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Abstract – Existing cellular communications and the 

upcoming 5G mobile network requires meeting high-reliability 

standards, very low latency, higher capacity, more security, and 

high-speed user connectivity. Mobile operators are looking for a 

programmable solution that will allow them to accommodate 

multiple independent tenants on the same physical infrastructure 

and 5G networks allow for end-to-end network resource allocation 

using the concept of Network Slicing (NS). Data-driven decision 

making will be vital in future communication networks due to the 

traffic explosion and Artificial Intelligence (AI) will accelerate the 

5G network performance. In this paper, we have developed a 

‘DeepSlice’ model by implementing Deep Learning (DL) Neural 

Network to manage network load efficiency and network 

availability, utilizing in-network deep learning and prediction. We 

use available network Key Performance Indicators (KPIs) to train 

our model to analyze incoming traffic and predict the network 

slice for an unknown device type. Intelligent resource allocation 

allows us to use the available resources on existing network slices 

efficiently and offer load balancing. Our proposed DeepSlice 

model will be able to make smart decisions and select the most 

appropriate network slice, even in case of a network failure. 

Keywords – 5G Cellular Networks, Network Slicing, Machine 

Learning, Deep Learning Neural Networks, Network Slicing 

Optimization, Survivability of Network Functions. 

I. INTRODUCTION 

Mobile communication has become an essential part of 

human lives. The increase in the number of mobile devices has 

been exponential over the past two decades, where newer 
services and applications play the role of a catalyst. This change 

has not only led to a need for higher capacity and throughput in 

the network but requires close integration of multiple different 

technologies. However, seamless operations and management 

have always been a challenge for heterogeneous wireless 

networks, but many service providers have worked their way 

through to meet customer demands. The next generation 5G 

network is an expansion of the current LTE network and is 

revolutionizing the wireless industry by creating new business 

opportunities, opening doors for new services and bringing 

innovation. 5G networks are seen to be multi-service network 

with a wide range of operations embedding diverse performance 
and services which in turn calls for a broader device eco-system. 

They will enable richer mobile experience whether it’s 

mobilizing media and entertainment, high-speed mobility, 

immersive experiences, augmented reality, connected vehicles 

in the congested network environment. Our work integrates 

Deep Learning mechanisms to understand traffic requirements 

and trends to make accurate decisions in 5G networks. 

Many emerging technologies have taken ablaze the telecom 

industry by enabling new business models and providing 

customers a different experience. Networks have evolved with 

the introduction of programmable systems like the Software 

Defined Networks (SDN) and Network Function Virtualization 

(NFV) and have benefited ever since their implementation. 

Some critical services that 5G networks would encapsulate are 

autonomous driving, enterprise business models, AR-VR 

solutions, industrial automation, remote monitoring, smart 
health, smart cities, and many more. The Third Generation 

Partnership Project (3GPP) considers network slicing a key 

enabling technology for 5G. Slicing would allow operators to 

efficiently run multiple instances of the network over a single 

infrastructure for serving various applications, use cases, and 

business services with superior Quality of Service (QoS). 

The main goals of our model are (1) appropriate selection 

of a network slice for a device, (2) correct slice prediction and 

allocating enough resources to that slice based on the traffic 

prediction, and (3) adaptation of slice assignments in cases of 

network failures. The key tools for accomplishing these goals 
are deep learning neural networks. This paper makes use of ML 

and Deep Learning Neural Networks (DLNN) to help make the 

most efficient and optimized selection of network slices for 

devices and/or services. Our DeepSlice model also analyzes the 

overall traffic pattern and can predict future traffic, so it can 

allocate resources, in advance, to the most appropriate slice. 

The telecom industry is going through a massive digital 

transformation with the adoption of ML, AI, feedback-based 

automation and advanced analytics to handle the next generation 

applications and services. AI concepts are not new; the 

algorithms used by Machine Learning and Deep Learning are 

being currently implemented in various industries and 
technology verticals. With growing data and immense volume 

of information over 5G, the ability to predict data proactively, 

swiftly and with accuracy, is critically important. AI will enable 

network functions to deliver ultra-low latency, higher 

throughput, and reliability by optimizing network performance 

and improving Quality of Experience (QoE). 

