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 Non standard abbreviations: 

ADME/Tox, absorption, distribution, metabolism, excretion and toxicity; DDI, drug-drug 

interactions; DILI, Drug Induced Liver Injury; ECFC_6, Extended connectivity 

functional class fingerprint of maximum diameter 6; HIAT, human hepatocyte imaging 

assay technology; PCA, principal component analysis; QSAR, quantitative structure 

activity relationship; ROC, Receiver Operator Curve XV, cross validated. 
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Abstract  

Drug-induced liver injury (DILI) is one of the most important reasons for drug 

development failure at both pre-approval and post-approval stages. There has been 

increased interest in developing predictive in vivo, in vitro and in silico models to identify 

compounds that cause idiosyncratic hepatotoxicity. In the current study we applied 

machine learning, Bayesian modeling method with extended connectivity fingerprints 

and other interpretable descriptors. The model that was developed and internally 

validated (using a training set of 295 compounds) was then applied to a large test set 

relative to the training set (237 compounds) for external validation.  The resulting 

concordance of 60%, sensitivity of 56%, and specificity of 67% were comparable to 

internal validation. The Bayesian model with ECFC_6 fingerprint and interpretable 

descriptors suggested several substructures that are chemically reactive and may also be 

important for DILI-causing compounds, e.g. ketones, diols and -methyl styrene type 

structures. Using SMARTS filters published by several pharmaceutical companies we 

evaluated whether such reactive substructures could be readily detected by any of the 

published filters. It was apparent that the most stringent filters used in this study, like the 

Abbott alerts which captures thiol traps and other compounds, may be of utility in 

identifying DILI-causing compounds (sensitivity 67%). A significant outcome of the 

present study is that we provide predictions for many compounds that cause DILI by 

using the knowledge we have available from previous studies for computational 

approaches.  These computational models may represent a cost effective selection criteria 

prior to costly in vitro or in vivo experimental studies. 
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Introduction 

Pharmaceutical research must develop predictive approaches to decrease the late stage 

attrition of compounds in clinical trials. One approach to this is to optimize absorption, 

distribution, metabolism, distribution and toxicity (ADME/Tox) properties earlier which 

is now frequently facilitated by a panel of in vitro assays. The liver is highly perfused and 

the “first-pass” organ for any orally-administered xenobiotic, while it also represents a 

frequent site of toxicity of pharmaceuticals in humans (Lee, 2003; Kaplowitz, 2005).  The 

physiological location and drug-clearance function of the liver dictate that for an orally-

administered drug, the drug exposure or drug load that the liver experiences is higher 

than that being measured systemically in peripheral blood (Ito et al., 2002).  Drug-

metabolism in the liver can convert some drugs into highly reactive intermediates and 

which in turn can adversely affect the structure and functions of the liver (Kassahun et 

al., 2001; Park et al., 2005; Walgren et al., 2005; Boelsterli et al., 2006).  Therefore, it is 

not surprising that drug-induced liver injury, DILI, is the number one reason why drugs 

are not approved and why some of them were withdrawn from the market after approval 

(Schuster et al., 2005).  

We have previously assembled a list of approximately 300 drugs and chemicals 

with a classification scheme based on clinical data for hepatotoxicity, for the purpose of 

evaluating an in vitro testing methodology based on cellular imaging of human 

hepatocyte cultures (Xu et al., 2008).  Since every drug can exhibit some toxicity at high 

enough exposure (i.e., the notion of “dose makes a poison” by Paracelsus), we previously 

tested a panel of orally administered drugs at multiples of the therapeutic Cmax (maximum 
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therapeutic concentration), taking into account the first-pass effect of the liver and other 

idiosyncratic toxicokinetic/toxicodynamic factors.  It was found that the 100-fold Cmax 

scaling factor represented a reasonable threshold to differentiate safe versus toxic drugs, 

for an orally dosed drug and with regard to hepatotoxicity (Xu et al., 2008).  The overall 

concordance of the in vitro human hepatocyte imaging assay technology (HIAT), when 

applied to about 300 drugs and chemicals, is about 75% with regard to clinical 

hepatotoxicity, with very few false-positives (Xu et al., 2008).  The reasonably high 

specificity and reasonable sensitivity of such an in vitro test system has made it especially 

attractive as part of a pre-clinical testing paradigm to select drug candidates with 

improved therapeutic index for clinical hepatotoxicity.   

