	1.4191
14.	N ₉ -H ₁₂	0.92	1.0083
15.	N ₉ -H ₁₃	0.89	1.0091
16.	O_{10} - H_{11}	0.94	0.9654
17	G G N	"Bond Angles"	100 0151
17	$C_2 - C_1 - N_6$	116.0	122.2151
18	$C_4-C_1-H_{16}$	118.6	121.3325
19	$N_6 - C_1 - H_{16}$	118.6	116.4524
20	$N_5 - C_2 - N_6$	125.9	125.9776
21	N ₅ -C ₂ -C ₇	118.5	118.8242
22	N ₆ -C ₂ -C ₇	115.6	115.1974
23	C_4 - C_3 - N_5	122.4	122.84
24	$C_4 - C_3 - H_{14}$	121.6	120.9112
25.	N ₅ -C ₃ -H ₁₄	118.8	116.2487
26.	$C_1 - C_4 - C_3$	116.7	116.135
27.	C1-C4-H15	121.6	121.9253
28.	C ₃ -C ₄ -H ₁₅	121.6	121.9397
29.	C ₂ -N ₅ -C ₃	116.2	116.1664
30.	$C_1-N_6-C_2$	116.0	116.6656
31.	C2-C7-N8	117.4	117.9473
32.	C2-C7-N9	117.1	116.592
33.	N ₈ -C ₇ -N ₉	125.5	125.4525
34	C ₇ -N ₈ -O ₁₀	108.7	108.5637
35	C ₇ -N ₉ -H ₁₂	118	115.888
36	C ₇ -N ₉ -H ₁₃	112	115.4574
37	H ₁₂ -N ₉ -H ₁₃	117	118.8071
38	N ₈ -O ₁₀ -H ₁₁	106.1	101.7627
39	C7-N9-H12	118	115.888
40	C7-N9-H13	112.9	115.4574
41	H ₁₂ -N ₉ -H ₁₃	117	118.8071
42	N ₈ -O ₁₀ -H ₁₁	106.1	101.7627

45

For N²-hydroxy-pyrimidine-2-carboximidamide, the calculated dipole moment value is 4.2863Debye. Having higher dipole moment than water (2.16 Debye), N²-hydroxy-pyrimidine-2-⁵⁰ carboximidamide can be used as better solvent. As we see a greater contribution of α_{zz} in molecule which shows that molecule is elongated more towards Z direction and more contracted to Y direction. β_{xxx} , β_{xzz} contribute larger part of hyper polarizability in the molecule. This shows that X axis plane and XZ plane are ⁵⁵ more optical active in these directions.

Table 2 Mulliken charges for	N'-hydroxy-pyrimidine	-2-carboximidamide
------------------------------	-----------------------	--------------------

S.No.	Atom	Atomic charge
1.	С	0.120241
2.	С	0.450841
3.	С	0.118006
4.	С	-0.098526
5.	Ν	-0.441368
6.	Ν	-0.502486
7.	С	0.363685
8.	Ν	-0.218116
9.	Ν	-0.599099
10.	0	-0.447150
11.	Н	0.351010
12.	Н	0.277959
13.	Н	0.267904
14.	Н	0.127183
15.	Н	0.102428
16.	Н	0.127487

Table 3 Polarizability and hyperpolarizability of N'-hydroxy-pyrimidine-2-carboximidamide

Polarizability		
α_{xx}	-40.5219	
α_{xy}	-0.1552	
α_{yy}	-53.3475	
α_{yz}	-1.0581	
α_{zz}	-58.5384	
α_{zx}	1.8430	
α	50.8026	
Hyperpolarizability		
β_{xxx}	-15.6174	
β_{xxy}	-14.4157	
β_{xyy}	-11.3217	
β_{vvv}	7.1199	
β_{zzz}	-0.8181	
β_{xxz}	-6.0478	
β_{xzz}	-6.4822	
β_{yzz}	-1.0708	
β_{yyz}	-2.9789	
β _{xyz}	0.8903	
β_{total}	35.83159	

5

Table 4 Thermodynamic parameters of N'-hydroxy-pyrimidine-2carboximidamide

Parameter	E (Thermal) kcal/mol	C _V (cal/mol- kelvin)	S (cal/mol- kelvin)
Total	80.795	32.462	90.568
Translational	0.889	2.981	40.679
Rotational	0.889	2.981	29.359
Vibrational	79.018	26.500	20.530

Several calculated thermodynamic properties based on the ¹⁰ vibration analysis at B3LYP, 6-31G (d, p) level, like internal thermal energy (E), constant volume heat capacity CV, and entropy S, have been calculated and listed in table (4). At the room temperature, conduction band is almost empty so electronic contribution in total energy is negligible. Thermodynamic ¹⁵ parameters clearly indicate that vibration motion plays a crucial role in assessing thermo dynamical behavior of title compounds.

