Technical Guide to
domRBAC Simulator

Installation and operation instructions

Document version: 0.1

Antonios Gouglidis

{agougl@uom.gr}

Basic Research Project

Title: “Development of a new improved role-based model for controlling access to
Web services in Grid/Cloud computing environments”.

Scientific coordinator: Associate Professor loannis Mavridis, Department of
Informatics, University of Macedonia, Greece.

Research collaborator: Antonios Gouglidis

Acknowledgements

The author, Antonios Gouglidis, wish to acknowledge the Research Committee of the
University of Macedonia in Greece for funding this research.

Disclaimer

The domRBAC simulation is developed by Antonios Gouglidis. The domRBAC
simulation is provided free of charge and will remain free in the future as long as the
author of the tool is mentioned, or the domRBAC simulator URL is provided in your
product. The author is not responsible for any damage caused by using domRBAC
simulator.

Copyright © Antonios Gouglidis 2013

Table of Contents

R oY d o Yo [¥ [1 Lo o PO UUPUR TR
o =T Lo LU T LT PPPPPPPPPPP

(a1 1|) Ao o R

S

The dOMRBAC SIMUIGTOT......eiiiiiiiieee e
N Y =Y o Yol =T =1 o OO PPPRR
4.2. Loading RBAC POICIES....cccvvieiieiiieeciiieeceitee ettt e ettt e e e tre e e te e e e s are e s e bae e e snaeeeesnneeas

A.2. 1. XMLAIIES ettt sttt et e nree

4.2.2. DOt fIlBS ettt s s s s
4.3, The VIEW MENU oottt ettt st sne e b e e smeeesaneesneeeas
4.4, The TOOIS MENU ceoueeiiiiiiiie ettt ettt e b b e e saaeesareesneeeas
4.5, The DUMP MENU ...uuuiiiiiieeeecccciieeee e e e eectree e e e e e e enbraeeeaesessassteeeeaeseessstssseesessenssnsseeeeens
4.6. The Model Checking MENU.......c..ciiiiiiii it e e
A4.7. The ADOUL MENU ..coiiiiiiiiieeeeeeee ettt b e b e beesneesnee s
D REFEIENCES ..o e
AppPendiXx A, THE XSD filE . .ueiiiiiee e et e e e e tre e e e e be e e e e e ntae e e snreeaeans
Appendix B. Python script for the creation of dot filescccceeeeiiiiieiiiiiii e, 10

Appendix C. Configuration file for the simulation process.........ccocceeeviieniieenieenneeenieenenne 10

~

1. Introduction

This technical document provides information regarding the installation and operation of
the domRBAC simulation application version 0.0.1, which is an implementation of the
domRBAC access control model proposed in [1] and the model checking technique proposed
in [2]. Therefore, this technical guide of the simulator is an integral part of the manuscripts
in[1] and [2].

2. Prerequisites

The domRBAC simulation has been implemented and tested only in the Linux operating
system (i.e., Debian Squeeze). Nevertheless, it should compile and operate in most major
UNIX and Linux distributions.

The following software is required for the compilation and correct operation of the
domRBAC simulator:

e g++4.x

e Qt4x

e QMake version 2.x

Boost C++ Libraries 1.42.x

e Graphviz

e python
e python-networkx

3. Installation

To install the domRBAC simulator extract the source code and compile it from a terminal, as
follows:

1. user@system:~/directory$ tar —xzvf domRBAC-src-0.0.1.tar.gz
2. user@system:~/directory$ cd domRBAC-src-0.0.1
3. user@system:~/directory/domRBAC-src-0.0.1% make

After successfully compiling the application, execute the application from a terminal, as
follows:

4. user@system:~/directory/domRBAC-src-0.0.1% ./domRBACsim

An alternative way to compile the source code is by loading the “domRBACsim.pro” Qt
project file using the Qt Creator (bundled with Qt) [5]. To compile the source code select
from the menu Build = Build All, and then to execute the application select from the menu
Build 2 Run.

4. The domRBAC simulator

In this section, the reader can be informed about the capabilities and operations of the
domRBAC simulator.

