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Improving the autodependogram using the
Kulback-Leibler divergence

Luca Bagnatd Lucio De Capitani Antonio Punzd

Summary. The autodependogram is a graphical device recently prdgodée literature to
analyze autodependencies. It is defined computing theics$earsory?-statistics of in-
dependence at various lags in order to point out the predegedepedencies. This paper
proposes an improvement of this diagram obtained by sulistitthex?-statistics with an esti-
mator of the Kulback-Leibler divergence between the batardensity of two delayed variables
and the product of their marginal distributions. A simuwatistudy, on well-established time
series models, shows that this new autodependogram is maerful than the previous one.
An application to financial data is also shown.

Key words: Nonlinear time series, Kulback-Leibler divergence, Awtwelogram, Autode-
pendogram, Permutations, Gaussian kernel.

1 Introduction

Despite the fast advancement in nonlinear time-series leatiere are few tools which can ex-
plore the complex dependence structures in nonlinear $ienies like the autocorrelogram does
for the linear ones. Starting from these considerationsiedson and Vahid (2005), Bagnabal.
(@), andﬂu@&), have recently proposed graphoca$ twhich are very similar, in
aspect and intent, to the autocorrelogram but they are wajglicable to both linear and non-
linear time series. The diagram proposeHMagﬂﬁEﬂ (2012) is called autodependogram
and it is based on the lag-independence test proposed inaRaand Punzad (2010, see also
Bagnalo_and_&mlzb.ldﬂ) which is, roughly, a serial versiahe well-known Pearsog?-
test of independence. Analogously to the autocorrelogthenautodependogram is obtained
by representing the lags on tkexis and the values of the-statistic, corresponding to each
lag, on they-axis. Moreover, it is furnished with a critical line whicimphasizes the lags
showing evidence against the null hypothesis of indeperelen

However, as concluded by Bagnatball (2013b) through a deep simulation study, in the
serial context thex?>-test is outperformed by other independence tests basedeasures of
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divergence between the estimated joint density and theuptard the estimated marginal den-
sities. Among them, the test based on the well-known KukHaeibler divergence appeared to
be the best performer. This paper shows, by simulations,thewse of this test can substan-
tially improve the performance of the autodependogram. ifif@ovement is meant in terms

of power of the autodependogram bars under the alternatpethesis of lag-dependence. The
size of the bars (under the null) is also taken into accoutiteérsimulations.

The paper is organized as follows. Secfidn 2 recalls thedepiendogram. In Sectidh 3 the
preliminary concepts for the definition of the new diagramsatibed in Sectionl 4, are intro-
duced. Performance and behavior of this diagram, in corm@anvith the autodependogram
and the autocorrelogram, are studied in Sedtlon 5 and $&&ti@a an application to a financial
time series and a simulation study on well-known time samedels, respectively. Conclusions
are given in Section] 7.

2 The autodependogram

Let {X: };cn represent a strictly stationary and ergodic stochasticgs®. Moreover, l€iXy, ..., X)
be an observed time series of lengtirom {Xt}teN To study the generic dependence ofitag
let's consider they, = n—r couples{(X;, Xi;r)}" i1

Bagnato and Punzo (2010) propose to group these cofifeskiir) 1 , in ak x k contin-

gency table and to test the independence of ldgough the well-knowry?-test statistic:

¢ x (ngg_nga)z

-5 , ®

=1v=1 nu\/

wheren&\,) denotes the number of couples{ifX;, Xir) }* ; belonging to theu,v)-cell of the

contingency tabler,lu. (n.V ) denotes the number of values{)(,}i:1 ({X.+r}i:1) belonging to
the u-th row (v-th column) of the contingency table, aﬁﬁv = n.(\C)nl(f.) /n, are the theoretical
frequencies under the (null) hypothesis of independentagof In/Bagnatoet all (2012) it is

shown by S|mulat|ons that, also in the serial context, theting null distribution ofgr is X2
with (k— 1) degrees of freedom. This fact allows to test the null hypsithef independence

forlagr usmgt’)r as test statistic: denoting le{'fn q theg-quantile of thex? distribution with

n degrees of freedom, the null hypothesis is rejected at hevfet')r > X2

[(k=1)%1-a]’
In conformity with theautocorrelogram(ACF), the diagram obtained by plottig as a
function of the time lags, r = 1,...,l, is calledautodependogrartADF) by

). Naturally, the autodependogram can be appliedre series with missing data and
can easily be re-adapted to evaluate cross-dependentiesdpetwo different time series.