Obviously, using in vitro approaches still comes at a cost. Firstly the compound 

has to physically have been made and be available for testing, secondly the screening 

system is still relatively low throughput compared to any primary screens and as a result 

whole compound or vendor libraries cannot be cost effectively screened for prioritization. 

Thirdly, the screening system should be representative of the human organ including drug 

metabolism capability. Yet a fourth consideration is that the prediction of human 

therapeutic Cmax is often imprecise prior to clinical testing in actual patients.  A potential 

alternative may be to use the historic DILI data to create a computational model and then 

test it with an equally large set of compounds to ensure that there is enough confidence 

such that its predictions can be used as a prescreen prior to actual in vitro testing.   

There have been many examples where computational quantitative structure 

activity relationship (QSAR) or machine learning methods have been used for predicting 

hepatotoxicity (Cheng and Dixon, 2003; Clark et al., 2004) or drug-drug interactions 
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(Ekins et al., 2000; Marechal et al., 2006; Ung et al., 2007; Zientek et al., 2010). One 

recent study used a small set of 74 compounds (33 of which were known to be associated 

with idiosyncratic hepatotoxicity and the rest were not) to create classification models 

based on linear discriminant analysis (LDA), artificial neural networks (ANN), and 

machine learning algorithms (OneR) (Cruz-Monteagudo et al., 2007). These modeling 

techniques were found to produce models with satisfactory internal cross-validation 

statistics (accuracy/sensitivity/specificity over 84%/78%/90%, respectively). These 

models were then tested on very small sets of compounds (6 and 13 compounds, 

respectively) with over 80% accuracy.  A second study compiled a data set of compounds 

reported to produce a wide range of effects in the liver in different species then used 

binary QSAR models (248 active, 283 inactive) to predict whether a compound would be 

expected to produce liver effects in humans. The resultant support vector machine (SVM) 

models had good predictive power assessed by external 5-fold cross-validation 

procedures and 78% accuracy for a set of 18 compounds (Fourches et al., 2010). A third 

study created a knowledge-base with structural alerts from 1266 chemicals. Although not 

strictly a machine learning method the alerts created were used to predict 626 Pfizer 

compounds (ensitivity 46%, specificity 73% and concordance 56% for the latest version) 

(Greene et al., 2010). 

A major limitation of these previous global models for DILI (and for many 

computational toxicology models) is their use of very small test sets in all cases. These 

studies also have not examined how well they could predict many sets of closely related 

compounds in which some show DILI and others do not, which is most likely the 

scenario facing us in the real world of pharmaceutical research. Another issue is the 
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quality of the compound datasets used for model building and testing (Williams et al., 

2009). 

In the current study we have used a training set of 295 compounds and a test set 

of 237 molecules. In contrast to earlier studies we have used a Bayesian classification 

approach (Xia et al., 2004; Bender, 2005) with simple, interpretable molecular 

descriptors as well as extended connectivity functional class fingerprints of maximum 

diameter 6 (ECFC_6) (Jones et al., 2007) to classify compounds as DILI or non-DILI. 

We also use these descriptors to highlight chemical substructures that are important for 

DILI. In addition, we have applied chemical filters to all the 532 molecules in the test and 

training set as many pharmaceutical companies use SMARTS [SMiles ARbitrary Target 

Specification] queries which specify substructures of interest 

(http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html). These approaches 

have enabled the removal of undesirable molecules, false positives and frequent hitters 

from their HTS screening libraries or to filter vendor compounds (Williams et al., 2009). 

Computational models or filters for DILI could be a valuable filter for selecting 

compounds for further synthesis and testing in vitro or in vivo. 

