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December 2015

c©2015 by Rubén Anton Aguilar Rivera
All Rights Reserved

iii





Dedication

I dedicate this work to the memory of Antonio, Guadalupe, Jesús, Santiaga, and the rest of
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An Evolutionary Risk Optimization Algorithm to
Implement Investment Strategies in a Multi-Period

Framework with Dynamic Restrictions
by

Rubén Anton Aguilar Rivera

Abstract

Financial investment is an important economic activity. The value of indexes like the
Dow Jones Industrial Average (DJI), the Standard & Poor 500 (S&P500) or domestic stock
market indexes are commonly used as a measure of a country’s level of development. Fi-
nancial markets provide a comfortable method to generate profit from diverse industries and
commercial activities. Nevertheless, investors should consider also uncertainty in stock prices,
legal restrictions, and transaction costs when making decisions.

Even when several works have been published about ways to deal with the difficulties
described above, many investors continue relying only on their own experience to make de-
cisions. The limitations of the current approaches and their complexity have caused investors
to overlook their benefits. Therefore, they are in need of tools to help them make correct
decisions in practical situations.

Investors are continuously concerned with making the best possible decision. From the
wide range of available methods, portfolios have the advantage of including the uncertainty of
the decisions (i.e. risk) into the optimization process. Besides, they provide a set of optimal
solutions and an explanation about how investors choose a portfolio according with their pref-
erences. Utility functions are used to model this behavior. Nevertheless, the inclusion of new
restrictions to the problem definition prevents the application of traditional solution methods.
Moreover, the risk metric is restricted to the covariance matrix of the asset’s returns only. Fi-
nance theory has identified these drawbacks and proposed solutions based on a multi-period
definition of the problem, where a time horizon is considered instead of a static definition of
the market.

Nevertheless, this work has identified the following limitations to multi-period portfolio
optimization approaches: They are limited to optimization of the portfolio’s return from the
last period of time only; they rely on theoretical utility functions to describe the investor’s
preference; finally, the overlook the information provided by data innovations arriving during
the time horizon. This work assumes this information is useful to make better investment
decisions.

The review indicated the multi-period definition of the problem is developed using dy-
namic programming, which allow the inclusion of transaction costs and other state-dependent
restrictions to it. Nevertheless, its solution has proved to be a difficult task. Multi-period
theory references are mainly concerned with finding closed-form solutions to the problem for
a given combinations of dynamic restrictions, risk metrics and utility functions. Definition of
sub-problems is a common solution technique. On the other hand, evolutionary algorithms
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have been mainly applied to solve static portfolio optimization problems. Round-lots and
compulsory assets are some examples. The conclusion was the application of evolutionary al-
gorithms to solve multi-period portfolio optimization problems has received limited attention
in the literature.

This work introduces an investment method based on multi-period portfolio theory im-
plemented with evolutionary algorithms. A Monte-Carlo approach is proposed to handle dy-
namic restrictions without the complications of purely mathematical methods. Transactions
costs, portfolio unbalance, and inflation are the ones considered. Moreover, an identification
process of the particular investor’s preference is presented to avoid the use of theoretical utility
models. Also, the method considers data innovations to evaluate the current state of the mar-
ket to allow adaptive decisions. The solutions model is divided in two parts: A multi-objective
stochastic optimization evolutionary algorithm to solve multi-period portfolio problems, and
the Investment Strategies method which uses the information about the market state, investor’s
preference, and portfolio performance to make decisions.

The method has the advantage to include dynamic restrictions, which are usually not
included in the optimization process of traditional methods. The most important restriction
are transaction costs, because the profit obtained by trading can be severely decimated by
them. Also, the method includes a procedure to identify the investor’s particular preference,
therefore, it makes decisions closer to the investor’s expectations. The method is fully au-
tomatic, providing regular investors with a useful tool to find investment recommendations.
Although, the method is to be further enhanced with the inclusion of static restrictions and
trading execution capabilities to have a complete investing system.

The proposed method was tested with real data from American and Mexican markets and
was compared against buy-and-holds and single-period optimal portfolios, which are common
methods used by investors. The experiments considered the following performance metrics:
Maximum loss, total time to reach the investor’s goal, final portfolio’s return, number stop loss
occurrences, expected return and risk, and the Sharpe’s ratio. Statistic analysis concluded the
proposed method outperformed the others for the proposed metrics. The Investment Strategies
method showed to have lower maximum losses and higher Sharpe’s ratios than the other
methods. Besides, the results indicate Investment Strategies dominate other methods when
expected return and risk are considered. A significant difference was found between the results
form the American market and the ones from the Mexican market. Finally, differences were
found in the results obtained with different risk metrics.

The results concluded the American market was subject of higher risk than the Mex-
ican market. The analysis of the results concluded good investment decisions come from
a balance between transaction and following the trends of the market. Also, different in-
formation sources should be considered when making decisions. The method is subject to
improvements. For example, other methods could be used instead of normal multi-variate
distributions to simulate the returns. Also, dynamic investment strategies could be devised to
adapt the behavior of the algorithm to the current market scenario.
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Chapter 1

Introduction

Investment is the sacrifice of current wealth for the sake of profit in the future (Sharpe, Alexan-
der, & Bailey, 1999). Risk is inherent to investment because of uncertainty about the final out-
come of decisions. Every endeavor is an investment of valuable resources like time, money, or
manpower. It is a game with actual consequences where people put their well-being at stake.

Man has always been concerned with making the best possible decision. For example,
operations research was developed to apply advanced mathematical techniques to decision
making in a wide range of environments. The present work is focused on financial investment,
which has place at financial markets. Markets are a relatively safe environment where an
investor can increase his wealth without the technical knowledge of a particular trade.

Nevertheless, financial investing presents its own difficulties. Markets are non-stationary
environments where dynamic effects and costs cannot be ignored. On the contrary, traditional
finance theory is limited to a static model of the investment phenomenon. The literature
(presented in later chapters) shows some of the efforts to include dynamic restrictions into the
problem. Although most of these solutions can only be applied under restrictive conditions.
The need of practical methods was identified in this research.

Evolutionary algorithms (EAs) have been successfully applied to solve complex prob-
lems in different fields. They have the advantage of handling the problem restrictions indi-
rectly, including them into the objective function. Most of the available approaches are con-
cerned with finding closed-form solutions to investment problems with dynamic restrictions.
Nevertheless, these difficulties can be avoided using evolutionary algorithms.

This chapter briefly presents the motivation, the problem statement, and the solution
model to solve the investment problem with dynamic restrictions. These points are further
developed later in this work. The main contributions are enlisted at the end of the chapter.

1.1 Motivation

Financial investment is an important economic activity. The value of indexes like the Dow
Jones Industrial Average (DJI), the Standard & Poor 500 (S&P500) or domestic stock mar-
ket indexes are commonly used as a measure of a country’s level of development. Financial
markets provide a comfortable method to generate profit from diverse industries and commer-
cial activities. Nevertheless, investors should consider also uncertainty in stock prices, legal
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2 CHAPTER 1. INTRODUCTION

restrictions, and transaction costs when making decisions.
Even when several works have been published about ways to deal with the difficulties

described above, many investors continue relying only on their own experience to make de-
cisions. The limitations of the current approaches and their complexity have caused investors
to overlook their benefits. Therefore, they are in need of tools to help them make correct
decisions in practical situations.

Dynamic restrictions are crucial because time is needed to attain any significant level
of profit. A simple solution would be choosing a data frequency according to the investor’s
preferences. For example, a highly risk-averse investor could prefer make daily transactions
even when the expected return is low. On the other hand, annually data deals with higher
return values, but at a higher risk. Nevertheless, investors rarely limit themselves to a single
decision. Instead, they keep a set of promising securities (i.e. portfolio) for weeks or months
and make adjustments when they deem it necessary.

Dynamic approaches model this behavior and find an optimal solution given an utility
function. Although, these methods showed to be too complex for everyday use. This have
kept them at the “ivory tower” and away from practical applications (Brandt & Santa-Clara,
2006).

A common limitation is the inability to compute the investor’s utility function, which is
used to describe his preferences about risk and return. References usually assume a theoretical
utility model and explode their properties to provide a closed-form solution. They are not
concerned with a method to compute the investor’s particular preference. Nevertheless, it
seems possible to propose a method where an explicit utility function is not required for the
task. The necessary information could be provided in parametrically form instead.

