About
684
Publications
165,356
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
25,452
Citations
Publications
Publications (684)
With advancements in robot intelligence, they can now operate in real-world environments, but improvements in manipulation and grasping capabilities are still necessary. This work presents our research within various European projects, focusing on enhancing robot manipulation in unstructured and dynamic settings, specifically addressing the challen...
Despite technological advancements, upper limb prostheses still face high abandonment/rejection rates due to limitations in control interfaces and the absence of force/tactile feedback. Improving these aspects is crucial for enhancing user acceptance and optimizing functional performance. This pilot study, therefore, aims to understand which sensor...
Fully exploiting soft robots' capabilities requires devising strategies that can accurately control their movements with the limited amount of control sources available. This task is challenging for reasons including the hard-to-model dynamics, the system's underactuation, and the need of using a prominent feedforward control action to preserve the...
Soft tactile optical sensors have opened up new possibilities for endowing artificial robotic hands with advanced touch-related properties; however, their use for compliance discrimination has been poorly investigated and mainly relies on data-driven methods. Discrimination of object compliance is crucial for enabling accurate and purposeful object...
One of the most frequent and severe aftermaths of a stroke is the loss of upper limb functionality. Therapy started in the sub-acute phase proved more effective, mainly when the patient participates actively. Recently, a novel set of rehabilitation and support robotic devices, known as supernumerary robotic limbs, have been introduced. This work in...
Standing-up is a task that humanoids need to be able to perform in order to be employed in real-world scenarios. This paper proposes a new robust strategy for a humanoid to stand up in challenging scenarios where no completely preplanned motion can accomplish the same task. This strategy exploits the concept of three-dimensional divergent component...
Although recent technological developments in the field of bionic upper limb prostheses, their rejection rate remains excessively high. The reasons are diverse (e.g. lack of functionality, control complexity, and comfortability) and most of these are reported only through self-rated questionnaires. Indeed, there is no quantitative evaluation of the...
Energy consumption is an important issue in robotics. This article deals with the problem of reducing the energy consumption of compliant electro-mechanical systems while performing periodic tasks. After deriving performance indices to quantify the energy consumption of a mechanical system, we propose a method to determine both the optimal complian...
This paper presents the design, characterization and validation of a wearable haptic device able to convey skin stretch, force feedback, and a combination of both, to the user's arm. In this work, we carried out physical and perceptual characterization with eleven able-bodied participants as well as two experiments of discrimination and manipulatio...
Operations involving safe interactions in unstructured environments require robots with adapting behaviors. Compliant manipulators are a promising technology to achieve this goal. Despite that, some classical control problems such as following a trajectory are still open. A typical solution is to compensate the system dynamics with feedback loops....
With the improvements in their computational and physical intelligence, robots are now capable of operating in real-world environments. However, manipulation and grasping capabilities are still areas that require significant improvements. To address this, we introduce a new data-driven grasp planning algorithm called Grasp it Like a Pro 2.0. This a...
This paper presents a novel design for a Variable Stiffness 3 DoF actuated wrist to improve task adaptability and safety during interactions with people and objects. The proposed design employs a hybrid serial-parallel configuration to achieve a 3 DoF wrist joint which can actively and continuously vary its overall stiffness thanks to the redundant...
Grasping an object is one of the most common and complex actions performed by humans. The human brain can adapt and update the grasp dynamics through information received from sensory feedback. Prosthetic hands can assist with the mechanical performance of grasping, however currently commercially available prostheses do not address the disruption o...
This paper discusses how the disciplines of Design and Engineering are jointly addressing disability and somehow affecting its very interpretation. The discussion focuses on high-tech prostheses, where robotic devices substitute human body parts. The application of robotic technologies to prosthetics has a relatively long history. Nevertheless, onl...
Background
Among commercially-available upper-limb prostheses, the two most often used solutions are simple hook-style grippers and poly-articulated hands, which present a higher number of articulations and show a closer resemblance to biological limbs. In their majority, the former type of prostheses is body-powered, while the second type is contr...
Robots that work in unstructured scenarios are often subjected to collisions with the environment or external agents. Accordingly, recently, researchers focused on designing robust and resilient systems. This work presents a framework that quantitatively assesses the balancing resilience of self-stabilizing robots subjected to external perturbation...
