

LoRaWAN - A Low Power WAN Protocol for Internet of Things: a Review and Opportunities

Jonathan de Carvalho Silva¹, Joel J. P. C. Rodrigues^{1,2,3}, Antonio M. Alberti¹, Petar Solic⁴, Andre L. L. Aquino⁵

National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí - MG, Brazil ² Instituto de Telecomunicações, Portugal ³University of Fortaleza (UNIFOR), Fortaleza - CE, Brazil ⁴ University of Split, Split, Croatia ⁵ Computer Institute, Federal University of Alagoas, Maceió - AL, Brazil

jonathancs@inatel.br; joeljr@ieee.org; alberti@inatel.br; psolic@fesb.hr; alla@ic.ufal.br

2ND INTERNATIONAL MULTIDISCIPLINARY CONFERENCE ON COMPUTER AND ENERGY SCIENCE (SPLITTECH 2017) Split, Croatia July 12–14, 2017

Introduction

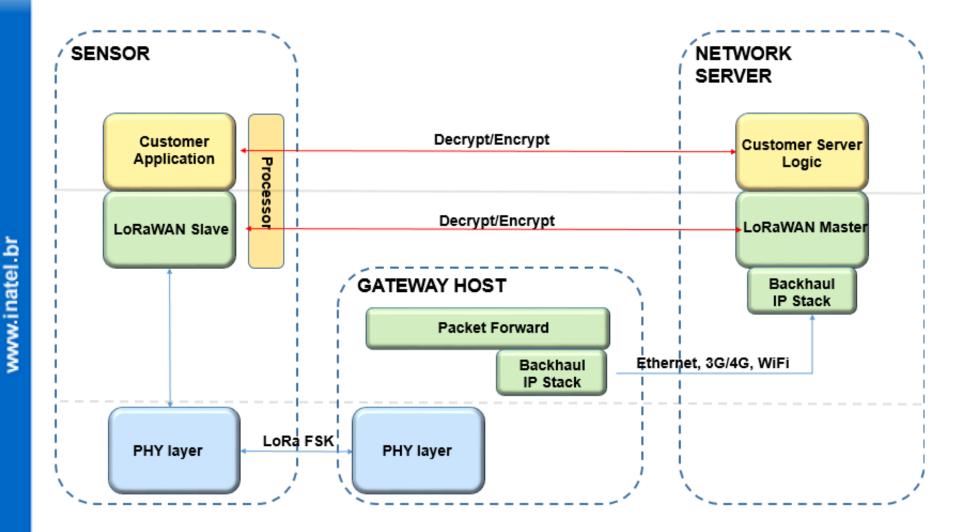
- > 25 billion devices by 2020
- Bluetooth & Wi-Fi not well suited for many scenarios
 < 100m, high throughput & power consumption
- 3G/4G cellular not well suited as well \$ hardware, \$ SIM's/plans, high battery inefficiency, available spectrum.
- Endpoints costs need to be low
- Must be small for integration into everything
- Conserve wireless spectrum duty cycle policy
- Conservative power run on a battery i.e. mA
- Support really low bandwidth for Bytes not MB of data
- \$ network plans

LoRaWAN

The emergence for IoT introduces new challenges that cannot be addressed by the current available connectivity protocol, such as:

- **Bandwidth/Data Rate:** In LoRaWAN, the data rate is selected by a trade-off between the communication range and the duration of the message.
- **Battery Life:** To maximize the life of the final device batteries, the LoRaWAN server controls the RF output and an output rate through an adaptive scheme for each end device.
- **Range:** LoRaWAN obtains about 2-5 km of coverage range in urban perimeters and about 45 km in rural areas.
- **Latency:** There is a trade-off between downlink communication latency versus battery life time that can be resolved through QoS classes in a LoRaWAN device.
- **Throughput:** Data rates between 290 bps and 50 kbps.