To completely specifyy, it is necessary to define the two marginal partitions in thaio-

gency table._Bagnatet all (2012) suggest to use the so-callglifrequency intervajsvhich
assigns equal frequencies to each interval. Using therequiéncy intervals, only the value of

k remains to be selected. In Bagnatal! (2012)k is chosen such that
ny 2 n—1\3
k=min{kokp}  with  ks= {(g‘) J and kp = {21 ( - ) J 2)
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where|-| denotes the floor function whilg_ stands for thé1 — a)-quantile of the standard
normal distribution. The value d is chosen to assure a sufficient adherence between the
actual and nominal sizes of the test and it is a strongeraexsi the rule of Cochran (1954)
requiring at least 5 expected frequencies in each cell ottémingency table. The value of

k, is an adaptation, to the contingency tables, of the welldméormula of Mann and Wald
) introduced in order to maximize the power of feest of goodness-of-fit. Simulations

in|Bagnateet all (2012, Section 5.1) have confirmed the validity of the rile (2

Sincek is fixed and equal for each lag=1,...,l, thelevel critical valuexf(kil)z_lia]

used for each of thetests of lag-independence. This allow to add an horizoimtea] At height

xﬁkf 121-a) to the autodependogram. In conformity with the autocogelm, the usefulness

of such a line (hereafter referred to as lewettritical line or, simply, critical line) is clear
since it provides a graphical counterpart of the acceptegjeetion regions of thg2-tests of
lag-independence for each lag.

Although the autodependogram is very similar in aspecteatitocorrelogram, the former
is able to capture various and general serial dependengsisis while the latter points out
only linear relationships. This feature motivates the etilje omnibusused im

). Obviously, this generality is paid for in terms ofwmy, and hence in the resulting
descriptive ability under certain dependence structlfesexample, the autodependogram will
be less informative with respect to the autocorrelogramnithe lag-dependencies are linear,
or with respect to a representation using rank correlatiatissics when the lag-dependencies
are monotonic.

is

3 Kullback-Leibler divergence in serial independence test

In addition to the requirements introduced at the beginmh§ection 2, suppose tha is
continuous with densityg and supportS. Moreover, letf, be the joint density function of
(X1,X14r). The presence of dependence for fagan be checked by testing the statistical
hypothesis

Ho: fr(xy)=g(¥galy)  VY(xy) €S2 3)

To evaluate the discrepancy betwdefx,y) andg(x) g(y), with the aim to obtain a test statistic
for the testing probleni{3), several divergence functismain be considered (see, eLgtbiks,
). The results of a wide simulation study on several dateerating processes conducted

by |Bagnatcet all (2013b) show that, among the most widespread divergertvessullback-
Leibler (KL) functional

_ fr(X,y) _
Iy _/52|og(g(x)g(y)) fooy)dxdy  r=1,...1, )

seems to be the best performer; for examples of serial imiEpee tests based dd (4), see
Robinson!(1991) arid Hong and White (2005). Naturally, thedilergence functional satisfies
the relations: (I)A; > 0; (ii) A, = 0 if and only if f = g- g almost surely. In particular, the
greater the value dk;, the stronger the dependence for tagSo, intuition suggests that the
testing problem(3) can be solved using an estimataf A, as test statistic and that the null
hypothesis should be rejected for large valueAof




Several methodologies are proposed in the literature tdEimmmtEr; the differences among
the various approaches stem from the way: (i) the densitiendg are estimated (ii) the in-
tegral in [4) is computed (iii) th@-values are obtained. Among the alternatives considered by
), the Gaussian kernel density estimator, the nwaddntegration (like
in ,[20_0;#), and the permutation approach, appear to be the dasbss for (i),

(i) and (iii), respectively. Details on these settings gresn below.

3.1 Gaussian kernel density estimator

The Gaussian Kernel (GK) estimator for the univariate dgrgis
l n
ax) ==Y Kh(xX), 5
G0 =13 3 Kn(<X) (5)

whereKp, (x; X)) = (2rh?)~1/2 exp{—% [h=t (x—X)] 2} andh > 0 is the bandwidth. Similarly,
the GK estimator for the bivariate densityis

~

0y = 155 3 Kn OO0 Ky ), ©)

whereKy, is defined as in{5). For simplicity, the bivariate kerneldtian in (8) is the product
of two one-dimensional Gaussian kernels with equal banithsid

To apply the GK density estimator, a value for the bandwidtieeds to be chosen. With
this aim, in literature, several data dependent procechaes been proposed. Examples are
the Silverman’s rule of thumb and the likelihood cross-dalion method (see, e.mam
1986, p. 52). The bandwidth obtained with the latter proceddenoted withh, ¢y, is partic-
ularly useful in this context because, as observéﬂiLGm@l d;O_O_zil p. 654), it produces
optimal density estimators according to the KL criterion.