We briefly introduce 5G network slicing and deep learning 

concepts in Section II, some background work details are in 

Section III, we explain our DeepSlice model in Section IV and 

in Section V we present our results and discuss its application 

for our use cases of slice prediction for unknown device types, 
load balancing and network failover scenario. Finally, in Section 

VI we conclude our work and propose possible future extension. 

978-1-7281-3885-5/19/$31.00 ©2019 IEEE 

0762



II. 5G NETWORK SLICING, MACHINE LEARNING                       

AND DEEP LEARNING 

The current LTE architecture has a rigid framework that is 

not very flexible or scalable to adapt to diverse use cases. It often 

lacks customization when it comes to offering any tailored 

business requirements or to meet specific business demands. 

With growing mobile data and consumer demands, business 

needs for faster connectivity and higher throughput cannot be 

fulfilled by today’s 4G LTE network. Network slicing in 5G can 

cost-effectively deliver multiple logical networks over the same 

physical infrastructure. SDN and NFV together would allow us 

to manipulate these slices as and when needed without having to 

touch multiple different physical equipment in the network. 
Almost ‘no-disruption’ to any existing services is possible. 

Currently, service providers must configure and stitch together 

several components and equipment to achieve network slicing 

in 4G. Use of Access Point Name (APN) or Public Land Mobile 

Network (PLMN ID) are examples that service providers 

implement today for Mobile Virtual Network Operator 

(MVNOs), enterprise customers, etc. There is a lot of work done 

on optimization and efficient scheduling of radio and network 

resources; however, application or service-based resource 

allocation is a necessity and a must-have feature in 5G networks. 

Operators have a huge amount of data traffic coming 
through their network which will increase with growing number 

of devices and additional services of 5G networks. This traffic 

can be segmented and dealt with individually and independently. 

It will benefit any service provider as they can now charge 

differently for each sliced segment and even adjust the cost for 

each slice, leading to a balance between business profitability 

and customer satisfaction. In addition, 5G network slicing 

allows service providers to build for all current use cases that 

have been around for a while, and some emerging applications 

and services as well. It will provide a ‘one size fits all’ approach. 

Each network slice can be isolated, have individual control and 

policy management systems. The inclusion of ML here will 
allow us to analyze any unknowns and take necessary corrective 

actions. ML will provide network analysis of the huge data 

which can be studied further to efficiently and cost effectively 

modify any given slice as needed. DL for instance, as 

represented in Fig. 1, can trigger automation in the network to 

modify available resources and make changes on the go. DL will 

be responsible not only to provide and process, but also make an 

intelligent decision for network resource adaptation without any 

human intervention. It will also combine a variety of factors to 

make the best decisions, possibly too many factors for a human 

to consider at once or even be able to process in a short time. 

DL will perform real-time analysis for any given slice to 

determine the network performance, create a potential baseline 

for performance, be proactive in anticipating problems, inspect 

different network elements, and find out if anything is abnormal. 

A simple example could be on a slice for fixed wireless 

enterprise network, wherein if the network sees a sudden 

demand increase, automation can add more capacity in real time 

to provide efficient communication. This will help to create any 

newly required services or slices in the network. Automation 

will facilitate all this in a shorter timespan without causing any 

performance issues to an on-going session. Current hurdles in 

implementation of network slicing are organizational, as one 

will have to touch several different pieces of hardware and 

groups in a service provider network, to make a single change. 
The programmability capabilities of 5G will provide flexibility 

to seamlessly stitch together an end-to-end service for any 

application. A typical consumer would request parameters like 

data rate, latency, mobility, isolation, power constraints, etc. 

Accordingly, a specific network slice type is provisioned if the 

existing network slice instance does not have enough capacity 

and associated network functions are initiated on demand. 