LoRaWAN Protocol

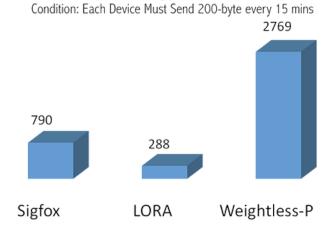

LoRa pursues an approach based on the following two distinct layers:

i) a physical layer (LoRa), which employs a radio modulation technique called CSS (Chirp Spread Spectrum);

ii) a MAC layer protocol (LoRaWAN is an open standard) that provides access to LoRa architecture.

LoRaWAN Protocol

5


LoRaWAN Entities

End-devices perform the communication gateways using LoRa and LoRaWAN technologies.

Gateways (i.e., base stations) dispatch the LoRaWAN frames from the end devices to a network server using a back-haul interface with higher throughput, usually via Ethernet, 3G/4G, satellite or Wi-Fi.

The **Network Server** decodes the packets sent by the devices, performing security checks and adaptive data rate, thus generating the packets that should be sent back to the devices.

Each **Application** receives data from the network server. It should decode the security packets and uses the information to decide the action in the application. # of End-Devices Supported Per Base Station

Source: Do LoRa Low-Power Wide-Area Networks Scale?

Critical Factors and Characteristics

TABLE I

The most **critical factors** in a LPWAN are:

- Network architecture;
- Communication range;
- Battery lifetime (low power);
- Robustness to interference;
- Network capacity (maximum number of nodes in a network);
- Network security;
- One-way vs two-way communication;

LORAWAN MAIN CHARACTERISTICS.

Characteristic	LoRaWAN
Topology	Star on Star
Modulation	SS Chirp
Data Rate	290bps - 50kbps
Link Budget	154 dB
Packet Size	20-256 bytes
Battery lifetime	$8 \sim 10$ years
Power Efficiency	Very High
Security/Authentication	Yes (32 bits)
Range	2-5 km urban 15 km suburban 45 km rural
Interference Immunity	Very High
Scalability	Yes
Mobility/Localization	Yes

Inatel Instituto Nacional de Telecomunicações

LoRaWAN Network

Network Application Concentrator **End Nodes** /Gateway Server pet tracking 3G/ smoke alarm Ethernet Backhaul water meter ന trash container vending machine gas monitoring LoRa[™] RF TCP/IP SSL TCP/IP SSL Secure Payload LoRaWAN[™] LoRaWAN[™]

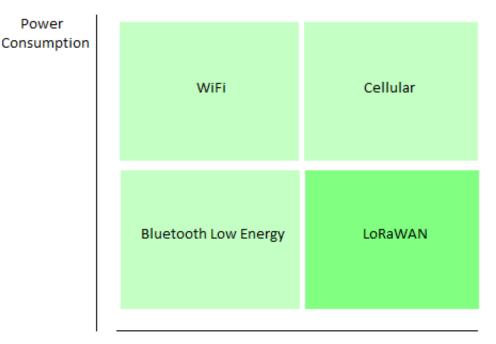
> **AES Secured Payload Application Data**

- Long range star network (same architecture as cellular) \rightarrow
 - Easy to deploy/maintain, reduces cost of infrastructure, optimizes battery lifetime
- A professionally, centrally managed multi-tenant network \rightarrow
 - Enables customers to focus on end-node design/application not in network management
 - Reduces costs and complexity for all segments of the market

