About
35
Publications
8,061
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
464
Citations
Introduction
Current institution
Additional affiliations
July 2013 - December 2013
Beeweeb S.p.A.
Position
- QA Engineer
January 2014 - May 2017
Publications
Publications (35)
A plethysmograph is a device that quantitatively assesses volumetric variations in an organ or the entire body, typically resulting from fluctuations in blood flow. In this study, a strain-gauge sensor that measures changes in the volume of the neck was used to detect the the cerebral venous outflow in the internal jugular veins. The resulting elec...
Ultrasound power delivery can be considered a convenient technique for charging implantable medical devices. In this work, an intra-body system has been modeled to characterize the phenomenon of ultrasound power transmission. The proposed system comprises a Langevin transducer as transmitter and an AlN-based square piezoelectric micro-machined ultr...
The usability assessment of a pacemaker is a complex task where the dedicated programmer for testing programmed algorithms is necessary. This paper provides the outcomes of development and complex testing of the artificial cardiac system to evaluate the pacemaker’s functionality. In this work, we used the modular laboratory platform ELVIS II and cr...
This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the...
In this work, a MATLAB-based graphical user interface is proposed for the visual examination of several eye movements. The proposed solution is algorithm-based, which localizes the area of the eye movement, removes artifacts, and calculates the view trajectory in terms of direction and orb deviation. To compute the algorithm, a five-electrode confi...
Wearable devices are commonly used to monitor human movement since motor activity is a fundamental element in all phases of a person’s life. Patients with motor disorders need to be monitored for a prolonged period and the battery life can be a limit for such a goal. Here the technique of harvesting energy from body heat to supply energy to wearabl...
The work is focused on the creation of test equipment to verify correct operation cardiotocograph. To simulate the heartbeat of the fetus and the mother was used relay element driven with electricity for AC switching at two selected frequencies to verify the correlation capabilities of commercial cardiotocography. It was done by several commercial...
The paper examines the development and testing of an electro-pneumatic device for wound healing therapy after surgery in the neck area. The device generates air pressure values in a miniaturized cuff using electronic circuitry to drive an electro-valve and air compressor. The device works in two distinct modes: continuous pressure mode and pulsatin...
Realization of the system for classification of hand’s gestures is described in this paper. The first goal was to create hardware that would be able to measure signal of myopotentials for computer analysis without external noise and with right amplification. The second goal was to program an algorithm which could classify specific gestures of hand....
Electrocardiography and Photoplethysmography are basic investigative methods used in healthcare. As the ECG and the PPG are non-invasive methods. The principle consists in ECG recording of electrical activity of the heart and the result of this sensing is a graph plotting—electrocardiogram. PPG is one of the main methods of measurement plethysmogra...
The Accuray CyberKnife® system provides radiotherapy for the treatment of moving lung tumors, thanks to the use of the Xsight® Lung Tracking technology for monitoring the motion of the target. However, there are situations in which this technology is not able to properly track the target. Thus, the aim of the proposed work is to study the accuracy...
This work analyzes the results of measurements on thermal energy harvesting through a wearable Thermo-electric Generator (TEG) placed on the arms and legs. Four large skin areas were chosen as locations for the placement of the TEGs. In order to place the generator on the body, a special manufactured band guaranteed the proper contact between the s...
The goal of this work was to create the measurement circuit that would be able to measure and classify signal of myopotentials to classify specific gestures of hand.Realization of the system for classification of hand's gestures is described in this paper. Hardware prototype of four measuring channels was created by combination of 2nd order filters...
In this work, a commercial flexible thermoelectric generator (f-TEG) was used to harvest the body thermal energy during the execution of activities of daily living (ADL). The f-TEG was placed at the level of the ankle, and the performed activities were sitting at the desk and walking. In the first stage of measurements, tests were performed to choo...
Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, an...
Wearable devices are able to capture movement-related characteristics from inertial sensors integrated in them. Many spatio-temporal parameters of gait can be estimated by the acquisition of inertial data, but their accuracy depends on the placement of the devices on the body, as well as on the numerical values chosen for the estimation techniques....
Piezoelectric transducers can be used to both harvest biomechanical energy and to detect gait cycle events. Several designing factors influence the efficiency of the energy harvesting system, such as the location of the transducers, their mechanical/electrical parameters and the correct matching of the load resistor. In this research, a piezoelectr...
In this paper, two different piezoelectric transducers—a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)—were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initia...
We propose an event-based dynamic segmentation technique for the classification of locomotion activities, able to detect the mid-swing, initial contact and end contact events. This technique is based on the use of a shank-mounted inertial sensor incorporating a tri-axial accelerometer and a tri-axial gyroscope, and it is tested on four different lo...
During cycling, the measurement of forces exerted on the pedal is used to monitor the level of training and to maximize the efficiency of pedaling. In rehabilitation, the force measurement can be used to monitor the functional recovery of a patient during a therapy. In these situations, it is useful to quantify with high resolution these variables....
This paper investigates how different window sizes for feature extraction and classification affect the accuracy of daily living locomotors activity recognition through accelerometers. A comprehensive data set was collected from 9 healthy subjects performing walk, stair descending and stair ascending while carrying an accelerometer on the waist. Ne...