Electronic properties

The interaction with other species in a chemical system is also determined by frontier orbital's, HOMO and LUMO. It can also ²⁰ be determined by experimental data. The frontier orbital gap helps to distinguish the chemical reactivity and kinetic stability of the molecule. A molecule which has a larger orbital gap is more polarized having more reactive part as far as reaction is concerned [22]. The frontier orbital gap is 4.2788 eV for N'-²⁵ hydroxypyrimidine-2-carboximidamide as given in Table (5).

The contour plots of the HOMO, LUMO and MESP structures of the molecule are shown in Figure 2. The importance of MESP lies in the fact that it simultaneously displays molecular size, shape as well as positive, negative, and neutral electrostatic potential region in terms of grading and is very useful in the investigation of molecular structure with its physiochemical property relationship [23, 24].

35 Fig. 2 HOMO (Left) - LUMO (Right) and MESP (Below) pictures of N'hydroxypyrimidine-2-carboximidamide

 Table 5 HOMO-LUMO gap and dipole moment of N'-hydroxypyrimidine-2-carboximidamide

Parameters	Value
Total energy E(a.u.)	-488.32717327
Dipole moment (Debye)	2.5804
LUMO	-0.04947
НОМО	-0.20678
Frontier Orbital Energy Gap (ev)	0.15731a.u
	(4.278832 eV)

Assignment of fundamentals

N'-hydroxypyrimidine-2-carboximidamide has 15 atoms with 42 normal modes of vibration. We made a reliable one-to-one correspondence between the fundamentals and the frequencies s calculated by DFT (B3LYP) methods. The relative band

- intensities are also very satisfactory along with their position. Some important modes are discussed hereafter. The harmonic vibrational frequencies, calculated for the title molecule with vibrational assignments are given in Table (6).
- 10 **Table 6** Vibrational analysis of N'-hydroxypyrimidine-2carboximidamide