  

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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Methods 

Source of DILI data. We have greatly expanded our original DILI drug list of about 300 

drugs and chemicals with the same classification scheme based on clinical data for 

hepatotoxicity (Xu et al., 2008).  Our DILI positive drugs include those: 1) withdrawn 

from the market mainly due to hepatotoxicity (e.g., troglitazone (Parker, 2002)), 2) not 

marketed in the United States due to hepatotoxicity (e.g., nimesulide (Macia et al., 

2002)), 3) receiving black box warnings from the FDA due to hepatotoxicity (e.g., 

dantrolene (Durham et al., 1984)), 4) marketed with hepatotoxicity warnings in their 

labels (e.g., zileuton (Watkins et al., 2007)), 5) others (mostly old drugs) that have well-

known associations with liver injury and have a significant number (>10) of independent 

clinical reports of hepatotoxicity (e.g., diclofenac (Boelsterli, 2003)).  Drugs that do not 

meet any of the above positive criteria are classified as DILI negatives.  The expanded 

drug list and its DILI classifications were researched and collated at the same time as the 

original 300 drug list for in vitro testing.  The expanded drug list includes 237 

compounds which were previously not available for in vitro testing.  However, since 

computational modeling does not require the physical availability of compounds, we have 

decided to use them as our relatively large test set for in silico modeling.    

Training and test set curation. Assembling high quality data sets for the purpose of 

computational analysis can be very challenging. Commonly public data sources are used 

as trusted resources of information and without further validation and, as has been 

demonstrated or suggested in a number of previous studies, this is not appropriate 

((Fourches et al., ; Williams et al., 2009) and references therein). The set of validated 
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chemical structures utilized as the training and test data were assembled from the 

ChemSpider database (www.chemspider.com). The set of chemical names associated 

with the DILI set were searched against the ChemSpider database and the chemical 

compounds associated with manually curated chemical records were downloaded. This 

amounted to over 90% of the list of chemical names. For the remaining chemical names 

the associated structures in ChemSpider were then manually validated by checking 

various resources to assert the correct chemical structures. These included validation 

across multiple online resources (e.g., Dailymed, ChemIDPLus and Wikipedia) as well as 

the Merck Index to ensure consistency between the various resources. The test and 

training set (Supplemental Table 1) were also compared by Tanimoto similarity (Willett, 

2003) with MDL keys to remove any compounds with a value of 1, indicative of them 

being identical but possessing different synonyms in each dataset.  

Bayesian machine learning model development. Laplacian-corrected Bayesian 

classifier models were generated using Discovery Studio. (Version 2.5.5., Accelrys, San 

Diego, CA)  This approach employs a machine learning method with 2D descriptors (as 

described previously for other applications (Rogers et al., 2005; Hassan et al., 2006; Klon 

et al., 2006; Bender et al., 2007; Prathipati et al., 2008)) to distinguish between 

compounds that are DILI positive and those that are DILI negative. Preliminary work 

evaluated separately different functional class fingerprints (FCFP) (of size 0-20) 

descriptors alongside interpretable descriptors. FCFP_6 had approximately the highest 

receiver operator curve (ROC) for the leave-one-out for the DILI data. We then evaluated 

separately other fingerprint descriptors (e.g. elemental type fingerprints, ECFP; AlogP 

code path length fingerprint, LPFP ), separately (ECFC_6, ECFP_6, EPFC_6, EPFP_6, 
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FCFC_6, FPFC_6, FPFP_6 LCFC_6 and LPFC_6) ((Bender, 2005) descriptor naming 

conventions can be found within the help pages of Discovery Studio 2.5.5) . Several had 

ROC values > 0.8 while ECFC_6 is the focus of this study with the following 

interpretable descriptors:: ALogP, ECFC_6, Apol, logD, molecular weight, number of 

aromatic rings, number of hydrogen bond acceptors, number of hydrogen bond donors, 

number of rings, number of rotatable bonds, molecular polar surface area, molecular 

surface area. Wiener and Zagreb indices were calculated from an input sdf file using the 

“calculate molecular properties” protocol.  