However, it is well-known that a bandwidth which is optimat £stimation is usually sub-
optimal for testing. In particular, althoudti cy suffices to establish consistency of the test
statistics, this choice could not be optimal in terms of tlev@r of the resulting tests. As
observed bi/ﬂd_ﬂsml_al_l dL9_9_41), in testing procedures a relative oversmoothing beagp-
propriate for some dependence functionals (test sta)sidevertheless, the simulation results
of Bagnatcet all (2013b) highlight that when the GK density estimator is addjto define the
estimator ofp;, the use oh,cy is appropriate and, then, no oversmoothing is needed.

3.2 Estimation of the dependence functional

The simulation results of Bagnagb al. (2013b) point out that to estimafg a good solution
consists plugging the GK density estimatesfofindg into the definition ofA, obtaining the

estimator R
N fI’ (X7 y) e
A = /5 ,log (7600 @(y>> fr (x,y) dxdy @)

which can be computed by numerical integration (like in Gexet all, [2004) or well approx-
imated by a summation over a sufficiently fine grid of values.




In analogy tdﬁagnalel_aﬂ (2Q13ﬂ)), the integral{7) is here approximated startingnfieo
100x 100 grid of equally spaced valug$X;,y;) : i, j = 1,...,100}, obtaining the following

estimator:
B =105 3 tog [ =) £y 1(3,9) € 8) ®)
=10 09| =z | fr (X yY) I ((%,Y)) €S),
r i;j; gx)a(y) ) ' ’
where 1-) is the indicator functionf, andg are obtained through the GK estimator, and
s ={(%.9) : f(%.9;) >0, §(%) >0, §(5;) >0}

As concern the grid, the default settings of ti¢R Developmen reT MlZ) package
smare followed:

Xn) — X(1) +2a

99 ’
with a= (Xy) —X(1)) /4 andxy (X)) denoting the minimum (maximum) observed value. The
grid fory is exactly the same.

)'Zi = (x(l)—a)-l—(i—l)

3.3 Computing p-values

Once the test statistit, is defined, thep-value of the corresponding test has to be computed.
Among the various proposals, the simulation studbLoj_&agﬂa&ll dZQl&H)) suggests that the
Permutation approach represents a good compromise besiaphicity and performance. It
exploits the fact that, conditionally on the observed data..,x,, each of the possibla!
permutations is equally likely under the assumption ofadendependence (s i09).

In detail, Iet&o) denote the value assumedZs,yfor the observed data. Analogously,EP) be

the dependence functional estimate obtained from a randwmugation of the original data,

withb=1,...,B. Under the assumption of serial independe&@, . ,&B) are equally likely

and thep-value can be defined aslin Diks and Panchenko (2007):
#{E@ A S A0 g 0,1,...,8} YL
B+1 ’

g = r=1,...,1, (9)
wherel is defined as follows. Let = # Eﬁs) :EES) = EEO);S: 0, 1,...,B} denote the num-
ber of ties plus one. IZ =1 thenL = 1, while if Z > 1 thenL is drawn form the discrete
uniform distribution on{1,...,Z}. The above procedure for computing tpevalue leads
to a randomized test having an exact leseif the null is rejected wheneveg;, < a and
0<a=c/(B+1) <1 for some integec. However note that, the probability of the event
L > 1 in (9) is practically null for GK because, in this case, t@® be observed only if the
same permutation is drawn (or if a particular regularitybserved in the original series).