ASSIGNMENT ⁴ Molecules bend from joint650.38751186.0667Molecules bend from joint1735.2696 τ (C-C-N-O)2581.9765Y(C-C-C)3231.9066 τ (O-N-C-NH ₂)348171.0044Twist (NH ₂)3735.9751 τ (C-C-NO)3912.2473Y(C-C-H)42568.6451Twist (NH ₂)46321.8543Twist (NH ₂)51337.626Twist (NH ₂)64524.5887Twist (NH ₂)64524.5887Twist (NH ₂)68438.8079 τ in whole ring7850.6655Y(C-C-H)79524.283Y(C-C-H)9610.0428GO(C-H)9620.1051GO(C-H)9722.7989Ring breathing107325.1466Twist (NH ₂)118731.4516Twist (NH ₂)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H ₁₂ N ₉ -H ₁₃)154368.6374 v (C ₂ -H ₁₄)304019.948 v (C ₂ -H ₁₄)304426.5426 v (C ₁ -H ₁₆)+ v (C ₃ -H ₁₄)3058.7955 v (C ₄ -H ₁₅)344934.0128 v (N ₉ -H ₁₂)+ v (N ₁₂)3681106.5581 v (O ₁₀ -H	FREQUENCY	IR INTENSITY	VIBRATIONAL
650.3875Molecules bend from joint1186.0667Molecules bend from joint1735.2696 τ (C-C-N-O)2581.9765Y(C-C-C)3231.9066 τ (O-N-C-NH2)348171.0044Twist (NH2)3735.9751 τ (C-C-N-O)3912.2473Y(C-C-H)42568.6451Twist (NH2)46321.8543Twist (NH2)46321.8543Twist (NH2)51337.626Twist (NH2)64524.5887Twist (NH2)64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655Y(C-C-H)79524.283Y(C-C-H)8155.9708Twist (NH2)931173.2446 v (O ₁₀ -N8)9610.0428GO(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-Ng-H13)154368.6374 v (C-C)+ v (C-N)1531129.6962 v (CN in ring)164890.0071 v (C2-N8)304019.948 v (C3-H14)304426.5426 v (C1-H16)+ v (C3-H14)304426.5426			ASSIGNMENT ^a
65 0.3875 118 6.0667 Molecules bend from joint 173 5.2696 τ (C-C-N-O) 258 1.9765 Y (C-C-C) 323 1.9066 τ (O-N-C-NH ₂) 348 171.0044 Twist (NH ₂) 373 5.9751 τ (C-C-N-O) 391 2.2473 Y (C-C-H) 425 68.6451 Twist (NH ₂) 463 21.8543 Twist (NH ₂) 463 21.8543 Twist (NH ₂) 620 9.735 τ in whole ring 645 24.5887 Twist (NH ₂) 684 38.8079 τ in whole ring 785 0.6655 Y (C-C-H) 795 24.283 Y (C-C-H) 815 5.9708 Twist (NH ₂) 931 173.2446 v (O ₀ -N ₈) 961 0.0428 GD (C-H) 972 2.7989 Ring deformation 1073 25.1466 Twist (NH ₂) <t< td=""><td></td><td></td><td>Molecules bend from joint</td></t<>			Molecules bend from joint
118 6.0667 Molecules bend from joint 173 5.2696 τ (C-C-N-O) 258 1.9765 Y (C-C-C) 323 1.9066 τ (O-N-C-NH ₂) 348 171.0044 Twist (NH ₂) 373 5.9751 τ (C-C-N-O) 391 2.2473 Y (C-C-H) 425 68.6451 Twist (NH ₂) 463 21.8543 Twist (NH ₂) 513 37.626 Twist (NH ₂) 620 9.735 τ in whole ring 645 24.5887 Twist (NH ₂) 684 38.8079 τ in whole ring 785 0.6655 Y (C-C-H) 795 24.283 Y (C-C-H) 931 173.2446 v (O ₁₀ -N ₈) 961 0.0428 G)(C-H) 972 2.7989 Ring deformation 1048 12.3231 Ring breathing 1073 25.1466 Twist (NH ₂) 1219 3.5151 Ring deformation 125	65	0.3875	
1735.2696 τ (C-C-N-O)2581.9765 Υ (C-C-N-O)3231.9066 τ (O-N-C-NH2)348171.0044Twist (NH2)3735.9751 τ (C-C-N-O)3912.2473 Υ (C-C-H)42568.6451Twist (NH2)46321.8543Twist (NH2)46321.8543Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655 Υ (C-C-H)79524.283 Υ (C-C-H)8155.9708Twist (NH2)9610.0428CO(C-H)9620.1051CO(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916 $S(H_12N_9-H_{13})$ 154368.6374 v (C ₁ -H ₁₆)+ v (C ₃ -H ₁₄)304019.948 v (C ₃ -H ₁₄)304426.5426 v (C ₁ -H ₁₆)+ v (N2-H ₁₃)357764.6213 v (N ₉ -H ₁₂)+ v (NH2)3681106.5581 v (O ₁₀ -H ₁₁)	118	6.0667	Molecules bend from joint
2581.9765 $\Upsilon(C-C-C)$ 3231.9066 $\tau(O-N-C-NH_2)$ 348171.0044Twist (NH_2) 3735.9751 $\tau(C-C-N-O)$ 3912.2473 $\Upsilon(C-C-H)$ 42568.6451Twist (NH_2) 46321.8543Twist (NH_2) 481107.6216Twist (NH_2) 51337.626Twist (NH_2) 6209.735 τ in whole ring64524.5887Twist (NH_2) 68438.8079 τ in whole ring7850.6655 $\Upsilon(C-C-H)$ 79524.283 $\Upsilon(C-C-H)$ 8155.9708Twist (NH_2) 931173.2446 $v(O_{10}-N_8)$ 9610.0428CD(C-H)9722.7989Ring breathing107325.1466Twist (NH_2) 118731.4516Twist (NH_2) 12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)14134.732 β (C-C-H)14134.732 β (C-C-H)1531128.5916 $S(H_{12}N_9-H_{13})$ 154368.6374 $v(C_1-H_16)+v(C_3-H_{14})$ 304019.948 $v(C_3-H_{14})$ 304426.5426 $v(C_1-H_16)+v(C_3-H_{14})$ 3055 $v(C_1-H_{16})+v(N_2-H_{13})$ 357764.6213 $v(N_9-H_{12})+v(N_2-H_{13})$ 3681106.5581 $v(O_{10}-H_{11})$	173	5.2696	τ(C-C-N-O)