 

Figure 1. General Deep Learning Neural Network 

Each use case receives an optimized set of resources in the 

network topology covering several SLA specified factors like 

connectivity, latency, priority, service availability, speed, 
capacity, etc. that suit the need of an application. The key 

parameters that are determined for network slicing are the slice 

type, bandwidth, throughput, latency, equipment type, mobility, 

reliability, isolation, power, etc. 5G enables enormous amounts 

of data collection, and this leads to the need of ML for big data 

analytics. Some of the most relevant and useful ML-based 

applications in the wireless industry are identifying and 

restarting sleeping cellular cells, optimizing mobile tower 

operations, faster wireless channel adoption, facilitating targeted 

marketing, autonomous decision making in IoT networks, real-

time data analysis, predictive maintenance, customer churn, 

sentiment analysis by social networking, fraud detection, e-
commerce, etc. ML implementation in Uber-like applications 

will have many advantages since Uber follows differential 

pricing in real time based on the demand, cars available, weather 

conditions, rush hour, etc. and so ML-based platform will allow 

for better accuracy and future prediction based on enormous data 

from the past and in the present. 

III. RELATED WORK 

Authors in [1] explore the multi-tenancy nature of the 5G 

network slicing by demonstrating how the capacity of a MVNO 

is affected by the number of users, transmit power. SDN and 

NFV-based 5G core network architecture is defined in [2]. Ping 
and Akihiro propose an application-specific mobile network 

deep learning architecture to apply application specific radio 

spectrum scheduling in the RAN [3]. Authors in [4] propose a 

framework to prioritize network traffic for smart cities using a 

priority management SDN approach. Taewhan started work 

early on network slicing and discusses standardization of 

network slicing, network slice selection, identifying slice-

independent functions and then proposes an architecture for 

slicing and the RRC frame [5]. 
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Other than this work, no other work to our knowledge 

considers the easily overlooked but difficult problem of deciding 

which devices and connections should be assigned to which 

network slices. And our work here is the first to use deep 

learning to address this problem, which will provide benefits of 
fast, flexible, accurate and informative decision making in the 

process. The authors in [6] contrasts Fade Duration Outage 

Probability (FDOP) based handover requirements with the 

traditional SINR based handovers methods in cellular systems. 

Another SDN and NFV based work on slicing demonstrates 

dynamic data rate allocation and the ability to provide hard 

service guarantees on 5G new radio air interfaces [7]. Many 

industry white papers and network surveys have been published 

and an Ericsson mobility report predicts the growth of mobile 

devices, 5G network connections and the overall data usage in 

coming years [8]. As for network intelligence, the authors in [9] 

represented handovers using matrix exponential distributions for 
public safety and emergency communications, which helps 

make handover decisions more accurate considering all the 

different parameters involved in the decision process. 

Authors in [10] present network survivability framework in 

5G networks demonstrating network virtualization with multiple 

providers which necessitates network slicing in 5G. Virtualized 

networks or slices of virtualized networks are selected and 

assigned based on QCI and security requirements associated 

with a requested service in [11]. Campolo, et. al., share their 

vision about V2X network slicing by pin-pointing key 

requirements and providing a set of design guidelines, aligned 
with ongoing 3GPP standard specifications and network 

softwarization directions in [12]. The proposed model in [13] 

enables a cost-optimal deployment of network slices allowing a 

mobile network operator to efficiently allocate the underlying 

layer resources according to its users’ requirements. However, 

none of their work considers the possibility of multiple service 

requirements requested by the same device, especially requested 

by an unknow device. Also, network slice load balancing and 

future prediction of traffic is unique in our work, especially with 

the use of ML and DL neural networks. 

IV. PROPOSED SYSTEM MODEL – ‘DEEPSLICE’ 

Neural networks are widely used in the industry today, and 

their usage will only grow as the ever-growing devices on 5G 

networks generate massive data. Accurate analysis and decision 

making will be overwhelming for any human being and faster 

processing times are required. We first create an ML model and 

later build a DLNN to help decide which network slice to use 

for given input information. The developed ‘DeepSlice’ is then 

used to manage network load, slice failure conditions and detect 

the most appropriate slice for any new unknown device type 

connecting to the network. A statistical ML model is based on 

the Random Forest (RF) algorithm, and the DeepSlice uses a 

convolutional neural network (CNN) classifier. Both RF and 
CNN are widely used models in their respective domains. We 

use the exact same dataset for both our ML and DLNN models 

consisting of over 65,000 unique input combinations. 