4.1. Main Screen

Speed buttons for opening XML Tabs are used for the
[files and exiting the application. visualization of the loaded role
hierarchy, and computed
— The main menu area. pr— adjacency and transitive graphs.

domRBAC S mulator 0.0.1
file View Tools Dump Model Checking About

O
'domROLE hierrarchy - _ iRole hierrarchyﬂ.qdjace hey araph] [Transitive closure graphj
Name Attnbutee Value
[: The Simulato
< 5 | €3 | | eee————

Qutput fonsole

= Informjption: domRBAC Simulator seems to be up and running..

— The “domROLE .
hierarchy” area views In the “output console”
the role hierarchy of area, the simulator logs
an RBAC policy, only all type of messages.
in case of an XML file.

4.2. Loading RBAC policies

The domRBAC simulator supports loading of RBAC policies using:

e XML files
e Dot files

4.2.1. XML files

To load an RBAC policy from an XML file, select from the menu File = Open or click the
open file speed button. Use the open dialog to browse and select the XML file to open, and
click on the Open button.

To create valid XML files, use and follow the “domRBAC . xsd” file included in the source
code directory. A description of the file is provided in Appendix A.

4.2.2. Dot files

To load an RBAC policy from a dot file, select on the menu File = Load external hierarchy.
Use the open dialog to browse and select the dot file to open, and click on the Open button.
Repeat the procedure to load multiple dot files, were each one of them is interpreted as an
RBAC policy of a single domain.

To randomly create valid dot files use NetworkX, which is a python language software
package for the creation, manipulation, and study of the structure, dynamics, and functions
of complex networks [3]. An example of a python script for the creation of valid dot file for
the domRBAC simulator is provided in Appendix B.

4.3. The View menu

The View menu includes the following operations:

o domROLE hierarchy: toggles the domROLE hierarchy area.

e Output console: toggles the output console area.

o Reload images: reloads the graph images in all tabs, if any.

e Zoom out image: Zooms out the graph image in the currently selected tab.
e Zoom inimage: Zooms in the graph image in the currently selected tab.

4.4. The Tools menu

The Tools menu operates on a step-by-step basis for the creation of the adjacency and
transitive closure graphs, and the checking of a series of violations.

1. XML to dot: It converts the loaded XML file into a dot file. (Enabled but not
operational when loading RBAC policies from dot files)

2. dot to image: Enabled only after completing step 1. It converts the dot file into an
image file and views it in the Role hierarchy tab. (Enabled but not operational when
loading RBAC policies from dot files)

3. Create adjacency matrix: Enabled after completing step 2. It creates the adjacency
matrix of the loaded RBAC policy, and loads an image of it on the Adjacency graph
tab.

4. Create transitive closure: Enabled after completing step 3. It creates the transitive
closure of the adjacency matrix, and loads an image of it on the Transitive closure
tab.

5. Inter-domain role assignment violations: Enabled after completing step 4. It checks
for cyclic inheritance violations

6. SSD violations: Enabled after completing step 3. It checks for SSD violations.
7. DSD violations: Enabled after completing step 3. It checks for DSD violations.
8. Performance metrics: Prints on the output console a number of metrics regarding

the running RBAC policy (i.e., roles, violations, memory consumption etc.)

9. Start simulation: Enabled after completing step 4. Starts the simulation process. The
simulation parameters are described in the “domRBACsim.conf” file (see
Appendix C). All simulated information is logged in file “results.txt”.

4.5. The Dump menu

The Dump menu includes the following operations, and is mostly used for debugging
reasons and advanced analysis of the simulated RBAC policies:

e Dump original AG and TCG: It clears any existing information in both adjacency and
transitive closure lists, and recreates them. Execute only if it is required to reset the
aforementioned lists after a simulation process ends.

e Hierarchy to dot: Execute after step 9 described in subsection 4.4 to convert the
running hierarchy into a dot file and view it in the Role hierarchy tab.

e Adjacency to dot: Execute after step 9 described in subsection 4.4 to convert the
running adjacency matrix into a dot file and view it in the Adjacency graph tab.

~

e Transitive to dot: Execute after step 9 described in subsection 4.4 to convert the
running transitive closure into a dot file and view it in the Transitive closure graph
tab.

e SSD to console: Execute after step 9 described in subsection 4.4 to view in the
Output console the running SSD relations.

e DSD to console: Execute after step 9 described in subsection 4.4 to view in the
Output console the running DSD relations.

e Top roles console: Execute after step 9 described in subsection 4.4 to view in the
Output console the id of the roles that are on top of the hierarchies.