3231.9066 τ (O-N-C-NH2)348171.0044Twist (NH2)3735.9751 τ (C-C-N-O)3912.2473 Y (C-C-H)42568.6451Twist (NH2)46321.8543Twist (NH2)46321.8543Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655 Y (C-C-H)79524.283 Y (C-C-H)931173.2446 v (O ₁₀ -N8)9610.0428CD(C-H)9620.1051GD(C-H)9722.7989Ring breathing107325.1466Twist (NH2)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N2-H13)154368.6374 v (C-1+16)+ v (C3-H14)304019.948 v (C3-H14)304426.5426 v (C1-H16)+ v (C3-H14)30558.7955 v (CN in ring)164890.0071 v (N2-H12)+ v (N2-H14)30543.4028 v (N2-H12)+ v (N2-H14)304426.5426 v (C1-H16)+ v (C3-H14)30558.7955 v (C0-H14)+ v (N2-H14)	258	1.9765	Ύ(C-C-C)
348171.0044Twist (NH2)3735.9751 τ (C-C-N-O)3912.2473 Y (C-C-H)42568.6451Twist (NH2)46321.8543Twist (NH2)46321.8543Twist (NH2)481107.6216Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655 Y (C-C-H)79524.283 Y (C-C-H)8155.9708Twist (NH2)931173.2446 v (O ₁₀ -N8)9610.0428GD(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)154368.6374 v (C-C)+ v (C-N)1566129.6962 v (CN in ring)164890.0071 v (C ₂ -H413)304426.5426 v (C ₁ -H16)+ v (C ₃ -H14)30958.7955 v (C ₄ -H15)344934.0128 v (N9-H12)+ v (N9-H13)3681106.5581 v (O ₁₀ -H11)	323	1.9066	τ (O-N-C-NH ₂)
373 5.9751 τ (C-C-N-O) 391 2.2473 Y (C-C-H) 425 68.6451 Twist (NH2) 463 21.8543 Twist (NH2) 463 21.8543 Twist (NH2) 481 107.6216 Twist (NH2) 513 37.626 Twist (NH2) 620 9.735 τ in whole ring 645 24.5887 Twist (NH2) 684 38.8079 τ in whole ring 785 0.6655 Y (C-C-H) 795 24.283 Y (C-C-H) 795 24.283 Y (C-C-H) 961 0.0428 GO (C-H) 961 0.0428 GO (C-H) 962 0.1051 G (C-H) 972 2.7989 Ring deformation 1048 12.3231 Ring breathing 1073 25.1466 Twist (NH2) 1083 46.4453 β (C-C-H) 1187 31.4516 Twist (NH2) 1219 3.5151 Ring deformation 1250 12.6711 β (C-C-H) 1373 28.6933 β (C-C-H) 1413 4.732 β (C-C-H) 1438 148.5108 β (N-C-N) 1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1543 68.6374 v (C-C++v(C-N) 1566 129.6962 v (CN in ring) 1648 90.0071 v (C ₂ -H ₁₄) 3040 19.948 v (C ₃ -H ₁₄) 3044 26.5426 v (C ₄ -H ₁₅) 3449 3.40128 <td>348</td> <td>171.0044</td> <td>Twist (NH₂)</td>	348	171.0044	Twist (NH ₂)
3912.2473 Υ (C-C-H)42568.6451Twist (NH2)46321.8543Twist (NH2)481107.6216Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655 Υ (C-C-H)79524.283 Υ (C-C-H)8155.9708Twist (NH2)931173.2446 ν (O ₁₀ -N8)9610.0428GO(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)164890.0071 ν (C ₂ -R8)304019.948 ν (C3-H14)304426.5426 ν (C1-H16)+ ν (C3-H14)304426.5426 ν (C1-H15)344934.0128 ν (N9-H12)+ ν (N9-H13)3681106.5581 ν (N0-H11)	373	5.9751	τ(C-C-N-O)
425 68.6451 Twist (NH2)46321.8543Twist (NH2)481107.6216Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655 Υ (C-C-H)79524.283 Υ (C-C-H)8155.9708Twist (NH2)931173.2446 ν (O ₁₀ -N8)9610.0428GO(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)164890.0071 ν (C3-H14)304019.948 ν (C3-H14)304426.5426 ν (C1-H16)+ ν (C3-H14)304934.0128 ν (N9-H12)+ ν (N9-H13)357764.6213 ν (N9-H12)+ ν (N12)3681106.5581 ν (O10-H11)	391	2.2473	Υ(С-С-Н)
463 21.8543 Twist (NH2)481107.6216Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655Y(C-C-H)79524.283Y(C-C-H)8155.9708Twist (NH2)931173.2446 $v(O_{10}-N_8)$ 9610.0428CO(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)154368.6374 $v(C_2-N_2-H_1)$ 154368.6374 $v(C_2-N_2-H_1)$ 154368.6374 $v(C_2-H_1_6) + v(C_3-H_1_4)$ 304019.948 $v(C_1-H_16) + v(C_3-H_1_4)$ 304426.5426 $v(C_1-H_{16}) + v(C_3-H_{14})$ 30458.7955 v (C4-H_{15})344934.0128 v (N9-H12) + v (N42)3681106.5581 $v(O_{10}-H_{11})$	425	68.6451	Twist (NH ₂)
481107.6216Twist (NH2)51337.626Twist (NH2)6209.735 τ in whole ring64524.5887Twist (NH2)68438.8079 τ in whole ring7850.6655Y(C-C-H)79524.283Y(C-C-H)8155.9708Twist (NH2)931173.2446 $v(O_{10}N_8)$ 9610.0428CO(C-H)9722.7989Ring deformation97325.1466Twist (NH2)104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)154368.6374 $v(C-P) + v(C-N)$ 1566129.6962 $v(CN in ring)$ 164890.0071 $v(C_2-N_4)$ 304019.948 $v(C_3-H_{14})$ 304126.5426 $v(C_1-H_16) + v(C_3-H_{14})$ 30958.7955 v (CqH15)344934.0128 v (Ng-H12) + v (Ng-H13)357764.6213 v (Ng-H12) + v (Ng-11)	463	21.8543	Twist (NH ₂)