Our dataset includes most relevant KPIs from both the 

network and the devices, including the type of device used to 

connect (Smartphone, IoT device, URLLC device, etc.), User 

Equipment (UE) category, QoS Class Identifier (QCI), packet 

delay budget, maximum packet loss, time and day of the week, 

etc. These KPIs can be captured from control packets between 

the UE and network. Since our model will run internally on the 

network, all this information is readily available. We have 
multiple different types of input devices requesting access to our 

system. As shown in Fig. 2, these include smartphones, general 

IoT devices, AR-VR devices, Industry 4.0 traffic, e911 or public 

safety communication, healthcare, smart city or smart homes 

traffic, etc. or even an unknown device requesting access to one 

or multiple services. These have UE category values defined to 

them and the network also allocates a pre-defined QCI value to 

each service request. In 5G, the packet delay budget and the 

packet loss rate are an integral part of the 5QI (5G QoS 

Identifier), and we have them included in our model. DeepSlice 

will also observe what time and day of the week is the request 

received in the system. All this information will be recorded and 
used by our DLNN to make smart decisions in the present and 

efficiently predict network resource reservation for the future.

Figure 2. General representation of our Deep Learning Neural Network Model ‘DeepSlice’ consisting of Network Slices
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Input Type 
Duration 

(sec) 
Packet 

Loss Rate 
Packet Delay 
Budget (ms) 

Predicted Slice 

Smartphone 300 
10

-2
/10

-3
/ 

10
-6
 

60/75/100/ 
150/300 

eMBB 

IoT Devices 60 10
-2
 50/300 mMTC 

Smart Transportation 60 10
-6
 10 URLLC 

Industry 4.0 180 10
-3
/10

-6
 10/50 mMTC/URLLC 

AR / VR / Gaming 600 10
-3
 10/50 eMBB 

Healthcare 180 10
-6
 10 URLLC 

Public Safety / E911 300 10
-6
 10 URLLC 

Smart City / Home 120 10
-2
 50/300 mMTC 

Unknown Device 
Type 

60/120/
180/300 

10
-2
/10

-3
/ 

10
-6
 

10/50/60/75/
100/150/300 

eMBB/mMTC/ 
URLLC 

 

Table I. Feature highlights of our DeepSlice simulation model 

In Table I, we have shown highlights of the features of our 

simulation model. The second column shows the average time 

duration spent in the system by each of the incoming requests. 

All these incoming requests are directed to one or more of the 

network slices as predicted. We have also considered some 

variations in the traffic types; mMTC devices can be further 

categorized as ones requiring a continuous connection link and 

others needing only a momentary connection to send data 

periodically. Smartphone devices can be used by common users 
to make phone calls, browse the web and at the same time by 

first responders in an emergency (lower packet loss and packet 

delay). Our pre-defined slice categories include enhanced 

Mobile Broad Band (eMBB), Ultra Reliable Low Latency 

Communication (URLLC), massive Machine Type 

Communication (mMTC) and the Master slice. The Master slice 

is the slice that will have network functions belonging to each of 

the other slices. It can always act as a back-up slice, in a hot-

standby, and will be used depending on the load on other slices. 

In our proposed model, we predict the network load on each 

network slice based on the previous information of incoming 
connections and keep track of which output ‘network slice’ is 

being utilized the most. We then allocate incoming traffic to the 

network by efficiently distributing them between all the slices as 

desired. We have used Keras which is a deep learning library in 

Python for our model simulations. A DLNN is required as there 

are no clear sets of rules for how each incoming device type 

should be treated. Cellular handovers, for example, are based 

upon several network factors. With every new scenario, an 

intelligent network can learn and adapt very quickly to changes 

or new requirements compared to traditional algorithms. DLNN 

can help identify and accommodate the unknows in the network. 

A. Machine Learning with Random Forest Algorithm 

When we have a well-structured data with multiple 

attributes, use of Random Forest (RF) along with DLNN is the 

most recommended option. RF is a supervised learning model 

and mainly used to build predictive models for both 

classification and regression problems. The main reason for 
selecting RF for our model over k-Nearest Neighbor, Naive 

Bayes, or Decision Tree is simply because of the nature and 

amount of data we have in our dataset. We have around 65K 

unique inputs, and all this data is well structured, so RF reduces 

the risk of overfitting by using multiple sub-trees. RF is useful 

to quickly classify input data into any pre-defined category. RF 

runs efficiently on a large database and produces accurate 

predictions. Most importantly, it estimates any missing data and 

maintains the accuracy even when some input data is missing. 