In patients with subacute stroke, task specific training (TST) has been shown to accelerate functional recovery of the upper limb. However, many patients do not have sufficient active extension of the fingers to perform this treatment. In these patients, here we propose a new rehabilitation technique in which TST is performed through a soft robotic...
This contribution describes some activities promoted by a group of roboticists from Istituto Italiano di Tecnologia and Università di Pisa in response to the pandemic. In particular, a “do-it-yourself” (DIY) open-source service and related hardware/products will be illustrated to help combat some consequences of the Covid 19 emergency. The project...
Today robotics offers robust and sophisticated hard-
ware solutions that are leading the market to mass production.
However, the high demand for small batches of highly customized
products requires flexible processes, and the considerable cost of
programming robotic systems induces many companies to still
rely on manual labor even for low value-adde...
—With the advent of Industry 4.0, new technologies
are introduced to provide welfare beyond jobs and growth, such
as collaborative robots. To be effective, the collaboration between
human and robot should be safe, intuitive and stable. Safe collab-
oration does not only means avoiding human-robot contact, the
operator must also feel confident during...
In the last years power computing and communica-
tion technologies have improved greatly, while at the same time
immersive and wearable user interfaces became available at a
consumer level. The widespread of these technologies fostered
research in the field of telexistence and robot avatars, making it
mature enough to be deployed out of the lab.
The...
Among the recent investigations in upper-limb prostheses, the research still focuses on exploring new control solutions to reduce the user’s mental fatigue and improve the control’s robustness and intuitiveness. Some studies present solutions to close the control loop by using compensatory motions as error indexes. A previous relation is establishe...
The machine tending in a productive plant typically requires the transport of material from a storage area to a productive area. The plant logistics phase is a part of the production process that is often performed manually, due to the technological challenges related to the manipulation of objects in constrained environments, such as the shelf of...
This article evaluates and compares the performance and perception of prosthetic devices based on different design principles, a traditional rigid gripper and an adaptable poly-articulated hand, in a pre- and post-training protocol with an individual with bilateral amputation. As a representative of the first class, we use commercial hands (Ottoboc...
Teleoperation is a widely adopted strategy to control robotic manipulators executing complex tasks that require highly dexterous movements and critical high-level intelligence. Classical teleoperation schemes are based on either joystick control, or on more intuitive interfaces which map directly the user arm motions into one robot arm's motions. T...
Teleoperation is a widely adopted strategy to control robotic manipulators executing complex tasks that require highly dexterous movements and critical high-level intelligence. Classical teleoperation schemes are based on either joystick control, or on more intuitive interfaces which map directly the user arm motions into one robot arm's motions. T...
In stroke patients, task-specific training has been shown to accelerate functional recovery of the upper limb. It is based on repetitive and intensive goal-directed motor tasks, including grasping and releasing objects. In the subacute phase of stroke, several patients do not have active finger extension. Although many of them retain the ability to...
Embedding elastic elements into legged robots through mechanical design enables highly efficient oscillating patterns that resemble natural gaits. However, current trajectory planning techniques miss the opportunity of taking advantage of these natural motions. This work proposes a locomotion planning method that aims to unify traditional trajector...
Characterizing post-stroke impairments in the sensorimotor control of arm and hand is essential to better understand altered mechanisms of movement generation. Herein, we used a decomposition algorithm to characterize impairments in end-effector velocity and hand grip force data collected from an instrumented functional task in 83 healthy control a...
This paper proposes a novel type of grasping strategy that draws inspiration from the role of touch and the importance of wrist motions in human grasping. The proposed algorithm, which we call Sequential Contact-based Adaptive Grasping, can be used to reactively modify a given grasp plan according to contacts arising between the hand and the object...
The swing-up is a classical problem of control theory that has already been widely studied in the literature. Despite that, swinging up an underactuated compliant arm considerably increases the problem complexity. Indeed, in addition to the problem of underactuation, compliant systems usually present also hard-to-model dynamics. Moreover, the contr...
In sub-acute stroke patients, task-specific training is the most effective rehabilitation treatment for the upper limb. However, in those patients with severe paresis and initial spasticity, task-specific training could increase the risk to develop severe spasticity in the following months.