Another limitation of dynamic approaches is they do not usually consider innovations,
which are data that become available within the time horizon of the investment. These meth-
ods do not include innovations because they are concerned with the probability distribution
of return of the last period only. The fact a single realization shows poor performance does
not mean the method is incorrect. Although, real investors are concerned with current perfor-
mance. The inclusion of innovations can provide information which can be useful to mod-
ify the decisions accordingly to their results. The present work concluded an evolutionary
computing method will allow solving investment problems including dynamic restrictions,
parametrically investor’s preference, and data innovations.

1.2 Problem Statement and Context

There are different types of investments (Sharpe et al., 1999). For example, real investment is
when wealth is used to buy tangible assets to make profit. Examples of real investment are the
buying of land, tools, or factories. Nevertheless, the success in a particular kind of industry
requires time, knowledge, and specific ability. On the other hand, indirect investment occurs
at financial markets. They provide a way to invest in a trade without the need of specific
knowledge about it. The most common financial instruments are securities. These type of
contracts give their holders ownership over a company, besides some rights and dividends.
The profit usually comes from trading them at stock markets. The newly issued securities are
sold at primary markets where auction mechanisms are used to trade shares. These shares can
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be bought and sold later at secondary markets.
There are other financial instruments besides securities. The following are some exam-

ples: Treasury bills and bonds are examples of fixed-income assets. Their face plate prices
are payed to their holders at maturity time. Although, they can also be traded at secondary
markets at variable prices. Commodities, like gold or silver, are used to diversify investment,
allowing a better control of risk. Futures are contracts to buy or sell a specified instrument or
commodity at a given date. Derivatives are contracts which value depends on the performance
of some other financial instrument. All of them are subject of trade at their respective markets.

Financial markets are important centers of economic activity. For example, the New
York stock exchange (NYSE) had an estimated monthly value of $1.55 USD trillions and a
year-to-date value of $14.72 USD trillions at October, 2015 (WFE Monthly Reports, 2015,
December). The large amount of money traded at financial markets has caused the miscon-
ception a fortunate investor could attain extraordinary profit in no time and without effort.
This has proved to be far from the truth. The investor should face the uncertainties of finan-
cial environments, besides legal restrictions and transaction costs. An investor who blindly
ignores these hindrances could end up in bankruptcy. These ideas are summarized in the ef-
ficient market model proposed by (Fama, 1970b). An efficient market is the one where all
the information is available to every investor at the same time. Historical price data is all the
information considered in the weakest form of this model. The efficient market hypothesis
states abnormal profit opportunities are impossible because every investor will make the same
(optimal) decision. Although, The limited reasoning principle (Russel & Norvig, 2010) states
available information could be too vast to be fully processed. Therefore, investors could make
(globally) incorrect decisions even at efficient markets. The conclusion is methods to handle
information effectively could lead to make profitable investment decisions.

1.2.1 Basic Terminology
Profit is usually presented in the form of rates of return, which allows expressing it inde-
pendently from the asset price. Besides, the probability distribution of compound returns is
normal even when the asset price probability distribution is not (Meucci, 2010). The return of
a particular security r(t) is defined as

r(t) =
p(t)− p(t− 1)

p(t− 1)
, (1.1)

where p(t) is security current price at time t. Continuously compound return is defined as

r(t) = ln

(
p(t)

p(t− 1)

)
. (1.2)

According with the model explained by (Sharpe et al., 1999), future security prices are related
as

E(p(t+ 1)|Φ(t)) = [1 + E (r(t+ 1)|Φ(t))] p(t), (1.3)

where Φ(t) is the information set at time t. Equation 1.3 computes the expected value of
the future price p(t + 1) given the available information. This value depends of the current
price value p(t) and the expected value of the future return given the information. In later
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chapters, equation 1.3 is implemented with a Monte-Carlo method to estimate the outcome of
investment decisions based on simulated returns data with a known distribution.

1.2.2 Approaches to Investment Decision Problems
The methods to help the investor make better investment decisions can be split in three groups:
Fundamental analysis methods, technical analysis methods, and methods based on modern
portfolio theory (Sharpe et al., 1999). They are explained below.

Fundamental Analysis

Fundamental analysis is concerned with security valuation. There are two approaches to it.
The first approach attempts to determine the true price of securities. This can be done using the
company’s internal information and the estimation of certain economic factors. Econometric
models like the capital allocation price model (CAPM) are useful for this end (Sharpe et al.,
1999). The objective is to determine if a security is mispriced and use this information to make
profitable decisions (i.e. arbitrage). For example, a raise in the price of securities is expected
when the analysis indicate the asset is under priced at the market. The second approach makes
an estimation of the security’s return for a given period of time. This information can be used
to determine which securities are reliable for a given time period. Probabilistic forecasting
models are part of this category.

The drawback of this approach is the difficulty to obtain the necessary information to
apply it. For example, the data can be incomplete or not properly formatted. The same occurs
to the data about the econometric factors. For example, CAPM model indicates the existence
of the market portfolio, which is composed by all the securities of the market. The task to
determine it is impossible without suitable simplifications.

Technical Analysis

Technical analysis is concerned with using price history to make investment decisions. Also,
volume information is often used by these methods. Technical analysis relies on the existence
of patterns in data which repeat frequently. The identification of such patterns allows the
prediction of trends which are useful to make profitable decisions. Technical analysis is com-
posed by a wide range of approaches. Chart analysis, Bollinger bands, and moving averages
are some examples. Some reviews about them can be found in the literature (Lo, Mamaysky,
& Wang, 2000).

Modern Portfolio Theory (MPT)

H. Markowitz (1952) was the first to integrate risk and utility to investment problems. A
portfolio w is defined in this context as

w(t) =

 wi(t)
...

wm(t),

 (1.4)
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restricted to
m∑
i=1

wi(t) = 1. (1.5)

Modern portfolio theory characterizes securities by their expected return E [ri(t)] and risk
σi(t). The latter is obtained computing the standard deviation of the returns. Moreover, the
expected return and risk of a portfolio is obtained form their components using

E [rw(t)] =
m∑
i=1

wi(t)E [ri(t)] , (1.6)

σ2
w(t) = wT (t)

 σ11 . . . σ1m
... . . . ...

σm1 . . . σmm

w(t). (1.7)

The matrix shown in equation 1.7 is the portfolio covariance matrix. Equations 1.6 and 1.7
have an averaging effect over the expected value of returns and the risk of the securities. This
is called portfolio diversification.

H. M. Markowitz, Lacey, Plymen, Dempster, and Tompkins (1994) reported the critical
line method (CLM) to find the optimum portfolio for securities with known E [rw(t)] and
σw(t). This method finds the highest return portfolios for a given level of risk. The set
of optimal portfolios (for different risk levels) is called the efficient frontier, which is the
Pareto front formed when both risk and return are simultaneously optimized. Figure 1.2 shows
the efficient frontier from securities of the Dow Jones industrial average (2005–2012) and
compares it to the risk and return of the individual securities. The highest risk security is
always part of the Pareto front.

Utility is used to explain how an investor chooses a portfolio from the efficient frontier.
The analysis starts from the assumption that the investor is risk-averse and always chooses
the lowest risk portfolio for a given level of return. Utility is related to the “satisfaction” that
decisions provide to the investor. Figure 1.1 shows an example of a utility function. Higher
levels of return provide higher utility levels, but its rate decreases accordingly. There will be
a point where the increase will no longer be attractive to the investor.

Utility functions can be mapped to the risk-return plane in the form of indifference
curves. These curves represent the combinations of risk-return which have the same utility for
the investor. It is possible to show that only one indifference curve will intersect the efficient
frontier at a single point (Sharpe et al., 1999). This point represents the optimal portfolio that
satisfies the investor’s expectations. An example is shown in figure 1.2.

1.2.3 Multi-Period Portfolio Selection Problem (MPPSP)
Traditional portfolio theory is used by financial professionals in combination with fundamen-
tal and technical analysis to give investment advice. Nevertheless, it has important limitations.
For example, it assumes fractions of securities can be traded, but in practice only round-lots
are allowed. Besides, it does not takes into account the impact of transactions on prices, which
can be affected by changes of the supply and demand of securities. Also, traditional portfolio
theory assumes the probability distributions of stocks are time invariant. In practice, this is
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Figure 1.1: An utility function of a risk-averse investor.

seldom the case (Hamilton, 1994). Some real-world limitations (e.g. transaction costs) are
overlooked by it. The traditional approach allows the investor choosing a set of optimal port-
folios, but the final wealth will differ from their calculations because transaction costs were
not considered. Financial professionals used to recommend decisions with high return before
transaction costs. There is no guarantee these solutions are optimal when transaction costs
are included in the model. Inflation is also a factor to be considered when making practical
investment decisions.