 

Figure 3a. Machine Learning Model 

 

Figure 3b. Random Forest Decision Tree based ML Model 

Figs. 3a and 3b illustrate the typical ML modeling with 

decision trees and predicting the output with majority voting. As 

per our input dataset, we have about 8 different input strings that 
will together contribute towards a decision that the model will 

make. And it can very well happen in the real-world scenario 

that one or more among the 8 inputs may not be received and 

our model still must predict an output. During training of our 

data, RF constructs multiple decision trees based on inputs, each 

branch of a tree represents a possible occurrence or response. 

We use 70% of our input dataset to train our model and the 

remaining 30% was used for predicting the classifier accuracy. 

The RF algorithm in our ML model gives high accuracy. 

B. Deep Learning Neural Network 

The DLNN works best when the data is unstructured and 

huge. We use the same dataset to train multiple neurons of our 

DLNN, and it predicts the correct network slice based on any 

input from the UE information. Our DLNN can predict very 

accurately and we utilize this functionality to select the correct 

slice for unknown device types. It helps redirect traffic to the 

Master slice if load balancing is required in the network slices, 
and in case of any slice failure in the network. In our proposed 

DeepSlice model in Fig. 4a, we predict the network load of each 

network slice based on the incoming connection and keep track 

of which output ‘network slice’ is being utilized most. We then 

allocate incoming devices to slices by efficiently distributing 

between the eMBB, URLLC, mMTC or the master slice 

depending on the load and the output predicted by our model. 

 

Figure 4a. ‘DeepSlice’ DLNN Model Overview 
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Figure 4b. Active user count in the network observed every 15 minutes 

Approximately a quarter million user connection requests 

were generated in a 24-hour simulation of which 40% was 

eMBB, 25% mMTC and 35% URLLC. Fig. 4b above shows the 
simulated DLNN model run for 24 hours giving the number of 

users being served at an instance. The plot begins when our 

model had reached a steady state which was at the 1-hour mark. 

Based on the Table I information, all incoming traffic has a pre-

defined time-to-live (TTL) and so only a fraction remains alive 

every second. For example, eMBB active user average count 

was 275 at any given instance. URLLC and mMTC users were 

allotted short TTL compared to the eMBB which is why we have 

more users alive for broadband services. This can help analyze 

the user pattern and will allow for automated decisions based on 

the retrieved input information from the connected device. 

DeepSlice will eventually learn and understand what kind 
of a device goes to what slice and it will evolve over time to be 

able to predict future connections requiring a specific service or 

a network slice. It can help prepare the network for any new 

connections by properly allocating resources in advance; this 

will save any delays later. Our dataset includes day and time of 

any connection which can also help the network predict number 

of connections in the future at any given time and would be 

aware what network slices would be required or requested by 

those connections based on learning from the past information. 

V. USE CASES AND PERFORMANCE EVALUATION 

In this section, we evaluate DeepSlice and verify how it can 
be used to provide slice prediction, load balancing and network 

availability. In our first use case, we validate our approach by 

demonstrating how slices are accurately selected for any 

unknown device types requesting connections to the system. 

Our second use case of load balancing involves efficient 

utilization of each of the available network slices. If any 

individual slice utilization exceeds a certain threshold of its total 

available resources, our model will direct any new connections 

to the master slice that is otherwise required to carry the device 

when a slice utilization exceeds a pre-defined threshold. Our 

third use case depicts a slice failure scenario where all that traffic 

will route to the master slice instead and prevent any loss of 
service during failure of the slice. DeepSlice will capture the 

time of any connection failure and some attributes around the 

failure; the next time it can try to isolate the issue and be 

prepared in advance. 