4 The KL-autodependogram

The autodependogram bars allow to rank the correspondgwyitaterms of evidence of the
presence of dependence. In these terms, an “equivalegiadracould be obtained substituting
& with

pr=1-p, r=1,...,1, (10)



wherep; denotes thg-value associated tﬁ}:

~

Pr=1—Fu_12(5) ,

beingF, the cumulative(? distribution withn degrees of freedom. Also in this case a lewtel-

critical line at height - a can be added to the resulting diagram. Note tpatinbalances

the two decision regions by mapping the rejection one onlylona, 1]. To face this issue, as

suggested by Bagnast all (2013a), it is possible to introduce a particular monotagicreas-

ing transformatiorp; = g(pr), on [0,1], such thaig(a) = 1/2. In this way acceptance and

rejection regions are mapped (12, 1] and[0,1/2], respectively. Here, like in Bagnata al
), the following function is used

2-B B <a
pr=4 & " . or=1,...1. (11)
Tia) if pr>a

This transformations only modifies the aspect of the autedépgram leaving unchanged its
power in detecting autodependencies. We propose a aliermmaaphical devices called KL-
autodependogram (KL-ADF) which is built by substitutipgin (11) with thep-valueg; de-
fined in (9). This leads to the estimator

2a7q\r f A~
R T @
2(1-0a) O =d
The diagram obtained by plotting the valuegjphs a function of, r =1, ...,I, will be denoted

as KL-autodependogram hereafter.

5 An application to financial data

In this section an application to a financial time series isstdered. The R-code to obtain the
two diagrams op; andqg;,r =1,...,1, isavailable ght t p: / / ww. econom a. uni ct. 1t/ punzo.

In particular, we consider daily returns of the stock markdex for the Borsa Italiana (FTSE
MIB), spanning the period from 5 May 2011 to 27 November 2012-(400 observations
downloadable frort t p: // i nance. yahoo. conl’; see Figur¢ll). The analysis is carried out
by considering the sample af= 400 observations but also the three most recent subsamples
of sizen = 300,n = 200, anch = 100.

For each considered valuemfFigurd 2 shows the autocorrelogram on the squared raw data,
and both the modified autodependograg) @nd the KL-autodependogramy§, r = 1,...15,
computed on the raw data. The critical lines in the diagramds/iduate the critical region of
probabilitya = 0.05.

As regards the case= 100, it is possible to see from Figure 2(a) as a slight linear d
pendence of the squared data is detected by the autocomeidgr the first and the sixth
lag. The diagram ofy in Figure[2(b) does not show these lag-dependences, wial&lth
autodependogram in Figure 7(c) detects the dependencg @f I&enerally, regardless from
n, the KL-autodependogram is always roughly in agreemerit thi¢ autocorrelogram on the
squared raw data (see, for example, Figure 2(j) and Fjglje B(rthermore, it tends to detect
more lag-dependecies than the diagranppfcompare the second and the third column of
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Figure 1: Daily returns of the stock market index for the Borsa ItaidTSE MIB), spanning from 5 May
2011 to 27 November 2012.

diagrams in Figurél2). Both these aspects will be bettersinyated in the simulation study
described in the next section and, for this reason, we ptefpostpone the related comments
there (where the data generating process is known).

6 A simulation study

In this section a simulation study, covering several welinkn time series models, is presented
to show the gain in performance of the KL-autodependogramp(y abbreviated as KL-ADF)
with respect to the autocorrelogram and the autodepenaogra

6.1 Design and computational details

Table1l shows the data generating models, and the corresggratameters specification, used
in the simulation study. They include: one scenario of $erdependence (M1), two scenarios
characterized by serial dependence of a purely linear tyj2NI3), and nine scenarios with
nonlinear serial dependence (M4-M12). Concerning thepeddence case, data are randomly
generated from the standard Gaussian, denotedewitihe Gaussian noisg is always used
for the remaining models. As regards the scenarios relatétetlinear dependence, the well-
known AR(1) and MA(1) models are considered. The nonlineadefs taken into account are:
the Quadratic MA(1) that have zero-correlation and a quadfarm of dependence only in
correspondence to lag 1; the ARCH and the GARCH that, likeQbadratic MA, are char-
acterized by a quadratic form of dependence and by zerolabore but, differently from the
Quadratic MA, they have a decaying memory structure; thm&ilr AR(2) that has a complex
nonlinear and non-monotonic form of dependence but no au@ation structure beyond lag
zero; some well-known extensions of the GARCH model. All $iraulations are performed
considering = 10 lags andx = 0.05. Differently from Bagnatet all (2013b), that only con-
sider the sample size= 100, here also the value= 400 is taken into account. For each of the
12 models in Tabl€l1, and for each sizeone thousand samples are randomly generated. In
particular, for the 11 models characterized by serial ddpeoe, a time series of length- 100
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Figure 2: Autocorrelogram on the squared raw data (on the left), diagsfp; on the raw data (on the middle),
and KL-autodependogram on the raw data (on the right). Datdaily returns of the stock market index for the
Borsa lItaliana (FTSE MIB) from 5 May 2011 to 27 November 2062-(400). The most recent subsamples of
sizen = 300,n = 200, anch = 100, are also considered. For all the diagrams,15 anda = 0.05.



is initially generated, but only the finalobservations are used in order to mitigate the impact
of initial values. As concern the autodependogram, the @jerovidesk = 4 for n = 100
andk = 6 for n = 400. As concern the KL-autodependogram, phealuesq; in (@) have been
obtained by considering = 99 permutations.