In early references, some debate was held about the existence of the multi-period port-
folio selection problem. Fama (1970a) proposed a multi-period model where a time horizon
T was considered into the optimization process. The decisions seek to optimize the expected
value of return at time T instead of present time. A solution was found using dynamic pro-
gramming. The conclusion was that there is no difference among risk-averse single-period
strategies and multi-period strategies under the assumptions of no transaction costs and a per-
fect market. A. H. Chen, Jen, and Zionts (1971) proposed an extension of the Markowitz’s
model to multiple periods which allows portfolio revision. The problem was defined with
dynamic programming techniques. This approach considered multiple-period scenarios and
transaction costs. Nevertheless, its solution was devolved to future works.

Elton and Gruber (1974a) stated single-period and multi-period problems are different
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Figure 1.2: Efficient frontier, individual securities, and indifference curves.

when the investor utility function is state-dependent. For example, the inclusion of inflation in
the model will cause the same amount of money to have different utility levels at different time
periods. At inflationary economies, utility will depend on the portfolio, time, and the interest
rate of inflation. The difference will hold even when transactions costs are not considered.
Unbalance changes the portfolio’s composition along with changes in the market. Transaction
costs are directly affected by it. The present work is focused on these dynamic restrictions.

In conclusion, single-period portfolio selection problems becomes multi-period when
state-dependency and dynamic restrictions are considered in the model. Examples of these
restrictions are inflation and transaction costs. The solution of a multi-period portfolio se-
lection problems is the optimal set of T future decisions given the current information. The
complete solution is found at initial time. Data innovations are not relevant to the current
multi-period approaches. The solutions found in the literature change with the restrictions
and the utility functions considered. The state-of-the-art section will describe some of the
approaches to find closed-form solutions to multi-period problems. Also, it presents solutions
based on evolutionary algorithms.
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1.2.4 Problem Statement
The problem is to find a method with the ability of making investment decisions with dy-
namic restrictions like transaction costs and portfolio unbalance. Also, it should be able to
include the investor’s particular preference, avoiding the use of theoretical utility functions.
The method should consider data innovations, and use that information to modify recommen-
dations according with the result of the decisions. The desired method should be based on
evolutionary algorithms.

1.2.5 Objective of this work
The objective of this work is investigate about what information is useful to make good invest-
ment decisions. Dynamic restrictions provide information about the market’s nature. Para-
metric identification of the investor’s preference intends to provide further information about
his preferences about risk and return. Data innovations provide information about the non-
stationary behavior of the market. This work proposes the development of an investment
method based on portfolios which includes the information from these sources. The method
should have the ability of handling dynamic restrictions and include the investor’s preference
without using theoretical utility functions. Besides, it should include the information of data
innovations to allow decision adaptation based on the current state of the portfolio. Experi-
ments will be conducted to determine if the information from these sources is truly useful to
make good investment decisions.

1.3 Research Questions
The problem statement implies evolutionary algorithms have advantageous properties to over-
come the limitations explained above. These properties are summarized in the hypothesis
statement below. The research questions summarize the problems addressed to accomplish
the task. Besides, they remark the importance of the method to test the algorithm and obtain
solid conclusions.

1.3.1 Hypothesis Statement
A Multi-period approach to investment problems can provide better recommendations than a
single-period approach because the former may handle dynamic restrictions like transaction
costs, unbalance, and other state-dependent factors. Moreover, the investor’s preferences can
be included into the optimization process without relying on theoretical utility functions. Also,
information about the current state of the market changes and the method’s performance is
relevant and useful to make investment decisions.

1.3.2 Research Questions List
• How can the investor’s preference be included in the optimization process?

• Can utility functions be excluded from the portfolio selection problem?
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• Which parameters could capture the information represented by utility functions?

• Is there inherent differences between the nature of different markets? How do the affect
the optimization process?

• What differences among markets are instrumental when performing multi-period port-
folio optimization?

• How can an evolutionary algorithm be implemented to solve multi-period portfolio se-
lection problems?

• How should be measured the performance of financial strategies?

• How the proposed method could be appealing to regular investors?

1.4 Solution Overview
Traditional portfolio theory states investors strive to find portfolios with the highest return
possible for a given level of risk. Portfolios should be optimal for these competing objectives.
Multi-objective optimization has been addressed using evolutionary algorithms in the liter-
ature: The second version of the non-domination sorting genetic algorithm (NSGA-II) is a
good example (Deb, Pratap, Agarwal, & Meyarivan, 2002). Evolutionary algorithms usually
keep a population of candidate solutions which are cleverly combined to find the optimum.
Besides, multi-objective evolutionary algorithms use populations to search different solutions
simultaneously. These properties make them a suitable approach to solve multi-period port-
folio selection problems.

References indicate multi-period portfolio selection problems are difficult to solve. Dy-
namic programming solution models require the revision of a large number of possible sce-
narios. In this particular case, valid options do not decrease with time because the possibility
of changing from current portfolio to any other is always present. In the literature, solution
methods rely on the properties of a particular utility functions or on the definition of sub-
problems to restrict the valid scenarios. This is the reason why these solutions are valid under
certain conditions only.

Some authors have indicated numerical methods are useful to overcome these limita-
tions. Desai, Lele, and Viens (2003) proposed a Monte-Carlo algorithm to find the solution
for one of these theoretical models. A Monte-Carlo approach can be easily integrated into an
evolutionary algorithm. Although, this approach makes the objective function stochastic. The
use of evolutionary algorithms could probably overcome other problems like the parametric
inclusion of the investor’s preference into the optimization.

Therefore, a new evolutionary algorithm is proposed in this work to solve multi-objective
problems with stochastic functions. This problem is more complex than noisy optimization
because the level of uncertainty is an objective of the problem that should be accurately es-
timated. On the contrary, noisy optimization usually conceives noise as a nuisance to be
eliminated. The problem treated in this work is closer to robust optimization because the so-
lutions with lower uncertainty are preferred by the investor. A further explanation of these
approaches is presented in later chapters.
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In the literature, multi-period solutions are only concerned with the optimization the
last period return. This work also explored multi-period optimization where sets of portfolios
of different time duration are considered. The existence of non-dominated portfolios with
heterogeneous time horizons was found and applied to the solve the problem. This approach
provides investors with a wider range of investment options, and allows a better use of data
innovations.

The inclusion of data innovations allows the evaluation of the portfolio with the arrival
of the new data. In this case, the current state of wealth can be compared with the investor’s
expectations and take further actions if the result is undesirable. This work proposes deci-
sion rules called Investment Strategies (IS) to determine the optimal set of portfolios given
the current state and the investor’s expectations. The methodology to integrate evolutionary
algorithms with investment strategies is explained in later chapters.

1.5 Main Contributions

The main contributions of this work are summarized as follows:

• This work presents a survey about the application of evolutionary algorithms to financial
problems (Aguilar-Rivera, Valenzuela-Rendón, & Rodrı́guez-Ortiz, 2015).

• A novel multi-objective evolutionary algorithm is proposed to solve the problem. This
algorithm proposes the called Area Measure Ams, which favors individuals close to the
non-dominated front located at low populated areas of the solutions space. This metric
provides continuous fitness values, which differs from other found in the literature.
Also, it implements a density measure designed to work when the algorithm is close to
convergence.

• The proposed multi-objective algorithm is further modified to allow multi-objective
stochastic optimization. Evaluation-saving methods are proposed for this end. This
approach is able to find robust solutions without imposing a structure to uncertainty,
which is a common approach in robust optimization.

• A set of suitable parameters is proposed to include the investor’s preferences into the
multi-period portfolio selection problem instead of using theoretical utility functions.

• This work shows the existence of multi-period efficient frontiers with heterogeneous
time horizons, while current multi-period theory is focused on efficient frontiers with
homogeneous time horizons.

• The investment strategies method is developed in this work. They use data innova-
tions and Pareto fronts with heterogeneous time horizons to adapt decisions to market
changes.
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1.6 Thesis Organization
This chapter summarized the ideas to be developed in this work. Chapter 2 states the con-
text through a review about the application of evolutionary algorithms to financial problems.
Chapter 3 explains the new multi-objective algorithm proposed in this work, while chapter 4
explains further modifications to allow it perform stochastic optimization. Saving-evaluations
methods are introduced at that moment. Chapter 5 explains the investment strategies method,
the parameters to describe the investor’s preference, and the existence of Pareto fronts with
heterogeneous time horizons. They are integrated into a single investment method. Chapter
6 is a discussion about the data set used in the experiments and some considerations when
working with real data from stock markets. Also, it presents a discussion about some metrics
of portfolio performance. Chapter 7 presents the experiments and the discussion of results.
Finally, chapter 8 presents the conclusions and the future work.