4.6. The Model Checking menu

The Model Checking = Export to ACPT selection on the menu should be executed only after
step 9 that is described in subsection 4.4. It exports the running RBAC policies and security
properties generated by the simulation process in valid XML format for the ACPT tool [4] as
described in [2]. The XML file is saved under the running directory. The name of the XML file
is “Exported_domRBAC.xml”’.

4.7. The About menu

The About menu provides information about the version of the application.

[1] Antonios Gouglidis, loannis Mavridis, "domRBAC: An Access Control Model for Modern
Collaborative Systems". Computers & Security, Volume 31, Issue 4, June 2012, Pages 540-
556, ISSN 0167-4048, http://dx.doi.org/10.1016/j.cose.2012.01.010.

[2] Antonios Gouglidis, loannis Mavridis, Vincent C. Hu, "Security policy verification for
multi-domains in cloud systems". International Journal of Information Security (lJIS)
Springer, 2013, (DOI) 10.1007/s10207-013-0205-x

[3] NetworkX, http://networkx.github.io/

[4] NIST, Access Control Policy Tool (ACPT), http://csrc.nist.gov/groups/SNS/acpt/acpt-
beta.html

[5] Qt Project, http://qt-project.org/

Appendix A. The XSD file

<?xml version="1.0" encoding="UTF-8"?>
<l-- edited with XMLSpy v2011 rel. 2 spl (http://www.altova.com) by John (Smith) -->
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema'">
<xs:element name="DomainRole_Graph'">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="Organization"/>
<xs:element name="DomainRole" minOccurs="0"
maxOccurs=""unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Organization'>
<xs:complexType>
<Xs:sequence>
<xs:element name="0rg_Name" type='xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0rg_Name'>
<xs:complexType mixed=""true'/>
</xs:element>
<xs:element name="DomainRole'>
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="'Xs:string"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="Inter_Parent_Role"
type="xs:string"” minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="Inter_Child_Role"
type="xs:string" minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="Intra_Parent_Role"
type="xs:string" minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="Intra_Child_Role"
type="xs:string" minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="'SSD_Role" type='"xs:string”
minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded'>
<xs:element name="DSD_Role" type='xs:string”
minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:element name="'SR_Cardinality" type="xs:unsignedLong"
minOccurs="0" maxOccurs="1"/>
<xs:element name="DR_Cardinality" type="xs:unsignedLong"
minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Name'>
<xs:complexType mixed=""true'/>
</xs:element>
<xs:element name=""Inter_Parent_Role">
<xs:complexType mixed="true"/>
</xs:element>
<xs:element name="Inter_Child_Role">
<xs:complexType mixed="true"/>
</xs:element>
<xs:element name=""Intra_Parent_Role">
<xs:complexType mixed=""true"/>
</xs:element>
<xs:element name="Intra_Child_Role">

<xs:complexType mixed=""true'"/>

</xs:element>

<xs:element name="SSD_Role'">
<xs:complexType mixed=""true'/>

</xs:element>

<xs:element name="DSD_Role'>
<xs:complexType mixed=""true'/>

</xs:element>

<xs:element name="SR_Cardinality">
<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="DR_Cardinality">
<xs:complexType mixed=""true'/>

</xs:element>

</xs:schema>

Appendix B. Python script for the creation of dot files

import networkx as nx
DG=nx.DiGraph(Q

print ("Network 1%)

DG=nx.gnr_graph(40, 0.001)
DG=DG.reverse(True)

nx.draw_graphviz(DG)

nx.write_dot(DG, "ext_dot_gnr_20 1 RE.dot")

print ("Network 2%)

DG=nx.gnr_graph(40, 0.2)
DG=DG.reverse(True)

nx.draw_graphviz(DG)
nx.write_dot(DG, "ext _dot_gnr_20 2 RE.dot")

Appendix C. Configuration file for the simulation process

#Number of roles in line 2

100000

#Percentage to create a new role [0..1]

0

#Percentage to create a new domain [0..1]
0

#Percentage to create a top role [0..1]

0

#Enable SSD and DSD after number of roles
1

#Percentage increment intra/Zinter-role assignment [0..1] in line 4
1

#Percentage increment SSD [0..1] in line 6

0.01
#Percentage increment DSD [0..1] in line 6
0.01
#Number of maximum iterations (0: infinite)
5000