The “create Bayesian model” protocol was used for model generation.  The theory 

behind this method has been described in more detail elsewhere (Zientek et al., 2010). A 

custom protocol for validation was also used in which 10%, 30% or 50% of the training 

set compounds were left out 100 times. The mean (±SD) of the calculated values were 

reported. 

 

Comparison of training and test sets.  

The interpretable descriptors described above were used to compare compounds 

of each class in the training and test sets using statistical comparisons performed with 

JMP (SAS Institute Cary, NC). 

Principal Component Analysis (PCA) available in Discovery Studio version 2.5.5 

was used to compare the molecular descriptor space for the test and training sets (using 

the descriptors of ALogP, molecular weight, number of hydrogen bond donors, number 

of hydrogen bond acceptors, number of rotatable bonds, number of rings, number of 
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aromatic rings, and molecular fractional polar surface area). In each case, the respective 

test set and the training set compounds were combined and used to generate the PCA 

analysis.  

For a comparison with recently launched drugs we extracted small-molecule 

drugs from 2006-2010 from the Prous Integrity database and went through a curation 

process similar to that described above. A number of these drugs were not “small 

molecules” appropriate for examination and modeling in this study and were immediately 

rejected. Structure validation resulted in a set of 75 molecules that were used for PCA 

and physicochemical property analysis. 

  

SMARTS Filters. We used the 107 SMARTS filters in Discovery Studio 2.5.5 

(Supplemental Text). The Abbott ALARM (Huth et al., 2005), Glaxo (Hann et al., 1999) 

and Pfizer LINT (also known as Blake filter (Blake, 2005)) SMARTS filter calculations 

were performed through the Smartsfilter web application kindly provided by Dr. Jeremy 

Yang (Division of Biocomputing, Dept. of Biochem and Molecular Biology, University 

of New Mexico, Albuquerque, NM, 

(http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter). This software identifies the 

number of compounds that pass or fail any of the filters implemented. Each filter was 

evaluated individually with the combined set of training and test compounds (N = 532). 
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Results  

Bayesian Models. We initially evaluated the Bayesian model with multiple cross 

validation approaches then we evaluated the models with multiple external test sets which 

are more representative of chemical space coverage beyond the training set. The cross 

validated receiver operator curve area under the curve (XV ROC AUC) for the model 

with 295 molecules built with simple molecular descriptors alone was 0.86 and the best 

split was 0.17 with the ECFC_6 descriptors and interpretable descriptors (Supplemental 

data). By using the ECFC_6 descriptors, we can also identify those substructure 

descriptors that contribute to the DILI (Figure 1A) and those that are not present in 

compounds causing DILI (Figure 1B). The Bayesian model generated was also evaluated 

by leaving out either 10%, 30% or 50% of the data and rebuilding the model 100 times in 

order to generate the XV ROC AUC. In each case the leave out 10%, 30% or 50% testing 

AUC value was comparable to the leave-one-out approach and these values were very 

favorable indicating good model robustness (Table 1). The mean concordance > 57%, 

specificity > 61% and sensitivity > 52% did not seem to differ depending on the amount 

of data left out. 

Molecular features important for DILI. Analysis of simple interpretable molecular 

properties between the compounds in the training set indicated that the mean ALogP was 

the only one statistically different between those that cause DILI and those that do not 

(Table 2). For the slightly smaller test set Apol, the number of rotatable bonds, the 

number of hydrogen bond acceptors, the number of hydrogen bond donors, molecular 

surface area, molecular polar surface area, and the Zagreb index were all significantly 
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different between compounds that cause DILI and those that do not. Further molecular 

insights into the general properties of DILI forming compounds were obtained by using 

the ECFC_6 descriptor results from Discovery Studio to select molecules with a common 

substructure and analyze those that cause DILI from those that do not. As demonstrated 

in Figure 1A features such as long aliphatic chains (G1 and G2), phenols (G3), ketones 

(G5), diols (G7), -methyl styrene (G8) (represents a polymer monomer), conjugated 

structures (G9), cyclohexenones (G10) and amides (G15) predominate.   