A. Unknown Device Type 

DeepSlice model is trained using our dataset of multiple 

unique inputs based on network and device KPIs. Our cross-

validation accuracy was over 90.62% (Fig. 7a) which included 

the entire test dataset of new input scenarios, those not used 

while training. We also included certain unknown device types 

with randomly selected parameters. Slice prediction accuracy 

was 95% for unknown devices. Table II shows a few unknowns 

and how only a portion of input information was used to 

correctly determine the network slice to be used. 

Input Type Technology 
Packet 

Loss Rate 
Packet Delay 
Budget (ms) 

Predicted 
Slice 

Unknown – 1 LTE/5G or IoT 10
-3

 50 eMBB/mMTC 

Unknown – 2 IoT 10
-2

 50 mMTC 

Unknown – 3 IoT 10
-6

 10 URLLC 

Unknown – 4 IoT 10
-2

 300 mMTC 

Unknown – 5 LTE/5G 10
-2

 100 eMBB 

Unknown – 6 LTE/5G 10
-6

 100 eMBB 
 

Table II. Slice prediction for unknown device types 

Our training dataset included 6 to 8 parameters in every 

input, but our model requires a minimum of 2 or 3 input KPIs, 

to determine the services requested and allocate the correct slice. 

This is very essential, since a lot of devices with various 

capabilities request different services at different times. An 

industry 4.0 IoT application requires very low latency in 

pharmaceutical environments (URLLC), whereas the same type 

could also be used for monitoring production lines, which would 

require periodic connection and very low throughput (mMTC). 

B. Load Balancing Scenario 

We use the same DLNN but assume that one slice would be 

overutilized if the number of connections exceed a threshold, 

say 90% usage in our case. Fig. 5a shows an eMBB slice is 

detected to have over 90% utilization with its traffic to go over 
the set threshold, so, the master slice acts as backup for any new 

eMBB connections. Our DeepSlice can realize this overload and 

can be prepared next time to redirect traffic without causing one 

specific slice to be overloaded. When compared with Fig. 4b, 

the master slice takes over the excess traffic as shown in Fig. 5b. 

 

Figure 5a. Slice Utilization exceeding a pre-defined threshold 

 

Figure 5b. Slice Utilization exceeding a pre-defined threshold 
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C. Network Slice Failure Scenario 

In this case, we assume a complete failure of a specific slice, 

specifically eMBB as shown in Fig. 6a. Now the DeepSlice will 

direct all new eMBB related traffic to the master slice and avoid 

any loss of traffic transmission in the network. However, any 

ongoing communication on that slice would be impacted and all 

existing connections are lost due to sudden slice failure. This is 

recorded by the system, say for example, date and time, and care 

will be taken next time to avoid loss of all ongoing connections. 

Fig. 6b shows that our simulated model had failures on the 

mMTC slice for a period of two hours from 3hr to 5hr and on 
the eMBB slice for another two-hour period 16hr to 18hr. The 

master slice was identified as a backup and used to redirect this 

traffic during those slice failures. We had substantial resources 

reserved in the master slice for each of our network slices in 

terms of capacity and processing speed. 

 

Figure 6a. Network slice failure and re-direction to master slice 

 

Figure 6b. Network slice failure and re-direction to master slice 

We have run our simulation for a period of a day and later 

for a whole one-week period to get close to real-time results. The 
randomly distributed average connections received in an hour 

did not change between a day and a week. One-week simulation 

produced almost two million service requests. We also used 

multiple unknow device types and our model was able to 

maintain the accuracy for prediction of slices. Figs. 7a and 7b 

shows the accuracy or measure prediction quality of our model. 

  

Figure 7a and 7b. Training and validation Accuracy and Loss 

VI. CONCLUSION AND FUTURE WORK 

Network slicing in 5G is a critical feature for next 

generation wireless networks, mobile operators and businesses. 

We have demonstrated the benefits of using DeepSlice for 

accurately predicting the best network slice based on device key 

parameters and orchestrated the handling of network load 

balancing and network slice failure using neural network 

models. Our future work will include emulating the developed 

model in a real production environment once the 5G ecosystem 

with devices and networks are commercially available for 

consumers. We will also extend and further improve this model 

to handle scenarios such as handovers, caching and predicting 

the future load, borrowing resources from other slices, and 

application-based slice management use cases. 
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