513 37.626 Twist (NH ₂) 620 9.735 τ in whole ring 645 24.5887 Twist (NH ₂) 684 38.8079 τ in whole ring 785 0.6655 Y(C-C-H) 795 24.283 Y(C-C-H) 815 5.9708 Twist (NH ₂) 931 173.2446 v(O ₁₀ -N ₈) 961 0.0428 CO(C-H) 962 0.1051 CO(C-H) 972 2.7989 Ring deformation 1048 12.3231 Ring breathing 1073 25.1466 Twist (NH ₂) 1083 46.4453 β (C-C-H) 1187 31.4516 Twist (NH ₂) 1219 3.5151 Ring deformation 1250 12.6711 β (C-C-H) 1304 65.6014 β (C-C-H) 1413 4.732 β (C-C-H) 1438 148.5108 β (N-C-N) 1531 128.5916 S(H ₁₂ -N ₉ -H ₁₃) 1543	481	107.6216	Twist (NH ₂)
6209.735τ in whole ring64524.5887Twist (NH2)68438.8079τ in whole ring7850.6655Y(C-C-H)79524.283Y(C-C-H)8155.9708Twist (NH2)931173.2446 $v(O_{10}$ -N8)9610.0428GD(C-H)9620.1051GD(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711β (C-C-H)130465.6014β (C-C-H)14134.732β (C-C-H)1438148.5108β (N-C-N)1531128.5916S(H12-N9-H13)154368.6374 $v(C-C) + v(C-N)$ 1566129.6962 $v(CN in ring)$ 164890.0071 $v(C_2=N_8)$ 304019.948 $v(C_3-H_{14})$ 30958.7955 $v(C_4-H_{15})$ 344934.0128 $v(N_9-H_{12})+ v(N_9-H_{13})$ 357764.6213 $v(N_9-H_{12})+ v(NH_2)$ 3681106.5581 $v(O_{10}-H_{11})$	513	37.626	Twist (NH ₂)
645 24.5887 Twist (NH2) 684 38.8079 τ in whole ring 785 0.6655 $Y(C-C-H)$ 795 24.283 $Y(C-C-H)$ 815 5.9708 Twist (NH2) 931 173.2446 $v(O_{10}-N_8)$ 961 0.0428 $GO(C-H)$ 962 0.1051 $GO(C-H)$ 972 2.7989 Ring deformation 1048 12.3231 Ring breathing 1073 25.1466 Twist (NH2) 1083 46.4453 β (C-C-H) 1187 31.4516 Twist (NH2) 1219 3.5151 Ring deformation 1250 12.6711 β (C-C-H) 1304 65.6014 β (C-C-H) 1373 28.6933 β (C-C-H) 1413 4.732 β (C-C-H) 1438 148.5108 β (N-C-N) 1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1566 129.6962 $v(CN \text{ in ring})$ 1648 90.0071 $v(C_2=N_8)$ 3040 19.948 $v(C_3-H_{14})$ 3095 8.7955 v (C_4-H_{15}) 3449 34.0128 v (N_9-H_{12})+ v (N_9-H_{13}) 3577 64.6213 v (N_9-H_{12})+ v (N_1) 3681 106.5581 $v(O_{10}-H_{11})$	620	9.735	τ in whole ring
684 38.8079 τ in whole ring785 0.6655 $Y(C-C-H)$ 795 24.283 $Y(C-C-H)$ 815 5.9708 Twist (NH2)931 173.2446 $v(O_{10}-N_8)$ 961 0.0428 $GO(C-H)$ 962 0.1051 $GO(C-H)$ 972 2.7989 Ring deformation1048 12.3231 Ring breathing1073 25.1466 Twist (NH2)1083 46.4453 β (C-C-H)1187 31.4516 Twist (NH2)1219 3.5151 Ring deformation1250 12.6711 β (C-C-H)1373 28.6933 β (C-C-H)1413 4.732 β (C-C-H)1438 148.5108 β (N-C-N)1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1543 68.6374 $v(C-C)+v(C-N)$ 1566 129.6962 $v(Cn in ring)$ 1648 90.0071 $v(C_7=N_8)$ 3040 19.948 $v(C_3-H_{14})$ 3095 8.7955 v (N_9-H_{12})+ v (N_9-H_{13})3577 64.6213 v (N_9-H_{12})+ v (N_{12})3681 106.5581 $v(O_{10}-H_{11})$	645	24.5887	Twist (NH ₂)
785 0.6655 Υ (C-C-H)795 24.283 Υ (C-C-H)815 5.9708 Twist (NH2)931 173.2446 ν (O10-N8)961 0.0428 GD (C-H)962 0.1051 GD (C-H)972 2.7989 Ring deformation1048 12.3231 Ring breathing1073 25.1466 Twist (NH2)1083 46.4453 β (C-C-H)1187 31.4516 Twist (NH2)1219 3.5151 Ring deformation1250 12.6711 β (C-C-H)1304 65.6014 β (C-C-H)1413 4.732 β (C-C-H)1438 148.5108 β (N-C-N)1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1543 68.6374 ν (C-C)+ ν (C-N)1566 129.6962 ν (CN in ring)1648 90.0071 ν (C $_7=N_8)$ 3040 19.948 ν (C $_3-H_{14})$ 3095 8.7955 ν (C $_4-H_{15}$)3449 34.0128 ν (N $_9-H_{12}$)+ ν (N $_9-H_{13}$)3577 64.6213 ν (O $_{10}-H_{11}$)	684	38.8079	τ in whole ring
79524.283 Υ (C-C-H)8155.9708Twist (NH2)931173.2446 ν (O ₁₀ -N8)9610.0428GD(C-H)9620.1051GD(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)14134.732 β (C-C-H)1531128.5916S(H12-Ng-H13)154368.6374 ν (C-C)+ ν (C-N)1566129.6962 ν (CN in ring)164890.0071 ν (C ₂ =N8)304019.948 ν (C ₃ -H14)30958.7955 ν (C ₄ -H15)344934.0128 ν (Ng-H12)+ ν (Ng-H13)357764.6213 ν (O ₁₀ -H11)	785	0.6655	Υ(С-С-Н)
8155.9708Twist (NH2)931173.2446 $v(O_{10}$ -N8)9610.0428GD(C-H)9620.1051GD(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)1438148.5108 β (N-C-N)1531128.5916S(H12-N9-H13)154368.6374 $v(C-C)+v(C-N)$ 1566129.6962 $v(CN in ring)$ 164890.0071 $v(C_7=N_8)$ 304019.948 $v(C_3-H_{14})$ 30958.7955 $v(C_4-H_{15})$ 344934.0128 $v(N_9-H_{12})+v(N_9-H_{13})$ 357764.6213 $v(O_{10}-H_{11})$	795	24.283	Υ(С-С-Н)