8

Server

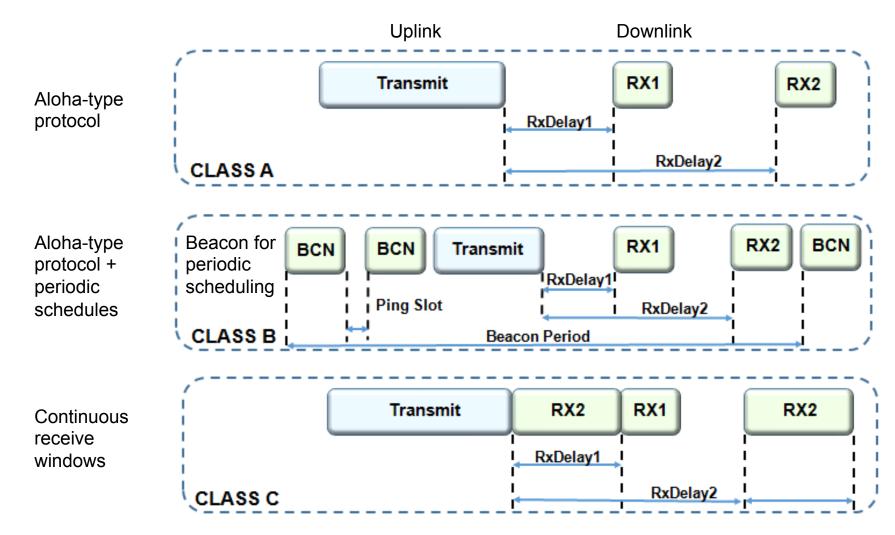
Battery Lifetime


Synchronization network usually consumes significant energy. In LoRaWAN, nodes are asynchronous and communicate via events or in prescheduled opportunities.

Inatel

Instituto Nacional de Telecomunicações

The **ADR** (Adaptive Data Rate) scheme is used for LoRa network infrastructures for manage the individual **data rates** and **maximize** the **battery life** of **each connected device** through RF output.


A recent research study performed by Scientific Research Publishing, Inc revealed that LoRaWAN showed an advantage of 3 up to 5-fold in the energy economy compared to all the others LPWAN technologies.

Range

LoRaWAN Protocol End-Device Classes

LoRaWAN Protocol Device Classes

Battery Lifetime

www.inatel.br

Battery powered sensors

- Most energy efficient
- Must be supported by all devices
- Downlink available only after sensor TX

Battery powered actuators

- Energy efficient w/ latency controlled downlink
- Slotted communication synchronized with a beacon

Main powered actuators

- Devices which can afford to listen continuously
- Immediate access for downlink communication

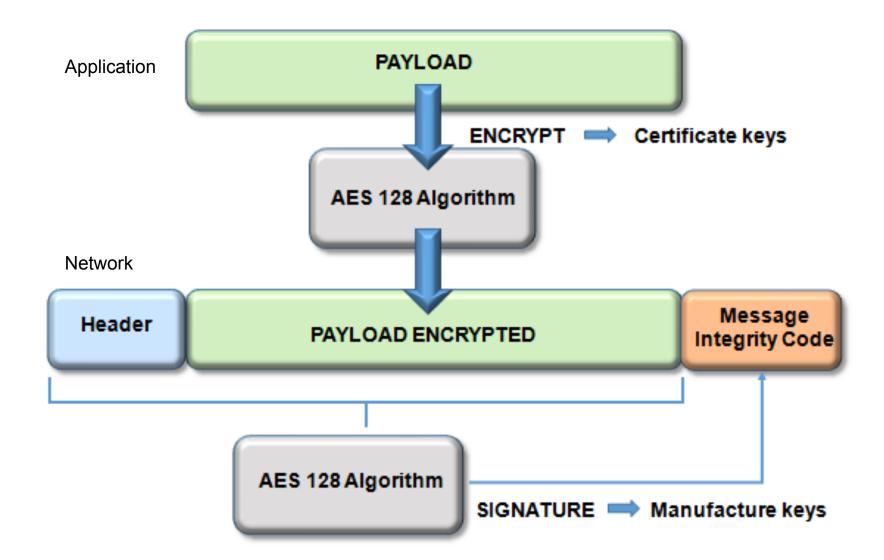
Downlink Network Communication Latency

Security

LoRaWAN considers two layers of security, one for the network and another for the applications.

Each end-device has key assignments done by device manufacturers or the application owners. **Other systems use** a **single key** for **encryption** and **authentication**, compared to LoRaWAN.

Authentication and encryption are separate, so it is **possible** to **authenticate packets** and **provide integrity protection**.