Chapter 2

State-of-the-Art

The literature review is presented in this chaptera. The first part reports some solutions to
the multi-period portfolio selection problem. Evolutionary approaches are not mentioned in
this section. Some of the references cited in past chapters are included here for completion
purposes. The second part is a review about financial applications of evolutionary algorithms.
The scope is limited to population-based approaches derived from genetic algorithms. The
conclusions are found at the last section.

2.1 Multi-Period Portfolio Selection Review
Traditional portfolio theory is used by financial professionals in combination with fundamen-
tal or technical analysis to give investment advice. Nevertheless, the theory has limitations.
For example, it assumes securities fractions are traded when only round-lots are usually al-
lowed. Besides, it does not takes into account the impact of transactions in prices, which
can be affected by changes in the supply and demand of securities. Also, portfolio theory
assumes securities probability distributions are time-invariant. In practice, this is seldom the
case (Hamilton, 1994). Also, real-world limitations such as transaction costs are overlooked.
The investor can still choose a set of optimal portfolios, but the final wealth will differ from
the calculations because transaction costs were not considered. Financial professionals usu-
ally select portfolios applying the traditional approach. Then, transaction costs are considered
to the already optimized decisions (Sharpe et al., 1999).

There is no guarantee the optimal solutions before transaction costs are the same to the
ones which considered them. Robust solutions frequently differ from non-robust solutions.
Inflation is also a factor to be considered when making practical investment decisions.

The literature reports different efforts to deal with these limitations. The interest of the
present work is focused on the effect of transaction costs and dynamic restrictions, which
have received an important amount of theoretical study. For example, Fama (1970a) proposed
a multi-period model considering the portfolio would be liquefied at time T . The decisions
seek to optimize the expected value of return at time T instead of the present time. A solution
was found using dynamic programming. The conclusion was there is no difference among
risk-averse single-period strategies and multi-period strategies under the assumptions of no

aThis chapter was edited to be published at an indexed journal (Aguilar-Rivera et al., 2015).
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transaction costs and a perfect market. A. H. Chen et al. (1971) proposed an extension of the
Markowitz’s model to multiple periods to allow portfolio revisions. A single-step model is
developed in that work. Transaction costs were considered at each step. The extension to a
multiple-period model is developed using dynamic programming. Although, a solution is not
shown for this case. Later, A. H. Chen, Jen, and Zionts (1972) studied single-period models
which allowed stochastic cash demands from the portfolio. The conclusion was the presented
model could be used to evaluate empirical studies.

Kamin (1975) presented an analysis for portfolio revision which considered transaction
costs and risky assets. Constantinides (1979) also studied models where consumption is pos-
sible, but transaction costs are modeled with concave functions. An utility function is derived
from the model which is proved to be state-dependent. The optimal set of portfolios from
t = 1, 2, . . . , T (i.e the policy), is shown to be of no transactions as long as the portfolio
weights lie inside a certain interval. These limits are function of the state of the world.

Elton and Gruber (1974a) stated single-period and multi-period problems are different
when the investor utility function is state-dependent. Also, Elton and Gruber (1974b) studied
multi-period problems of maximization of the geometric mean of future returns and future
expected utility. The conclusion was both approaches lead to different optimal selections than
multiple single-period decisions. This depends mainly on the utility function. Besides, con-
tinuous revision of portfolio leads to a higher utility when transaction costs are zero. Brennan
(1975) presented a model to select the best stocks considering a mean-covariance model. He
concluded the number of assets is dramatically reduced if the model considers transactions
costs.

Barry and Winkler (1976) addressed the discrepancy of using static probability distribu-
tion models to describe non-stationary markets. A Bayesian model was proposed for security
price forecasting. The conclusion was non-stationarity does not affect membership into the
efficient frontier. Nevertheless, the efficient frontier is shifted to higher risk levels. Patel and
Subrahmanyam (1982) proposed an algorithm to find the optimal portfolio with transaction
costs in a single-period framework. This algorithm can be applied when pairwise correlation
values of the securities are closely similar. Dumas and Luciano (1991) found an exact solu-
tion for dynamic portfolio selection with an infinite time horizon and transaction costs. This
solution appears in the form of two control barriers where the portfolio is allowed to fluctuate.
Mulvey and Vladimirou (1992) modeled multi-period problems and other financial problems
using stochastic generalized networks (SGN). They concluded this representation could lead
to parallel implementations of the solution. On the other hand, the size of the network grows
rapidly with the number of periods and assets. Statistical methods and clustering analysis
were suggested to alleviate this problem.

More recently, D. Li and Ng (2000) presented an optimal solution for a multi-period
model with a mean-variance formulation. An algorithm was proposed to compute the optimal
solution. Transaction costs are not considered. This approach was based on the definition
of sub-problems to by-pass the difficulties of the original problem. Kellerer, Mansini, and
Speranza (2000) remarked the one-period portfolio optimization with transaction costs and
minimum lots is a NP-complete problem. They proposed an algorithm where heuristics and
linear programming models are used to find the optimal solution. Steinbach (2001) proposed
a model of multi-period problems based on scenario trees. Also, the possibility to use other
risk measures besides variances was investigated in that reference.
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Brandt and Santa-Clara (2006) proposed a multi-period solution which is implemented
using quadratic programming. This algorithm optimizes sets of portfolios instead of single
securities. Their hypothesis was the optimization of static sets is equivalent to a dynamic
allocation of securities. Value-at-risk is used instead of the covariance matrix to measure risk.
Value-at-risk is the q-quantile of the distribution. Value-at-risk is a common risk measure in
financial frameworks. Transaction costs were not considered.

Some references have proposed multi-period optimization methods using Markov-chains
(Çakmak & Özekici, 2006). Chiu and Li (2006) found an optimal solution for a mean-variance
optimization problem with transaction costs and liability using stochastic linear-quadratic con-
trol, a technique borrowed from optimum control engineering. This work was extended by
Liu, Zhao, and Zhao (2012), where a closed-form solution was found for the same problem,
but assuming the stochastic process of prices satisfy jump-diffusion stochastic differential
equations.

Z. Li, Yang, and Deng (2007) studied the effects of using earning-at-risk to multi-period
problems. This measure can be understood as the 1− q-quantile of the distribution. A closed-
form solution was found and compared with solutions derived from other risks measures.

Buy-and-hold is a simple strategy where the initial portfolio is unchanged until sold.
Buy-and-hold has the advantage of minimal transaction costs, therefore, it is widely used
by investors. Some references have compared multi-period re-balancing strategies against it
(Xiong, Xu, & Xiao, 2009). The cases where one of the strategies outperforms the other one
were explained in that reference.

Çanakoğlu and Özekici (2009) studied multi-period problems with exponential utility
functions. Yi (2010) proposed a solution for multi-period models with transaction costs and
a quadratic utility function. The solution is found by defining a set of auxiliary problems and
solving them. Comparative studies between variance and conditional Value-at-risk were found
(A. H. Chen, Fabozzi, & Huang, 2012). Both measures were used to model portfolio revision
problems with transaction costs. This reference explained the way to integrate transaction
costs to a conditional value-at-risk framework. Some analytical solutions were found under
certain conditions.

Closed-form solutions for the multi-period problem have been found only for theoretical
problems with particular properties. However, a closed-form solution is not necessary for a
practical application (Desai et al., 2003). That work proposed an algorithm for a portfolio
of stocks and one fixed-income asset using a Monte-Carlo approach. The example seems
indicate numerical methods can be used to solve the problem in practical applications. Hibiki
(2006) also proposed a Monte-Carlo approach. Besides, linear programming models were
used to simulated paths while solving large-scale decision problems.

2.1.1 Multi-Period Literary Review Conclusion
This review showed the efforts found in the literature to expand the traditional portfolio ap-
proach and overcome its limitations. The multi-period definition of the problem allows the in-
clusion of transaction costs and other dynamic restrictions. It was concluded the solutions for
single-period and multi-period problems are different when the utility function of the investor
is state-dependent. The literature has focused to find closed-form solutions for the multi-
period problem for a given set of conditions. Some of these works proposed a Monte-Carlo
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approach to numerically solve the problem. A Monte-Carlo method avoids the complications
imposed by the dynamic restrictions of the problem.

The review concluded a Monte Carlo approach can be used to handle the multi-period
portfolio selection problems. This work, besides, states this approach can be implemented
with evolutionary algorithms. In this case, the objective function of the problem can be
stochastic. Re-sampling could be used to estimate the probability distribution of final return.
Besides, evolutionary algorithms allow the inclusion of transaction costs and other dynamic
effects without further mathematical complications.