 

Bayesian model validation. The Bayesian model was tested with 237 new compounds 

not present in the previous 295 training set (Supplemental Table 1). The concordance 

~60%, specificity 67% and sensitivity 56% were comparable (Table 3) with internal 

validation (Table 1). A subset of 37 compounds (Supplemental Table 2) of most interest 

clinically (including similar compounds which were either DILI causing or not) showed 

similar testing values with a concordance greater than 63% (Table 2). Compounds of 

most interest can be defined as well-known hepatotoxic drugs (e.g., those hepatotoxic 

drugs cited elsewhere (FDA, 2009)), plus their less hepatotoxic comparators, if clinically 

available.  These less hepatotoxic comparators are approved drugs that typically share a 

portion of the chemical core structure as the hepatotoxic ones (e.g., zolpidem versus 

alpidem, ibuprofen versus benoxaprofen, etc.).  The purpose of this test set is to explore 

whether our in silico method can differentiate differences in DILI potential between or 

among closely related compounds, a scenario that is likely to be of most interest in real-

world drug discovery and development efforts. 
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A PCA analysis using simple molecular descriptors showed that the training and 

test set covered overlapping or similar chemical space (Figure 2A). However, there were 

some distinct compounds like retinyl palmitate that were outside the training set (Figure 

2B). Therefore, focusing in on compounds with a Tanimoto similarity greater than 0.7 

left 28 compounds (Supplemental Table 3) whose Matthews correlation coefficient and 

concordance was similar to the complete test set. The specificity and sensitivity  

increased to 80% and 50%, respectively (Table 3) in this case.    

SMARTS filtering We have also evaluated the training and test set compounds further 

by using various SMARTS filters which are used as alerts to remove undesirable 

compounds before in vitro screening (Williams et al., 2009). The hypothesis tested was 

whether the filters would predominantly remove compounds that caused DILI. Out of the 

four sets of independent filters tested the Abbott alerts had the highest concordance and 

sensitivity while the Glaxo filters had the highest specificity but lowest sensitivity and 

concordance (Table 4). It would appear that the Abbott Alerts retrieve two thirds of all 

the compounds causing DILI as they fail these alerts. The best statistics with filtering are 

lower than observed in Table 3 for the test sets with the Bayesian model. 

Discussion 

Pharmaceutical companies are keen to prevent late stage attrition due to adverse 

drug reactions or drug-drug interactions, and the earlier they are aware of a potentially 

problematic lead series, the sooner they can modify it and address the issue. In many 

ways this has been expedited and assisted by the increasing throughput of in vitro assays 

which are also used for the development of computational models (with particular focus 
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on the liver due to its importance in first pass metabolism) (Ekins et al., 2003; O'Brien 

and de Groot, 2005). Idiosyncratic liver injury or drug induced liver injury are much 

harder to predict from the in vitro situation so we generally become aware of such 

problems once a drug reaches large populations in the clinic, which is too late. There 

have been efforts recently to use computational models to predict DILI or idiosyncratic 

hepatotoxicity. We are aware of at least three studies that tackled predicting DILI using 

either LDA, ANN, OneR (Cruz-Monteagudo et al., 2007), SVM (Fourches et al., 2010) 

or structural alerts (Greene et al., 2010). In the first two studies the models were tested 

with very small sets of compounds (<20) covering limited chemical space, while the third 

study used a large set of 626 proprietary compounds as the test set (Greene et al., 2010). 

In the current study we have carefully collated a training set of 295 compounds (of which 

158 cause DILI) and a very large test set (relative to the training set) of 237 compounds 

(114 of these cause DILI) and used them to create and validate a Bayesian model.  