Four sub-acute patients, at high risk of developing spasti...
Online-Offline Iterative Learning Control provides an effective and robust solution to learn precise trajectory tracking when dealing with repetitive tasks. Yet, these algorithms were developed under the assumption that the relative degree between input and output is one. This prevents applications in many practically meaningful situations - e.g. m...
This extended abstract presents a wearable system for assistance that is a combination of different technologies including sensing, haptics, orthotics and robotics. The result is a device that, by compensating for force deficiencies, helps lifting the forearm and thanks to a robotic supernumerary finger improves the grasping ability of an impaired...
The simple kinematics of commercial prosthetic wrists limits the individuals in performing a wide range of tasks and restore natural motor functions. We propose a functional prosthesis that improves grasping capabilities through the addition of a simple yet useful 3 DoF myoelectric wrist joint with compliant and rigid properties. Its locking capabi...
The characterization of human upper limb kinematics is fundamental not only in neuroscience and clinical practice, but also for the planning of human-like robot motions in rehabilitation and assistive robotics. One promising approach to endow anthropomorphic robotic manipulators with human motion characteristics is to directly embed human upper lim...
The attention given to impedance control in recent years does not match a similar focus on the choice of impedance values that the controller should execute. Current methods are hardly general and often compute fixed controller gains relying on the use of expensive sensors. In this article, we address the problem of online impedance planning for Ca...
Traditionally, most of the nonlinear control techniques for elastic robotic systems focused on achieving a desired closed-loop behavior by modifying heavily the intrinsic properties of the plant. This is also the case of elastic tendon-driven systems, where the highly nonlinear couplings lead to several control challenges. Following the current phi...
Notwithstanding the advancement of modern bionic hands and the large variety of prosthetic hands in the market, commercial devices still present limited acceptance and percentage of daily use. While commercial prostheses present rigid mechanical structures, emerging trends in the design of robotic hands are moving towards soft technologies. Althoug...
Eigenmanifolds extend eigenspaces to nonlinear mechanical systems with possibly non-Euclidean metric. Recent work has shown that hyper-efficient oscillations can be excited by simple controllers, which simultaneously stabilize an Eigenmanifold and regulate the total energy. Yet, existing techniques require imposing assumptions on the system dynamic...
Based on previous experience with prosthesis users and literature, this paper introduces three important aspects to further develop functional transradial myoelectric prostheses: stiffness modulation, grasp reliability and limb dexterity. In particular, we propose three possible solutions and discuss on the insights observed about the exploration o...
Poly-articulated hands, actuated by multiple motors and controlled by surface myoelectric technologies, represent the most advanced aids among commercial prostheses. However, simple hook-like body-powered solutions are still preferred for their robustness and control reliability, especially for challenging environments (such as those encountered in...
In this paper, we study the trajectory tracking problem using iterative learning control for continuous-time nonlinear systems with a generic fixed relative degree in the presence of disturbances. This class of controllers iteratively refine the control input relying on the tracking error of the previous trials and some properly tuned learning gain...
Control of two-wheeled humanoid robots poses several challenges due to the unstable dynamics of their mobile base and the coupling between upper and lower body dynamics. In this work, we present the latest results of our research on control of two-wheeled unstable humanoid robots. In particular, we present a whole-body dynamic control approach to s...
The COVID-19 pandemic is forcing a rethink in robotics. In the form it is known today, robotics has been the prerogative of a broad community of insiders. But now, in the wreckage left behind by COVID-19, a new era is beginning. What does it hold? During the pandemic, increasing numbers of people had manifested the hope that robotics might bring no...
To enable the design of planning and control strategies in simulated environments before their direct application to the real robot, exploiting the Sim2Real practice, powerful and realistic dynamic simulation tools have been proposed, e.g., the ROS-Gazebo framework. However, the majority of such simulators do not account for some of the properties...
The most common causes of the risk of work-related musculoskeletal disorders (WMSD) have been identified as joint overloading, bad postures, and vibrations. In the last two decades, various solutions ranging from human-robot collaborative systems to robotic exoskeletons have been proposed to mitigate them. More recently, a new approach has been pro...