2.2 Evolutionary Algorithms and Financial Applications
There are three main reasons to use evolutionary algorithms in financial applications:

• The limited reasoning hypothesis (LRH) (Lakemeyer, 1994) is a realistic assumption
to complete the efficient market hypothesis (EMH) (Finger & Wasserman, 2004). This
means all investors are keen to make the best decision possible, but this one will depend
on their computation power and ability to process financial data.

• There is a massive amount of financial data available like never before in history.

• The computational power available is vast and increases continuously.

The efficient market hypothesis holds it is impossible to attain extraordinary profit in a market
where all the investors are rational and the market is efficient. There are many definitions of
market efficiency, one of them is that all the possible information about the market is openly
available to the investors at the same time. Rational investors will make the optimal decision
under those conditions (Malkiel & Fama, 1970). On the other hand, the limited reasoning
hypothesis holds some problems are too complex to process all the available information in a
reasonable time to make optimal decisions. Therefore, the limited reasoning hypothesis does
not contradict the rationality assumption, but realizes the investor might fail to foresight all
the possible options available.

2.2.1 Genetic Algorithms and Darwinian Approaches
The number of approaches proposed for financial applications is vast. The scope of the survey
must be delimited to find proper conclusions. Genetic algorithms (GAs) are included in the
category of evolutionary algorithms. Nevertheless, this class includes other methods inspired
by nature, culture, and language. Memetic algorithms are an example of culture-inspired
evolutionary algorithms. Genetic algorithms are a simplified version of Darwinian evolution.
Good solutions are favored to pass their distinctive traits to the next generation (Goldberg,
1989). This is possible by the use of genetic operators like selection, crossover, and mutation
over encoded solutions.

Moreover, a survey on evolutionary algorithms imposes the problem to report compar-
isons between methods which are inherently different from each other. The fact the selected
benchmark problem could favor a certain method is latent. Therefore, it is better to compare
approaches with similar traits only. For example, the difficulty of genetic algorithms to solve
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the traveling salesman problem (TSP) was reported in early references (Grefenstette, Gopal,
Rosmaita, & Van Gucht, 1985). On the contrary, other authors reported Simulated Anneal-
ing (SA) having good performance for problem sizes up to 200 cities (Johnson & McGeoch,
1997). At that time, the use of TSP instances as a benchmark could lead to a biased com-
parison between genetic algorithms and simulated annealing. It should be noticed that recent
works have reported methods to apply genetic algorithms to large instances of TSP (Nguyen,
Yoshihara, Yamamori, & Yasunaga, 2007). Approaches with a similar structure were chosen
to avoid these problems.

Besides genetic algorithms, there are other methods based on Darwinian evolution.
Some of them have found application in finance. The methods are listed and explained below:

• Genetic Programming (GP)

• Learning Classifier Systems (LCSs)

• Multi-Objective Evolutionary Algorithms (MOEAs)

• Co-evolutionary Optimization Schemes

• Estimation of Distribution Algorithms (EDAs)

Genetic programming was initially proposed by Koza (1992). It evolves solutions en-
coded as trees instead of binary strings. This allowed to find programs, mathematical proofs,
electronic circuits, etc. Ferreira (2001) proposed gene expression programming (GEP). This
format allows the use of binary strings to represent trees. Miller and Thomson (2000) pre-
sented Cartesian genetic programming (CGP), where programs are represented as indexed
graphs. Ryan, Collins, and Neill (1998) proposed grammatical evolution (GE), which uses
the Backus Naur Form to design a system to evolve high-level programs. This approach has
the advantage to be language independent. Recently, some references presented Multi-stage
Genetic Programming (MSGP) (Gandomi & Alavi, 2011). This method is used to model non-
linear systems, considering the effect of individual prediction variables and its correlation
with each other.

Learning classifier systems were proposed to find descriptions of changing environments
(Holyoak & Holland, 1989). Further research proposed modifications to the original system to
overcome its limitations. An example is the accuracy-based classifier system (XCS) (Wilson,
1994). Other authors also studied the XCS (Holmes, Lanzi, Stolzmann, & Wilson, 2002). The
zeroth level classifier system (ZCS) was also proposed to overcome the limitations of learning
classifier systems (Wilson, 1994). Valenzuela-Rendón (1991) designed the fuzzy classifier
system (FCS). Stolzmann (2000) reported the anticipatory classifier system (ACS). Gerard,
Stolzmann, and Sigaud (2002) proposed the latent learning classifier system (YACS).

Multi-objective evolutionary algorithms are used to perform Pareto optimization. In this
approach, a set of solutions (the Pareto front) is obtained when two or more objectives are
simultaneously optimized. The population is used to find a set of optimal solutions in paral-
lel. The niched-Pareto genetic algorithm (NPGA) (Horn, Nafpliotis, & Goldberg, 1993), and
the vector-evaluated genetic algorithm (VEGA) (Schaffer, 1985) were some of the earliest
contributions. The Pareto archived evolutionary strategy (PAES) (J. D. Knowles & Corne,
2000), The non-dominated sorting genetic (NSGA-II) (Deb, Agrawal, Pratap, & Meyarivan,
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2000), and a new version of the strength-Pareto evolutionary algorithm (SPEA-2) (Zitzler et
al., 2001) were proposed in more recent reports. The multi-objective Bayesian optimization
algorithm (MO-BOA) (Laumanns & Ocenasek, 2002) is a competent multi-objective algo-
rithm; this definition of competence proposed by Sastry and Goldberg (2003).

Co-evolution was firstly presented by Hillis (1990). The concept of competitive co-
evolution was used to evolve sorting networks in this work. Potter and De Jong (1994) used
a cooperative genetic algorithm (CCGA) for function optimization. This algorithm showed
a better performance than a traditional genetic algorithm in the experiments. Chang (2010)
applied co-evolution to solve supply chain network design problems.

Estimation of distribution algorithms (EDAs) are mainly related to the estimation of
population probability distribution. They do not rely directly on genetic operators. They are
presented in this review because their process is an abstraction of Darwinian evolution and
genetic operators. Harik, Lobo, and Goldberg (1999) proposed the compact genetic algo-
rithm to model the population with a probability distribution; it was designed to emulate a
traditional genetic algorithm performance. The extended compact genetic algorithm (ECGA)
was explicitly designed to solve problems where linkage was present (Harik, Lobo, & Sas-
try, 2006). Pelikan, Goldberg, and Cantú-Paz (2000a) reported the Bayesian optimization
algorithm (BOA), where Bayesian networks were used to model the non-linearity of the ob-
jective function. There is also an extension designed to solve hierarchical problems (Pelikan,
Goldberg, & Cantú-Paz, 2000b).

2.2.2 Refining the Scope of the Review
The existence of surveys with similar approaches to this review seemed plausible. Therefore,
there is the possibility to cover references already cited in similar works. For this reason, the
scope was delimited by the review of surveys with related subjects than this one. The novelty
of this approach comes in three different manners: This work covers lapses not included in
other review articles, it covers problems not considered by others, and the scope covered by
past references and new ones is compared and analyzed.

A review to find similar surveys was conducted from 2003 to 2015. Table 2.1 presents
a list of articles with similar scopes. The problems considered are now enlisted: Abnormal
noise (fraud) detection (ABN), arbitrage (ARB), bankruptcy detection (BKR), cash manage-
ment (CM), credit portfolio (CP), credit scoring (CS), fundamental analysis (FA), forecasting
(FC), index tracking (ITR), market simulation (MKS), procurement (PCR), portfolio selec-
tion problem optimization (PSP), trading (T), and trading execution (TX). These problems
are further explained in the following section.

The reviews considered were the following ones: (S.-H. Chen, 2003), (Vanstone & Tan,
2003), (E. P. Tsang & Martinez-Jaramillo, 2004), (Tapia & Coello, 2007), (Atsalakis & Vala-
vanis, 2009), (Hruschka, Campello, Freitas, & De Carvalho, 2009), (Bahrammirzaee, 2010),
(Lahsasna, Ainon, & Teh, 2010), (Phua, Lee, Smith, & Gayler, 2010), (Safarzyńska & van den
Bergh, 2010), (Verikas, Kalsyte, Bacauskiene, & Gelzinis, 2010), (Ngai, Hu, Wong, Chen, &
Sun, 2011), (Ponsich, Jaimes, & Coello, 2013), and (Giulioni, D’Orazio, Bucciarelli, & Sil-
vestri, 2015).