Recently computational Bayesian models were developed for time-dependent 

inhibition of CYP3A4 using over 2000 molecules for filtering of compounds that must be 

screened in vitro due to this activity (Zientek et al., 2010). The Bayesian approach has 

also been used for modeling the apical sodium dependent bile acid transporter to identify 

inhibitors (Zheng et al., 2009) and for modeling inhibitory activity of a large set of 

compounds (>200,000) against Mycobacterium Tuberculosis in whole cells (Ekins et al., 

2010). In our experience the Bayesian method can generate classifiers with good 

enrichments and classification accuracy for an external test set. In this study internal 

testing of the Bayesian model resulted in internal ROC scores (> 0.85) and specificity (> 

61%), concordance (> 57%) and sensitivity (> 52%) (Table 1). Using the ECFC_6 
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descriptors we found that numerous of the fingerprints with high Bayesian scores and 

present in many DILI compounds, appeared to be reactive in nature which could cause 

time dependent inhibition of CYPs for example (Zientek et al., 2010) or be precursors for 

metabolites (Kassahun et al., 2001) that are reactive and may covalently bind to proteins. 

However, it is puzzling why long aliphatic chains may be important for DILI (Figure 1A) 

other than being generally hydrophobic and perhaps enabling increased accumulation. It 

is possible they may be hydroxylated, then form other metabolites that are in turn 

reactive. Further analysis of simple molecular descriptors calculated for the test and 

training sets showed only differences in ALogP for the training set while many 

descriptors were significantly different in the test set (e.g. DILI causing compounds have 

less molecular branching as measured by the Zagreb index and lower sum of atomic 

polarizabilities (Apol)) but not ALogP (Table 2). It was not until we used the Bayesian 

model with a test set that we could appreciate its potential utility. In this case for the 

whole dataset we saw concordance (~60%) and specificity (~67%) and sensitivity 

(~56%), comparable to internal testing (Table 3). When we focused on a very small 

subset of compounds of clinical interest the concordance increased. When we narrowed 

down the dataset to only those molecules with > 70% similar to the training set (N = 28) 

based on the Tanimoto similarity (with MDL Keys descriptors) the specificity increased 

above 80% and concordance increased slightly to ~64%.  Such an increase in 

concordance statistics is analogous to that observed with other computational chemistry 

predictions, as it simply and effectively narrows the applicability domain to molecules 

that would be expected to be better predicted (Ekins et al., 2006). We have also evaluated 

the overlap of the training and test set chemical space using PCA (Figure 2A), an 
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approach we have used previously (Zientek et al., 2010) that shows that many of the 

molecules in the test set cover similar chemical space to the training set, while there are 

some compounds that may be outliers like retinyl palmitate (Figure 2B), in this case it 

was correctly predicted as causing DILI. We have compared how these 532 compounds 

relate to a set of 77 recently launched small-molecule drugs from the period 2006-2010 

extracted from the Prous Integrity database (Supplemental Figure 1). Again we find these 

molecules are distributed throughout the combined training and test set, representative of 

overlap which is also suggested from the mean physicochemical property values 

(Supplemental Table 4 compared with Table 2). These combined analyses would suggest 

that the test and training set used for the DILI model is representative of current 

medicinal chemistry efforts. 

A further approach we have taken based on the output of the Bayesian model 

fingerprint descriptors (which suggested many reactive substructures) was to use 

published SMARTS filters which many groups have routinely used to remove reactive 

compounds in vendor compound screening libraries. For example REOS from Vertex 

(Walters and Murcko, 2002), filters from GSK (Hann et al., 1999), BMS (Pearce et al., 

2006),Abbott (Huth et al., 2005; Huth et al., 2007; Metz et al., 2007) and others (Blake, 

2005) have all been described. These latter SMARTS filters in particular detect thiol traps 

and redox active compounds. More recently, an academic group has published an 

extensive series of over 400 substructural features for removal of Pan Assay INterference 

compoundS (PAINS) from screening libraries (Baell and Holloway, 2010). In only one 

case in our study with the filters from Abbott (Huth et al., 2005; Metz et al., 2007) did we 

see a concordance or sensitivity value that was similar to that observed previously with 
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the Bayesian model. This would suggest that these SMARTS may be useful as a pre-

screen to remove potential DILI causing compounds alongside the Bayesian models 

which perform better. 