931173.2446 $v(O_{10}-N_8)$ 9610.0428GD(C-H)9620.1051GD(C-H)9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)14134.732 β (C-C-H)14134.732 β (C-C-H)1531128.5916S(H12-N9-H13)154368.6374 v (C-C)+ v (C-N)1566129.6962 v (CN in ring)164890.0071 v (C2-H16)304019.948 v (C3-H14)30958.7955 v (C4-H15)344934.0128 v (N9-H12)+ v (N9-H13)357764.6213 v (N9-H12)+ v (NH2)3681106.5581 v (O10-H11)	815	5.9708	Twist (NH ₂)
961 0.0428 $GD(C-H)$ 962 0.1051 $GD(C-H)$ 972 2.7989 Ring deformation1048 12.3231 Ring breathing1073 25.1466 Twist (NH2)1083 46.4453 β (C-C-H)1187 31.4516 Twist (NH2)1219 3.5151 Ring deformation1250 12.6711 β (C-C-H)1304 65.6014 β (C-C-H)1373 28.6933 β (C-C-H)1413 4.732 β (C-C-H)1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1543 68.6374 ν (C-C)+ ν (C-N)1566 129.6962 ν (CN in ring)1648 90.0071 ν (C ₂ -H ₄)3040 19.948 ν (C ₃ -H ₁₄)3095 8.7955 ν (C ₄ -H ₁₅)3449 34.0128 ν (N ₉ -H ₁₂)+ ν (N ₉ -H ₁₃)3577 64.6213 ν (O ₁₀ -H ₁₁)	931	173.2446	$v(O_{10}-N_8)$
962 0.1051 $GD(C-H)$ 972 2.7989 Ring deformation1048 12.3231 Ring breathing1073 25.1466 Twist (NH ₂)1083 46.4453 β (C-C-H)1187 31.4516 Twist (NH ₂)1219 3.5151 Ring deformation1250 12.6711 β (C-C-H)1304 65.6014 β (C-C-H)1373 28.6933 β (C-C-H)1413 4.732 β (C-C-H)1531 128.5916 $S(H_{12}-N_9-H_{13})$ 1543 68.6374 ν (C-C)+ ν (C-N)1566 129.6962 ν (CN in ring)1648 90.0071 ν (C ₃ -H ₁₄)3040 19.948 ν (C ₃ -H ₁₄)3095 8.7955 ν (C ₄ -H ₁₅)3449 34.0128 ν (N ₉ -H ₁₂)+ ν (N ₉ -H ₁₃)3577 64.6213 ν (O ₁₀ -H ₁₁)	961	0.0428	GD(C-H)
9722.7989Ring deformation104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1531128.5916S(H12-N9-H13)154368.6374 ν (C-C)+ ν (C-N)1566129.6962 ν (CN in ring)164890.0071 ν (C2-H16)+ ν (C3-H14)304426.5426 ν (C1-H16)+ ν (C3-H14)30958.7955 ν (C4-H15)344934.0128 ν (N9-H12)+ ν (N9-H13)357764.6213 ν (O10-H11)	962	0.1051	GD(C-H)
104812.3231Ring breathing107325.1466Twist (NH2)108346.4453 β (C-C-H)118731.4516Twist (NH2)12193.5151Ring deformation125012.6711 β (C-C-H)130465.6014 β (C-C-H)137328.6933 β (C-C-H)14134.732 β (C-C-H)1531128.5916S(H12-N9-H13)154368.6374 ν (C-C)+ ν (C-N)1566129.6962 ν (CN in ring)164890.0071 ν (C2-H16)+ ν (C3-H14)304426.5426 ν (C1-H16)+ ν (C3-H14)30958.7955 ν (C4-H15)344934.0128 ν (N9-H12)+ ν (N9-H13)357764.6213 ν (O10-H11)	972	2.7989	Ring deformation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1048	12.3231	Ring breathing
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1073	25.1466	Twist (NH ₂)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1083	46.4453	β (C-C-H)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1187	31.4516	Twist (NH ₂)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1219	3.5151	Ring deformation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1250	12.6711	β (C-C-H)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1304	65.6014	β (C-C-H)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1373	28.6933	β (C-C-H)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1413	4.732	β (C-C-H)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1438	148.5108	β (N-C-N)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1531	128.5916	S(H ₁₂ -N ₉ -H ₁₃)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1543	68.6374	v(C-C)+v(C-N)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1566	129.6962	v(CN in ring)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1648	90.0071	v(C ₇ =N ₈)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3040	19.948	$v(C_3-H_{14})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3044	26.5426	$v(C_1-H_{16})+v(C_3-H_{14})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3095	8.7955	$v(C_4-H_{15})$
3577 64.6213 $v (N_9-H_{12})+v (NH_2)$ 3681 106.5581 $v(O_{10}-H_{11})$	3449	34.0128	$\nu (N_9-H_{12}) + \nu (N_9-H_{13})$
3681 106.5581 $v(O_{10}-H_{11})$	3577	64.6213	$\nu (N_9 - H_{12}) + \nu (NH_2)$
	3681	106.5581	$\nu(O_{10}-H_{11})$