This review concluded none of these works covers the exact approach of the present
report. Some of them are mainly focused on other areas instead of evolutionary algorithms.
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Reference Techniques Problems
(S.-H. Chen, 2003) GA,GP MKS

(Vanstone & Tan, 2003) GA T,FA
(E. P. Tsang & Martinez-Jaramillo, 2004) GA,GP,LCS MKS,FC

(Tapia & Coello, 2007) GA,MO FA,FC,MKS,PSP
(Atsalakis & Valavanis, 2009) – FC

(Hruschka et al., 2009) – CS,BKR
(Bahrammirzaee, 2010) – CS,FA,FC,PSP
(Lahsasna et al., 2010) GA,GP CS

(Phua et al., 2010) GA,GP ABN
(Safarzyńska & van den Bergh, 2010) GA,GP,LCS MKS

(Verikas et al., 2010) GA BKR,CS
(Ngai et al., 2011) – ABN

(Ponsich et al., 2013) GA,GP,MO BKR,CP,FA,FC,PSP,T
(Giulioni et al., 2015) GA,LCS MKS

Table 2.1: Summary of Review Articles

Some of these works do not consider any of the techniques reviewed in this work. The exact
contents in these works was further investigated. Table 2.2 shows the span in years covered
by the references for each solution method. Specific time ranges are provided because the
coverage of a specific solution method by a reference is not always equal to the total time
range covered by it.

This analysis concluded co-evolution and EDAs are the techniques less used for finan-
cial applications. At least, they are not directly referenced by other review articles. They do
not appear in table 2.2 for this reason. Genetic algorithms and genetic programming seem to
be the most studied methods, while learning classifier systems have attained limited attention.
Problems like arbitrage (ARB), cash management (CM), index tracking (ITR), procurement
(PCR), and trading execution (TX) were not reported by other review articles, but references
about them were found in the review conducted for the present survey. References with over-
lapping dates to these time ranges were eliminated from this study. The following section
presents the review of uncovered references.

2.2.3 Description of Financial Applications

This section makes a description of each application found in the literature. The review is
classified by problem.

Abnormal Noise and Fraud Detection (ABN)

A recent application of genetic algorithms to financial environments is abnormal noise de-
tection in markets. Abnormal noise is believed to be correlated with illegal practices like rat
trading or money laundering (Jing, 2010). This reference described a genetic algorithm ap-
proach designed to detect abnormal noise. Although, experimental results were not presented
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Problem GA GP LCS MO
ABN 1999 2000 – –
ARB – – – –
BKR 1992− 2011 2009− 2010 – 2010
CM – – – –
CP – – – 2002− 2010
CS 1997− 2007 2005− 2006 – –
FA 2001 2009 1998 1998
FC – 1994− 2004 – 1994− 2009
ITR – – – –

MKS 1994− 2013 1990− 2003 1997− 2006 1998− 2011
PRC – – – –
PSP 1993− 2011 – – 1994− 2010

T 1994− 2002 1999− 2006 – 2009− 2011
TX – – – –

Table 2.2: Time Range per Technique Covered by Other Review Articles

in this work. Jun and Lei (2012) used a combination of genetic algorithms with neural net-
works (NNs) for money laundering detection. Genetic algorithms were used to modify the
weights of neural networks only. The possibility of modifying the neural networks structure
was suggested as future work.

Arbitrage (ARB)

Another problem of interest was arbitrage. Arbitrage is the practice to take advantage of price
differences of the same asset. This occurs when information is not simultaneously updated to
all the investors. Arbitrage is more common among stocks from different markets. Markose,
Tsang, Er, and Salhi (2001) proposed a genetic programming algorithm to find arbitrage op-
portunities for the London stock index (FSTE-100) futures and options. This algorithm was
trained with historical data where put-call-future parity cases are detected. Genetic program-
ming is used to make an estimation of the longest time the arbitrage will remain profitable. The
estimation is used to make earlier transactions than the traditional method where a contempo-
rary signal of profitability is required. Financial GP-2 was developed to be an interactive tool
to find arbitrage opportunities using intra-daily data. This approach attained greater returns
than the textbook approach.

E. P. Tsang et al. (2000) designed the evolutionary dynamic data investment evaluator
(EDDIE), which was later used to for arbitrage applications (E. Tsang, Markose, Garcia,
& Er, 2006). EDDIE relies on a human expert to evaluate the relevance of information. The
results are later used by the system for the optimization process. EDDIE has proved to process
financial information more efficiently than a human expert alone. An online implementation
was later reported (E. Tsang, Yung, & Li, 2004).

C.-F. Huang, Hsu, Chen, Chang, and Li (2015) proposed a genetic algorithms approach
for pair trading. Pair of stocks are bought and sold combined to find arbitrage opportuni-
ties. Trading pairs is based on the idea that mispriced assets will eventually reach their true
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value. The trading pairs method chooses a pair of stocks from the same industry, sells the one
with relatively high price and buys the one with relatively low price. These stocks are likely
to be mispriced and to converge to their real prices in the future. The method closes posi-
tion to attain profit when the spread has reduced to a certain threshold value. The proposed
method considered moving averages (MAs) and Bollinger bands to estimate the long term
mean of stocks and thresholds, respectively. Genetic algorithms are used to optimize these
parameters, besides portfolio weights of stock pairs. The fitness value of individuals is the
annualized return obtained from those specific trading pairs. The method was tested using 10
stocks from the semiconductor industry of the Taiwan stock exchange and 10 stocks with the
highest capitalization from the same index. The benchmark is a equal-weighted buy-and-hold
portfolio of the mentioned stocks. The proposed method outperformed the benchmark in both
experiments.

Bankruptcy Detection (BKR)

Bankruptcy detection is the task of determining beforehand if a company is prone to bankruptcy
in the near future. Accounting information and financial data are used to estimate the likeli-
hood of the worst case.

Varetto (1998) made a comparison between genetic algorithms and traditional statistical
methods for bankruptcy detection. Accounting information and financial reports were used
to determine a company’s health. Genetic algorithms were able to obtain comparatively good
results with less data than the statistical approach in the experiments.

Multi-objective algorithms have also been proposed for bankruptcy detection applica-
tions (Gaspar-Cunha, Recio, Costa, & Estébanez, 2014). When companies grow they become
complex and the estimation of their real financial situation becomes difficult. Financial reports
of complex companies have a large number of features, and many of them are irrelevant to
estimate their actual status. That reference proposed a multi-objective evolutionary algorithm
to minimize features and maximize the accuracy of classifiers. A feature selection algorithm
is applied periodically while parameters are optimized. Each individual encodes the relevant
features and the configuration parameters of the selection features algorithm, which is imple-
mented using support vector machines (SVMs). Support vector machines are applied to train-
ing data and the accuracy of the specific configuration is used as the fitness value. Its accuracy
is computed from the confusion matrix of the test. The individuals are ranked according to
their fitness value, and a fixed number of the best individuals are copied to a secondary popula-
tion, which is larger then the primary population. The secondary population is completed with
offspring generated from the selected individuals. A fraction of the best individuals from the
secondary population substitute the worst individuals of the primary population. The method
was tested with data from industrial French companies (DIANE database), Australian credit
data (UCI Machine Learning Repository), and German credit data (UCI Machine Learning
Repository). The results showed that the algorithm was able to significantly reduce the num-
ber of features, but better accuracy was obtained with larger sets. Besides, the multi-objective
approach provided a set of solutions with different levels of simplicity and accuracy. Inclusion
of the decision maker preferences to obtain a single solution was indicated as future work.
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Cash Management (CM)

Some references have studied the problem of cash management (da Costa Moraes & Nagano,
2014). Cash management is related with the accumulation and use of cash in companies
and institutions; companies need cash for their operations, and a lack of liquidity will obstruct
procurement and direct investment. For example, mutual funds need to plan how to invest their
costumers money to provide the promised returns while providing daily liquidity. Precaution
and speculation are other reasons to maintain a cash balance.

The approach proposed by da Costa Moraes and Nagano (2014) considered a stochastic
model where current cash will vary along a bounded range. Genetic algorithms and particle-
swarm optimization (PSO) were used to find the optimal strategy. The method considered a
portfolio composed of two risky assets and cash. The system should decide the amount to be
invested or saved to satisfy possible cash flows. A Miller-Orr model for full cash manage-
ment was implemented (i.e., cash is stochastic). Nevertheless, cash bounds were added to the
original model. Cash flows were assumed to be a random variable with normal distribution.
Transaction costs, interest rates for lending, bounds form risky assets, and asset liquidity are
the parameters of the model. Genetic algorithms and particle-swarms searched to minimize
cash management costs in a multiple-period time horizon. Different probability distribution
configurations were used to simulate cash flow in the experiments. Both algorithms were ca-
pable to determine cash flow policies, but Genetic algorithms outperformed particle-swarms
for most of the instances tested. Nevertheless, particle-swarms attained lower average relative
deviation than genetic algorithms. This work concluded both techniques are viable methods
to further study the problem.