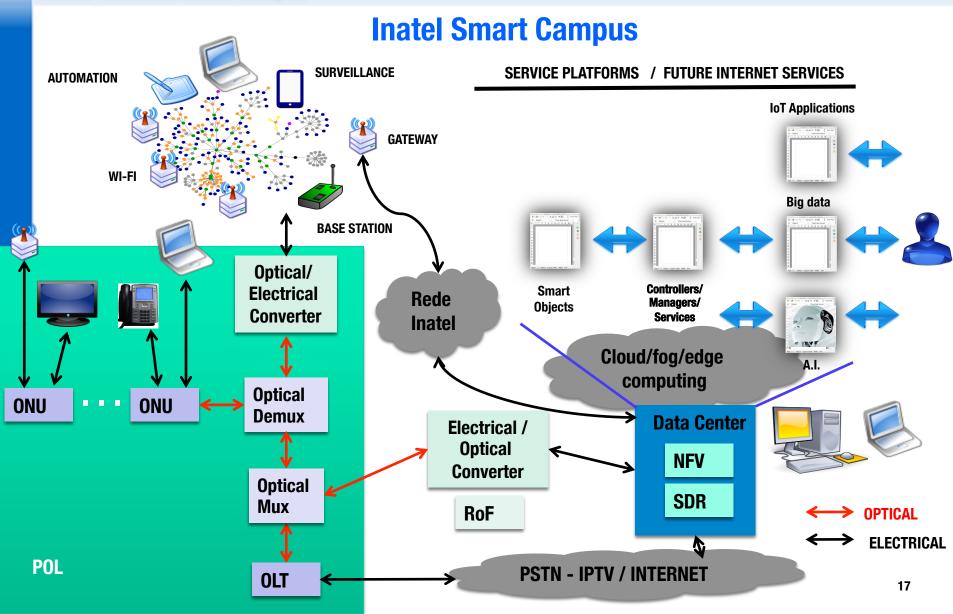


Logical Data Flow (Programmer's Model)

End-Devices Network Application Gateway Server Server 品 IP Application Sub-GHz RF Application Network Session Key (NwkSKey) Application Session Key (AppSKey) Data Data

Comparison to other LPWANs

Instituto Nacional de Telecomunicações


Inatel

Feature	LoRaWAN	Sigfox	NB-IoT	LTE-M
Modulation	SS Chirp	GFSK/ DBPSK	UNB/GFSK/ BPSK	OFDMA
Data Rate	290bps - 50kbps	100bps 12/8bytes Max	100bps 12/8bytes Max	200kbps - 1Mbps
Link Budget	154 dB	146 dB	151 dB	146 dB
Battery life- time	$8 \sim 10$ years	$7 \sim 8$ years	$7 \sim 8$ years	$1 \sim 2$ years
Power Effi- ciency	Very High	Very High	Very High	Medium
Security/ Authentication	Yes(32 bits)	Yes(16 bits)	No	Yes(32 bits)
Range	2-5km ur- ban 15km sub- urban 45km rural	3-10km ur- ban - 30-50km rural	1.5km ur- ban - 20-40km rural	35km - 2G 200km - 3G 200km - 4G
Interference Immunity	Very High	Low	Low	Medium
Scalability	Yes	Yes	Yes	Yes
Mobility/ Localization	Yes	No	Limited, No Loc	Only Mobility

Discussion and Open Research Issues

Open Issues

- Estimation of the collision rate;
- Total capacity per gateway and network;
- Channel load;
- MTU (Maximum Transmission Unit);
- Scaling networks to a massive number of devices;
- Mobility/roaming;
- Single device maximum throughput;
- Other approaches for performance enhancement.
- Application on smart cities verticals.
- Experimental comparison to other LPWANs.
- Security and trust evaluation against attacks.
- Evaluation with novel architectures, such as CCN, RINA, XIA, NovaGenesis.

• Our paper elaborated an analysis about LoRaWAN protocol based on its architecture, battery lifetime, network capacity, device classes and security.

- According to references, this protocol showed an advantage of about
 3 to 5-fold when compared with other LPWAN technologies regarding power consumption for long range communications.
- Moreover, LoRaWAN networks can be deployed with a minimal amount of infrastructure and with the achieved capacity. Latter, more gateways can be added to reduce the amount of overhearing to other gateways and subdivide the data rate.