Table 1:Models, and corresponding parameters specification, adapthe simulation study.

Model Name Equation

M1 i.id. X = &

M2  AR(1) X = .25%_1+ &
M3  MA(1) X = .25g_1+¢&

M4 Multiplicative MA(1) X = .8&_1& -2+ &

M5  Threshold AR(1) X =X—1[—5+.9 U(X_1 > 0)]

M6 Bilinear AR(2) Xi = .8X_2&_1+ &

M7  Quadratic MA(1) X = .2562 1 + &

M8  ARCH(1) X = org, 02 =.01+.5X2,

M9  GARCH(1,1) X = og, OF =.014.125%2 | +.807 ;

M10 E-GARCH1,1) X = o0&, log(o?) =.01+.7log(0? ;) —.3e—1+.7(|er—1| — E[er-1))

M11 Threshold GARCKL, 1) X = 0i&, 0F =.25+.602 ;+.5%2 ;1 (g1 < 0) +.2X2 U (g1 > 0)

M12 GARCH1,1)-M X =.003+202+a, a =0, Of=.0002+.13a2 ;+.8107 ;
6.2 Results

Figure[3 shows, in each plot, the rejection rates for the KRFAthe ADF, and the ACF ob-
tained under M1. Results indicates that the size is maiethifor each considered lag and
for both the values of, by all the considered statistics. Analogously, Figure gpldiys the
rejection rates obtained under M2-M3 which are charaadrizy linear serial dependence. Al-
though the behavior of the three diagrams is common, withdriggower whem increases,
the autocorrelogram has naturally the best performances i$tdue to the fact that, differ-
ently from the KL-autodependogram and the autodependograich areomnibustools, the
autocorrelogram is a “directional” diagram of serial degemce which is intended to detect
linear serial dependencies. Thus, it is naturally more piwvander this condition. However,
between the other two competitors, the KL-ADF clearly odipens the ADF.

Finally, Figure[H-V show the rejection rates for M4-M12. @\ls this case, the statistics
have the same overall behavior; moreover, the power imgrovéne withn. Nevertheless,
it is evident the supremacy of the KL-ADF in all the consideseenarios. A very interesting
fact is that, apart from M5, M10, and M11, in the case 100 the ADF works worst than the
ACF although this ranking overturns in the caise 400. This suggest that the ADF needs of a
sufficiently large sample size to outperforms the ACF forlmmar data generating processes.

This aspect is not highlighted in Bagnaiball (2012).
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Figure 3: Simulated rejection rates, over 1000 replicatiéor model M1 in Tablg]l. KL-ADF,
ADF, and ACF are compared.

7 Conclusions

A graphical device, named KL-autodependogram, has begroped to detect autodependen-
cies. For each lag, the dependence is assessed throughbagedton the Kullback-Leibler
divergence between the estimated joint density and theuptad the estimated marginal den-
sities. The Gaussian kernel density technique is used itnastthese densities and a permu-
tation approach is adopted to compytealues. This newomnibustool has been shown to
provide a substantial improvement with respect to the tegeaposed autodependogram. This
also implies that, on linear time series, the KL-autodepgnam provides results more similar,
in terms of power, to the autocorrelogram. These resulte baen shown by simulations but
also corroborated via a real application to a financial tisrées.
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Figure 4: Simulated rejection rates, over 1000 replicaiéor models M2 and M3 in Tablg 1.
KL-ADF, ADF, and ACF are compared.
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Figure 5: Simulated rejection rates, over 1000 replicatidar models M4-M6 in Tablg]1.
KL-ADF, ADF, and ACF are compared.
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Figure 6: Simulated rejection rates, over 1000 replicatjdar models M7-M9 in Tablgl1.
KL-ADF, ADF, and ACF are compared.
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Figure 7: Simulated rejection rates, over 1000 replicatidor models M10-M12 in Tablel 1.
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