Credit Portfolios (CP)

Credit portfolios are similar to security portfolios, but they are composed of credits instead
of securities. Banks should decide which credits to approve to maximize profit and minimize
risk. The profit comes in the form of interest, while losses occur when the borrower fails
to pay the debt back. This problem was mentioned in other reviews (Tapia & Coello, 2007)
and (Ponsich et al., 2013). Both references proposed multi-objective algorithms to solve the
problem.

Credit Scoring (CS)

Credit scoring is the problem of determining if applicants will repay their loans to banks.
Credit approval is made based on this estimation. Mis-classified applicants represent a loss
for banks and loaners. Banks and stores invest time and resources to select the most promising
applicants.

Back, Laitinen, and Sere (1996) proposed a combination of neural networks and genetic
algorithms to perform this task. Genetic algorithms were used to select the input variables for
the neural networks. The results showed the approach was successful for the experiments pre-
sented. It was concluded the prediction was only reliable for a one year time window. Ravi,
Kurniawan, Thai, and Kumar (2008) proposed a sophisticated approach which combined neu-
ral networks, support vector machines, decision trees and genetic algorithms to solve this
problem. Genetic algorithms were used to optimize the weights of the neural network. The
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approach showed to have less Type-I (false positive) and Type-II (false negative) errors than
the individual techniques. It also performed better than a neural network trained with human
expert data.

Hochreiter and Wozabal (2010) used a coupled Markov-chain approach to compute the
fail probability of credit scoring. In this work, maximum likelihood model estimators were
found using genetic algorithms. Neural networks trained with genetic algorithms has also
been combined with regression methods for this application (Nikolaos & Iordanis, 2010). The
proposed method showed a higher rate of correct decisions, but its minimum squared error was
higher than the error of the regression methods. The applications of different neural network
structures was proposed in the future work section. Other examples of the combination of
support vector machines and genetic algorithms were found in the literature (Lin, Liang, Yeh,
& Huang, 2014). In the experiments, this approach showed better results than the traditional
analysis of discriminant method. The future work section suggested the approach needs a
method to define the algorithm’s parameters.

Fundamental Analysis (FA)

Fundamental analysis is concerned with the valuation of securities. It makes use of the com-
pany’s accounting and financial information for this end. A careful estimation allows prof-
itable opportunities to be found. This occurs when an asset is over-valuated or sub-valuated at
the market. The investor can take advantage of this information before assets reach their true
value.

Jiang, Xu, Wang, and Wang (2009) proposed the use of genetic algorithms for this end.
A genetic algorithm selected the most significant variables to determine the company value.
The selected features were analyzed using discriminant analysis to estimate future financial
performance of Chinese companies. It was concluded that the approach was effective to find
the best selection; this selection changed accordingly with the company line of business.

The information of initial pricing offerings (IPOs) can be useful to fundamental analysis
applications (C.-F. Huang et al., 2012). An IPO contains the information used to determine the
asset value when it was initially introduced to the market. The approach used this data to rank
securities. A genetic algorithm was used to determine the most significant indicators, besides
the most suitable weights for each one of them. The objective is to find an equal-weighted
portfolio with the maximum return based on these indicators. The rules can be applied later
to different securities. This fundamental analysis approach attained positive returns in the
experiments, which means the selected stocks attained higher first-day return than the average
of the whole set of securities.

Forecasting (FC)

The forecasting problem is one extensively studied. It consists in the estimation of future
values of securities and trends in data. Investment would be straightforward with a perfect
predictions of the future. Although this is not possible, forecasting involves also an estimation
of the prediction error, allowing to make better decisions under uncertainty.

Packard (1990) presented one of the earliest authors to use genetic algorithms to solve
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this task. Also, the same approach has been applied to find prediction rules for the Mackey-
Glass equation, which shows chaotic behavior (Meyer & Packard, 1992). Kingdon, Taylor,
and Mannion (1997) presented applications of genetic algorithms and neural networks to fore-
cast financial time-series. The application of genetic algorithms for option pricing has been
reported in the literature (S.-H. Chen & Lee, 1997). This approach was tested with the Euro-
pean call Option problem, which exact solution is known. The experiments showed positive
results, suggesting a practical implementation is attainable.

Kim and Han (2000) proposed the use of a neural networks for the prediction of price in-
dexes. The continuous variables were mapped into discrete sets. A genetic algorithm was used
to find the optimal ranges for the input variables. Mathematical transformation approaches
were also found (Ma, Wong, Sankar, & Siu, 2004). This reference reported the use of wavelet
transform and genetic algorithms to forecast the volatility of financial indexes. The obtained
coefficients were processed with genetic algorithms to find useful patterns. The approach was
tested against GARCH models and attained positive results.

Rimcharoen, Sutivong, and Chongstitvatana (2005) proposed an (µ+ λ)-ES (evolution-
ary strategy) to solve the problem. It was tested with data from the Thailand stock market.
This approach showed a better performance than multiple regression. The results showed the
existence of a high correlation between the Thailand and the Taiwan stock markets, which
was exploited by the algorithm.

Polanski (2011) reported multi-dimensional time-series forecasting is also an interesting
problem. This work presented an experiment with foreign exchange market (FOREX) data.
de Brito and Oliveira (2012) compared the performance of genetic algorithms with a hybrid
SVM-SOM (Self Organized Maps) for FOREX trading. The genetic algorithm attained higher
returns in financial crisis scenarios.

The application of fuzzy theory to forecasting problems was also found in the literature
(Goonatilake, Campbell, & Ahmad, 1995). That work proposed the use of fuzzy systems to
make trading decisions. A genetic algorithm was used to find the optimal fuzzy sets config-
uration. The hybrid system generated meaningful rules for human experts. Kanungo (2004)
proposed a combination of genetic algorithms with maximum likelihood estimation. Although
the good results, it was concluded more experiments were necessary to prove its reliability.
Modular morphological neural networks (MMNNs) and genetic algorithms have also been
applied to solve the forecasting problems (de Araujo, Madeiro, de Sousa, Pessoa, & Ferreira,
2006). The approach was tested with data from the Standard & Poor (S&P500) index. The
experiments concluded the algorithm seemed to model time-series as a random walk. The
inclusion of a correction module was suggested as future work.

Parracho, Neves, and Horta (2011) used genetic algorithms to find trend patterns and
use them to predict market tendencies; it was proved with data from S&P500 index. The
method showed positive results for the experiments presented. Araújo and Ferreira (2013)
used genetic algorithms to optimize linear filters in forecasting applications. The obtained
filters were further enhanced using minimum squared-error estimators. The approach was
compared against neural networks with time-delay evolutionary forecasting (TAEF), and ran-
dom walk models. The proposed approach outperformed the benchmarks in the experiments.
Further research on the method properties was suggested as future work. Bernardo, Hagras,
and Tsang (2013) used a type-II fuzzy system adjusted with genetic algorithms for this task.
This approach performed better than genetic programming. The performance was similar to
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neural networks, but it has the advantage of producing results which are meaningful to human
experts.

Ghosh and Chinthalapati (2014) proposed agent-based modeling to forecasting of finan-
cial markets. A non-equilibrium economics was considered and their features were included
into a set of bounded-rational and heterogeneous agents. Interaction was possible between
agents, and genetic algorithms were used to model their behavior at an artificial market. Time
series were binary, this means they only represent the current directional trend of prices. N
agents populated the economy and each one had a number of strategies ranked according with
their performance and limited memory of the past. Agents should decide to buy or sell based
on current state and their own strategies. Four types of agents were considered: Minority
game, majority game, $-game, and delayed minority agents. Minority agents are rewarded
when their decision is opposite to the actual market. Majority agents are rewarded when their
decisions are the same as the actual market. $-game agents assume last market value is the
best estimation of future and are rewarded when this occurred. Delayed agents make the op-
posite assumption than $-game agents. A genetic algorithm with islands is used to simulate
the market. Each island is a sub-population which represents a possible optimal market. Each
island is populated with agents with heterogeneous beliefs. Fitness of each individual depends
of the agent type they represent. Interaction among islands is possible, but each one follows
their own optimization process. The experiments presented two cases: FTSE-100 closing
prices and FOREX case. Binary time series are obtained from original time-series of prices.
The market returns were the ones evaluated instead of individual performance. This means
islands are evaluated instead of individual agents. It is possible to obtain a forecast of future
price based on the returns of each island. The forecasts were used to implement a trading
strategy based on the obtained market models. Agents obtained a hit ratios in out-of-sample
data of about 67%. The authors suggested using the universal information criterion in future
work to better study the significance of the obtained results.