 In summary, we present the first large scale testing of a machine learning model 

for DILI that uses a similarly sized training and test sets. Our model may have utility in 

identifying compounds with a potential to cause human DILI. The overall concordance of  

the model is lower (~60-64% depending on test set size) than that observed previously for 

the in vitro HIAT (75% (Xu et al., 2008)). Our test-set statistics are similar to those 

reported elsewhere using structural alerts (Greene et al., 2010). The compounds that are 

scored to be DILI positive by our model, if still of high therapeutic interest, could be 

further tested by combined in vitro and in vivo testing, as they have sufficient sensitivity 

and very high specificity (Xu et al., 2008). By providing all of our structural and DILI 

classification data, the research community should now have a foundation for testing and 

benchmarking future computational models as well as generating predictions for DILI 

with new compounds. In conclusion, a significant outcome of this study is that we can 

enhance the predictive accuracy of models to identify compounds that cause DILI by 

using the knowledge we have available currently from compounds already evaluated (in 

the literature) to build a computational model.  Such models alongside alerts based on 

undesirable substructures ((Greene et al., 2010) or those in this study), could be used to 

either filter or flag early stage molecules for this potential liability and could be evaluated 

in future studies. It is also feasible that combinations of such computational approaches 

may also be of utility to identify DILI causing compounds. 
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Table 1. Results of internal validation of Bayesian model for DILI 

Cross validated results (Mean ± SD) for Bayesian model building (ROC = Receiver operator curve). 

Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), Specificity = TN/(TN+FP), Sensitivity  = TP/(TP+FN) 

 

true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

 

 External ROC Score Internal ROC Score Concordance (%) Specificity (%) Sensitivity (%) 

leave out 10% x 100 0.62 ± 0.08 0.86 ± 0.01 58.48 ± 8.31 65.45 ± 15.22 52.83 ± 12.92 

leave out 30% x 100 0.62 ± 0.05 0.86 ± 0.03 59.23 ± 4.35 65.15 ± 9.18 54.21 ±9.69 

leave out 50% x 100 0.60 ± 0.04 0.85 ± 0.04 57.63 ± 3.87 61.81 ± 10.57 54.20 ± 9.83 
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Table 2. Mean physicochemical properties for the 295 DILI training set molecules and 237 test set molecules 

 

 

Descriptor Training set 

DILI – (N = 137) 

Training set 

DILI + (N = 158) 

Test Set 

DILI – (N = 84) 

Test set 

DILI + (N = 153) 

ALogP 1.31 ± 3.24 1.89 ± 2.47 * 1.49 ± 3.07 2.09 ± 2.56 

Apol 12644.0 ± 6478.29 12178.1 ± 6061.78 14401.3 ± 6419.16 12711.8 ± 7124.28 * 

LogD 0.65 ± 3.43 1.23 ± 2.45 0.80 ± 3.07 1.46 ± 2.69 

MW 355.67 ± 186.93 184.83 ± 184.83 398.56 ± 183.56 361.54 ± 201.89 

Number of rotatable bonds 5.17 ± 4.35 4.47 ± 4.04 5.74 ± 3.17 4.81 ± 4.04 * 

Number of rings 2.63 ± 1.51 2.51 ± 1.53 2.80 ± 1.75 2.45 ± 1.72 

Number of aromatic rings 1.27 ± 1.04 1.36 ± 1.00 1.58 ± 1.14 1.39 ± 1.11 

Number of H bond 

acceptors 

5.20 ± 4.06 4.97 ± 3.61 6.49 ± 4.07 5.08 ± 3.81 ** 

Number of H bond donors 2.51 ± 2.82 2.09 ± 2.38 2.57 ± 2.52 1.88 ± 1.96 * 

Molecular surface area 352.68 ± 180.92 332.88 ± 183.78 386.34 ± 177.07 342.62 ± 197.55 * 
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Molecular polar surface 

area 

102.17 ± 92.83 96.48 ± 74.51 125.60 ± 78.23 97.80 ± 74.76  ** 

Wiener Index 2383.90 ± 6919.65 1919.01 ± 5230.99 2667.27 ± 3562.05 2280.12 ± 4890.95 