^{*a*} ν: Stretching; β : -in plane bending; γ : out of plane bending, τ : torsion, GD: wagging, S: scissoring

15 Vibrational modes description

Spectral region above 2800 cm⁻¹

The C-H stretching vibrations are generally observed in the region 2800-3100cm-1. Accordingly, in the present study for N²-hydroxypyrimidine-2-carboximidamide, the C-H stretching

²⁰ vibrations are calculated at 3044, 3095, 3449, 3577, 3681 cm⁻¹ respectively.

Spectral region from 1000 cm⁻¹ to 2300 cm⁻¹

In the present study, in plane bending C-H (β) vibrations are observed in the regions at 1083, 1250, 1304, 1373, 1413, 1438 ²⁵ cm⁻¹. Scissoring C-H vibration is presented at 1531 cm⁻¹, while

Ring deformation C-C-C at 972, 1219 cm-1.

Spectral region below 1000 cm⁻¹

Twisting in while ring is presented at 348, 481, 513, 645, 725, 763, 815, 1073, 1187cm⁻¹ while out of plane bending γ (C-C-C), at 258, 391, 785, 795cm⁻¹. Ring torsion τ modes are presented at 173, 323, 373, 620, 684 cm-1 whereas Ring breathing, at 1048 cm⁻¹.

Conclusion

The frequency assignments for N'-hydroxypyrimidine-2-35 carboximidamide have been made for the first time. The equilibrium geometry and harmonic frequencies of N'hydroxypyrimidine-2-carboximidamide were determined and analyzed at the DFT level of the theory using the 6-311G (d, p) basis set. The vibrational frequency calculations proved that the 40 structure is stable (no imaginary frequencies). We found the geometry obtained by the B3LYP method to be very accurate. Electronic properties show the reactivity of molecule with the help of HOMO-LUMO gap. Hyperpolarizability is mainly controlled by the planarity of the molecules, the donor and 45 accepter strength, and bond length alteration. The values of hyperpolarizability indicate a possible use of these compounds in electro optical applications. The present work might encourage the need for an extensive study by the experimentalists interested in the vibrational spectra and the structure of this compound.

50 Acknowledgement

The author (Apoorva Dwivedi) is thankful to Prof. Neeraj Misra for meaningful suggestions

Notes and References

¹Department of Physics, Govt. D. P. G. College Dantewada, India ⁵⁵ ²Department of Physics, Govt. Kakatiya P. G. College Jagdalpur, India ³Govt. Engg. College, Banda, India E-mail: <u>apoorvahri@gmail.com</u>

- [1] Simmons D. L., Botting R. M., Robertson P. M., Madsen M. L., Vane J. R., Induction of an acetaminophen-sensitive cyclooxygenase with reduced sensitivity to nonsteroid antiinflammatory drugs, Proc. Natl. Acad. Sci., 1999, 96, 3275-3280.
- [2] Singh P., Bhardwaj A., Kaur S., Kumar S., Design, synthesis and evaluation of tetrahydropyran based COX-1/-2 inhibitors, Eur. J. Med. Chem., 2001, 44, 1278-1287.
- [3] Douthwaite A. H., Lintott G. A. M., Gastroscopic observation of the effect of aspirin and certain other Compound Ulcer Index±S.E.M. Control 0.13±0.08 Ibuprofen 4.13±0.29 4a 0.50±0.19 4b 0.63±0.12 4c 0.75±0.16 4d 1.06±0.15 4e 0.87±0.19 4f 0.94±0.18 Manoj Kumar et al /Int.J. ChemTech Res.2010,2(1) 238 substances on the stomach, The Lancet, 1938, 2, 1222- 1225.