The vast majority of state-of-the-art walking robots employ flat or ball feet for locomotion, presenting limitations while stepping on obstacles, slopes, or unstructured terrain. Moreover, traditional feet for quadrupeds lack sensing systems that are able to provide information about the environment and about the foot interaction with the surroundi...
In recent years, the spread of data-driven approaches for robotic grasp synthesis has come with the increasing need for reliable datasets, which can be built e.g. through video labelling. To this goal, it is important to define suitable rules to characterize the main human grasp types, for easily identifying them in video streams. In this work, we...
Background
Shedding light on the neuroscientific mechanisms of human upper limb motor control, in both healthy and disease conditions (e.g., after a stroke), can help to devise effective tools for a quantitative evaluation of the impaired conditions, and to properly inform the rehabilitative process. Furthermore, the design and control of mechatron...
Upper-limb impairments are all-pervasive in Activities of Daily Living (ADLs). As a consequence, people affected by a loss of arm function must endure severe limitations. To compensate for the lack of a functional arm and hand, we developed a wearable system that combines different assistive technologies including sensing, haptics, orthotics and ro...
The regulation of the link positions of compliant robots, damping out undesired link oscillations while preserving the system's inherent elasticity is still a challenging task in practical applications. This task becomes even harder to be tackled in the case of compliant robots driven by agonistic-antagonistic variable stiffness actuators in which...
Online-Offline Iterative Learning Control pro-vides an effective and robust solution to learn precise trajectorytracking when dealing with repetitive tasks. Yet, these algo-rithms were developed under the assumption that the relativedegree between input and output is one. This prevents applica-tions in many practically meaningful situations - e.g....
Thanks to their body elasticity, articulated soft robots promise to produce effective and robust oscillations with low energy consumption. This in turn is an important feature which can be exploited in the execution of many tasks, as for example locomotion. Yet, an established theory and general techniques allowing to excite and sustain these nonli...
Living beings modulate the impedance of their joints to interact proficiently, robustly, and safely with the environment. These observations inspired the design of soft articulated robots with the development of Variable Impedance and Variable Stiffness Actuators. However, designing them remains a challenging task due to their mechanical complexity...
The need for users’ safety and technology acceptability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions and interactions. In this manuscript, we present a research app...
Thanks to their body elasticity, articulated soft robots promise to produce effective and robust oscillations with low energy consumption. This in turn is an important feature which can be exploited in the execution of many tasks, as for example locomotion. Yet, an established theory and general techniques allowing to excite and sustain these nonli...
Modern active prostheses can be used to recover part of the motor function associated with the loss of a hand. Nevertheless, most sensory abilities are lost, and the person has to manage interaction by relying mostly on visual feedback. Despite intensive research devoted to convey touch related cues, very few solutions have been integrated in a rea...
Soft robots are robotic systems with purposefully designed compliant elements embedded into their mechanical structure.
To face the demand for applications in which robots have to safely interact with humans and the environment, the research community developed new types of actuators with compliant characteristics. To embody compliance into the actuator, elastic elements with fixed or variable compliance can be used. Among the variable stiffness mechanisms, a popula...
Welcome to this special issue ofThe International Journalfor Robotics Researchon the topic of Modeling and Con-trol of Continuum and Articulated Soft Robots. The pro-posal for this special issue came out of discussions duringthe workshop titled “Soft Robotic Modeling and Control:Bringing Together Articulated Soft Robots and Soft-BodiedRobots” at th...
Force feedback is often beneficial for robotic teleoperation, as it enhances the user’s remote perception. Over the years, many kinesthetic haptic displays (KHDs) have been proposed for this purpose, which have different types of interaction and feedback, depending on their kinematics and their interface with the operator, including, for example, g...
The synergy between musculoskeletal and central nervous systems empowers humans to achieve a high level of motor performance, which is still unmatched in bio-inspired robotic systems. Literature already presents a wide range of robots that mimic the human body. However, under a control point of view, substantial advancements are still needed to ful...
This contribution describes a case study of a “do-it-yourself” (DIY) opensource service and related product to help combating the COVID-19 emergency. It illustrates the birth of LHF Connect, a project designed to facilitate communication between patients isolated in COVID-19 hospitals’ ward and their relatives. LHF Connect is a teleoperated robot t...