Zagreb Index 122.38 ± 69.64 115.48 ± 64.32 136.52 ± 70.87 115.82 ± 76.90 * 

 

 

  

* t-test p < 0.05 

** t-test p <0.01 
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Table 3. Results of external validation of Bayesian model for DILI  

The results were for the complete test set true positive (TP) =86, true negative (TN) =56, false positive (FP) = 28 and false negative 

(FN) = 67. 

For the subset of most interest TP = 13, TN = 10, FP = 5 and FN = 8. For the compounds > 70 % similar to the training set TP = 9, TN 

= 8, FP = 2 and FN = 9. 

Matthews correlation coefficient (TPxTN-FPxFN)/((TP+FN)(TP+FP)(TN+FP)(TN+FN))^0.5 

Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), Specificity = TN/(TN+FP), Sensitivity  = TP/(TP+FN) 

 

 

 

Test Set (N) 

Matthews 

correlation 

coefficient Concordance (%) Specificity (%) Sensitivity (%) 

Complete test set (N = 237) 0.22 59.91 66.67 56 

Subset of most interest (N = 37) 0.28 63.88 66.67 61.9 

Compounds > 70% similar to training set (N = 28) 0.29 60.71 80.00 50 
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Table 4. Summary of SMARTS filtering for the combined DILI test and training set. The Abbott ALARM (Huth et al., 2005; 

Metz et al., 2007), Glaxo (Hann et al., 1999) and Blake SMARTS filter (Originally provided as a Sybyl script to Tripos by Dr. James 

Blake (Array Biopharma) while at Pfizer (Blake, 2005)) calculation were performed through the Smartsfilter web application, (Dr. 

Jeremy Yang) Division of Biocomputing, Dept. of Biochem & Mol Biology, University of New Mexico, Albuquerque, NM, 

(http://pangolin.health.unm.edu/tomcat/biocomp/smartsfilter). Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), 

Specificity = TN/(TN+FP), Sensitivity  = TP/(TP+FN) 

true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

 

 

Filters / DILI class Molecules Passing filter Molecules failing filter Concordance 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Blake (Pfizer) total 283 249 50.7 54.7 47.9 

       DILI –ve 121 100    

       DILI +ve 162 149    

Glaxo total 458 74 44.2 86.4 14.1 

       DILI –ve 191 30    

http://pangolin.health.unm.edu/tomcat/biocomp/smartsfilter
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       DILI +ve 267 44    

Abbott total 192 340 55.8 40.3 66.9 

       DILI –ve 89 132    

       DILI +ve 103 208    

Accelrys total 276 256 47.9 49.8 46.6 

       DILI –ve 110 111    

       DILI +ve 166 145    
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Figure 1 A. ECFP_6 descriptors: features important for DILI. Each panel shows the naming convention for each fragment, the 

numbers of molecules it is present in that are active and the Bayesian score for the fragment..1B. ECFP_6 descriptors: features absent 

from DILI compounds. Each panel shows the naming convention for each fragment, the numbers of molecules it is present in that are 

active and the Bayesian score for the fragment. 

 

Figure 2. Analysis of DILI training and test set by PCA. A. PCA plot. Yellow = test set, blue = training set. The following 

descriptors were used with Discovery Studio 2.5.5: ALogP, molecular weight, number of hydrogen bond donors, number of hydrogen 

bond acceptors, number of rotatable bonds, number of rings, number of aromatic rings, and molecular fractional polar surface area. 

0.82 % of the variance was explained with the first three principal components. B. Retinyl palmitate (O15-hexadecanoylretinoic acid), 

the top left yellow compound in the PCA plot (A). 

 

 