- [4] Picot D., Loll P. J., Garavito R. M., The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature (London), 1994, 367, 243-247.
- [5] Vibrational spectra, HOMO, LUMO, MESO surfaces and reactivity descriptors of amylamine and its isomers, a DFT study, Apoorva Dwivedi, Ambrish Srivastava, Abhishek Bajpai, spectrochimica acta part A: molecular and biomoleculat spectroscopy, 149, (2015), 343-351.
- [6] Comparative Study of Vibrational spectra of two well known natural
 products Lupeol and Lupenone Using Density Functional Theory,
 Apoorva Dwivedi, Anoop kumar pandey, Neeraj misra,
 Structure and Luperprint Luperpl Valuer 27 (2012).
- Spectroscopy: An International Journal Volume 27 (2012), Issue 3, Pages 155–166 doi:10.1155/2012/486304.
 [7] Electronic Structure, Optical Properties and Vibrational Analysis of 2-
- Decenoic acid and its derivative by Density Functional Theory, Apoorva Dwivedi, Anoop Kumar Pandey, Neeraj Misra. , Spectroscopy: An International Journal 26 (2011) 367–385.
- [8] "Quantum chemical study of Etodolac (Lodine)" Apoorva Dwivedi and Neeraj Misra, Der Pharma Chemica, 2010, 2(2): 58-65. [ISSN 0975-413X].
- [9] Vibrational analysis of Two Narcotic Compounds- Codeine and Morphine – A comparative DFT study, Neeraj Misra, Apoorva Dwivedi, Anoop Kumar Pandey, Sanjeev Trivedi, Der Pharma Chemica, 2011, 3(3):427-448.
- 25 [10] Quantum Mechanical Study on the Structure and Vibrational Spectra of Cyclobutanone and 1,2-Cyclobutanedione, Anoop Kumar Pandey, Apoorva Dwivedi, Neeraj misra, Spectroscopy, Volume 2013 (2013), Article ID 937915, 11 pages.
- [11] Reactive nature, substitution reaction, structural and vibrational
 properties of 2, 3 Dichloropridine by DFT Study. A Bajpai, AK
 Pandey, K Pandey, A Dwivedi, Journal of Computational Methods in
 Molecular Design 4 (1), 64-69.
 - [12] Structural, electronic, optical and vibrational properties of 1-(5chloro-6- fluoro- 1,3-benzothiazol-2-yl)hydrazine&1-(6-chloro-1,3-
- ³⁵ benzothiazol-2-yl)hydrazine-A quantum chemical study, Saurabh Pandey, Apoorva Dwivedi, Ambrish K. Srivastava, Neeraj Misra, Balladka K. Sarojini, Billava J. Mohan and Badiadka Narayana, Der Pharma Chemica, 2014, 6(5):70-79.
- [13] A.D. Becke, J. Chem. Phys, 1993, 98, 5648.
- ⁴⁰ [14] C. Lee, W. Yang, R.G. Parr, Phys. Rev. 1988, B 37, 785.
- [15] Frisch, M. J. et al Gaussian 09; Gaussian, Inc., Pittsburgh, PA, 2009.[16] P.L.Fast, J.Corchado, M.L.Sanches, D.G.Truhlar, J.Phys.Chem A. 1999, 103, 3139.s
- [17] A.Frisch, A.B.Nelson, AJ.Holder, Gauss view, Inc.Pittsburgh PA, 2000.
- [18] "Computational note on vibrational spectra of Tyramine hydrochloride: DFT study", Shamoon Ahmad Siddiqui, Apoorva Dwivedi, Neeraj Misra, N. Sundaraganesan, Journal of Molecular Structure: THEOCHEM 847 (2007) 101-102.
- ⁵⁰ [19] "Vibrational dynamics and potential energy distribution of two well known Neuro transmitter Receptors: Tyramine and dopamine hydrochloride", Shamoon Ahmad Siddiqui, Apoorva Dwivedi, P. K. Singh, Tanveer Hasan, Sudha Jain, N. Sundaraganesan, H. Saleem, Neeraj Misra, Journal of Theoretical and Computational Chemistry Vol. 8, No. 3 (2009) 433–450.
- [20]. Parr R. G. and Yang W., Density-Functional Theory of Atom und Molecules, Oxford University Press, Oxford, (1989).
- [21]. Becke A. D., J. Chem. Phys., (1993), 98, 1372.
- [22]. I. Fleming, frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York, NY, USA, 1976.
- [23]. J. S. Murray and K. Sen, Molecular Electrostatic Potential, Concepts and Applications, Elsevier, Amsterdam, The Netherlands, 1996.
- [24]. J. Sponer and P. Hobza, "DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations," International Journal of Quantum Chemistry,
- vol. 57, no. 5, pp. 959-970, 1996.