Garcia-Almanza and Tsang (2006) studied the detection of bubbles and crashes in finan-
cial markets. These events are hard to predict because they rarely occurs, nevertheless, they
have heavy impact in markets. The repository method (RM) is an analysis technique which
was applied to the decision trees generated by genetic programming. This method extracts
and simplifies rules encoded in each individual, adding them to a repository if they cover dif-
ferent possibilities than current ones. The work presented experiments designed to discover
the factors required for the good performance the repository method. It was concluded that
the accumulation of rules is crucial to classify correctly the positive cases.

Wagner, Michalewicz, Khouja, and McGregor (2007) proposed a modification to tra-
ditional genetic programming to deal with dynamic environments. This was called dynamic
forecasting genetic programming (DyFor GP). It includes an adaptive sliding-window ap-
proach chooses the best window size to describe the environment. It compares different win-
dows sizes and chooses the one which allowed the best prediction of current data. This one is
used to forecast the next future value. It was applied to estimate U.S. Gross Domestic Prod-
uct. DyFor GP results were better than regular genetic programming and other benchmarks
models.

The financial forecasting tool EDDIE mentioned above has also been applied to fore-
casting (Shao, Smonou, Kampouridis, & Tsang, 2014). This new version provided an ex-
tended grammar for the generated decision trees. Although, this new grammar increased the
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search space. This work proposed a combination of guided local search with fast local search
(GFLS) to solve this problem. Technical indicators were used as inputs. Both the rules and
the forecasting time horizons were optimized. Only the latter are subject to GFLS. GFLS uses
hill climbing to improve current solutions. Guided search modifies hill climbing behavior
through solution classification, fitness modification and class penalization. Fast search di-
vides the space in sub-neighborhoods and eliminates those where no improvement was found
to save computational effort. The method was tested using data from different market indexes
like FTSE-100, Dow Jones industrial average, Nikkei-225 and others. The results indicated
the new approach improved the performance of EDDIE when comparing it to GLS alone.
GLS is the same algorithm without the effort-saving capabilities.

Hamida, Abdelmalek, and Abid (2014) proposed a genetic programming algorithm for
volatility forecasting. Volatility is the implied variance of return at a given time. Volatility can
be estimated from historic data or from observed option prices. Option prices show the expec-
tation about the future price that the underlying asset will reach at maturity time. Forecasting
rules are optimized using genetic programming, where both the historic and option data are
used as inputs. One of the problems to be solved by this approach is determining the sample
size used to compute estimations. Four methods to determine sample size were proposed in
this work: random subset selection (RSS), sequential subset selection (SSS), adaptive random
subset selection (ARSS), and adaptive sequential subset selection (ASSS). The method used
was applied each g cycles of the algorithm. Random subset selection selects a sample size ran-
domly with uniform distribution. Sequential subset selection applies each sample size using
a predetermined sequence. Adaptive methods compute the average mean squared error ob-
tained during g cycles for the sample size used. Sequence order is rearranged according with
this measure for the adaptive sequential method. Selection probability is tuned in a similar
manner for the sample sizes using the adaptive random subset selection method.

Karatahansopoulos, Sermpinis, Laws, and Dunis (2014) studied two different genetic
programming approaches for forecasting applications. One was regular genetic programming,
which evolves mathematical expressions represented as trees. The second one is gene expres-
sion programming. This work proposed a one-day ahead forecasting application to model
the ASE-20 Greek index. Both techniques where tested separately against neural networks,
ARMA models, MA models, and a naı̈ve strategy where the current return value is taken to be
the estimation of future return. Lagged index values and moving averages of the values from
ASE index were the inputs for the proposed techniques. The proposed methods outperformed
the benchmarks. Gene expression programming showed better annualized return than regular
genetic programming.

Mahfoud and Mani (1996) proposed a genetic algorithm forecasting of security prices.
The genetic algorithm was similar to the one included in a learning classifier system based
on the Michigan approach. This kind of system encodes a rule per individual. A similar
approach studied a non-generational Michigan genetic algorithm for forecasting applications
(del Arco-Calderón, Vinuela, & Castro, 2004). Each individual tries to predict a particular
case of the series. It was applied to predict random securities selected form S&P-400. This
method showed the ability to detect regions which cannot be generalized. Both methods are
closer to a learning classifier system than to traditional genetic algorithm. Credit assignment
and conflict resolution are discussed in that work, which are important issues to solve when
implementing learning classifier systems.
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Donate and Cortez (2014) proposed a neural networks approach for forecasting appli-
cations. The difficulty of this approach is finding the best neural network model for the task.
The uni-variate marginal distribution algorithm (UMDA) is used to search for this end. This
one is classified under the category of estimation of distribution algorithms. This algorithm
copies the best half of the current population into the new one; the rest of the individuals are
randomly generated using the probability distribution computed by the method. Two design
strategies for neural networks are considered: Sparsely connected neural networks and time
lag selection neural networks. The former considers a binary direct encoding of neural net-
works which can be directly mapped into a matrix of connections. The latter considers a time-
lagged feed-forward neural network; therefore, the lags are also searched by the algorithm.
Neural networks are first optimized using resilient propagation before applying UMDA. Dow
Jones index data is one of the time series used to test the approach. Comparison methods
used were ARIMA models, random forest (RF), echo state networks (ESN), and support vec-
tor machines. The proposed method showed to attain lower mean-squared error the the other
ones.

Index Tracking (ITR)

Market Indexes are extensively used as benchmarks in financial applications. They are also
used as indicators of the health of economies. Different organizations take the most repre-
sentative securities in the market to build their indexes. The Dow Jones Industrial Average
(DJI), the Mexican Índice de Precios y Cotizaciones (IPC), the Japanese Nikkei 225, and the
British FTSE-100 are examples of market indexes. Nevertheless, to build a portfolio with the
exact composition of a market index is a difficult task. For example, round lots restrictions
will make feasible replications to have a prohibitively high value. For example, a portfolio
based on the FTSE-100 would require to buy all these securities. Information about the exact
composition of IPC is quarterly published only (Notas Sobre Índices, 2015, February), which
difficult its replication.

Index trackers are used to replicate the values of market indexes. The value of these
instruments are usually a fraction of the true index value. Index trackers are not limited to the
original index composition. Other instruments besides securities are used to build trackers.

G. Chen and Chen (2011) proposed an adaptive genetic algorithm for pattern recognition
(AGA-PS) for index tracking purposes. This approach is a type of local search based on
neighborhoods. Crossover and mutation probabilities are updated online. The authors selected
20 securities from Hushen-300 stock index and tried to replicate its value with minimum error.
The approach showed better results than a traditional genetic algorithm for the same problem.

Andriosopoulos and Nomikos (2014) studied tracking of a spot energy index built from
information from the New York mercantile exchange. Commodities futures have become a
mean to attain effective investment diversification. Nevertheless, these instruments oblige
their holders to provide the commodity traded at maturity time. This work proposed to invest
in commodity-related equities instead to avoid this problem. The hypothesis is that a careful
selection of securities from commodity-related companies is a suitable tracker of real com-
modities. This work proposed to solve using a differential evolution algorithm (DEA) and
genetic algorithms. The average and the standard deviation of the tracking error are combined
to compute a single-objective fitness value.
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Securities from the Dow Jones, the Bovespa composite, and the FTSE-100 were used to
build the tracker. Different number of stocks and different values of the trade-off parameter λ
were tested in the experiments. The method is applied in buy-and-hold, quarterly, and monthly
re-balancing scenarios. The results showed the method is capable of tracking the index. The
Bovespa pool even outperformed the benchmark. The authors concluded that both equities
and commodities have similar return distributions, making their tracking possible. 15 stocks
and λ = 0.8 were the best combination of parameters.

Market Simulation (MKS)

Some studies have exploited the advantage of computational methods to investigate the prop-
erties of markets. Genetic algorithms and other techniques allow the simulation of agents with
different behaviors. These agents are allowed to interact in artificial economies to observe the
effect of their behavior on the economy. These studies are concerned with the validation of
theoretical models. Agents which are built under the model assumptions are expected to at-
tain the results predicted by it. On the other hand, agents with heterogeneous behaviors can
be used to find more realistic models of the economy.

Kampouridis, Chen, and Tsang (2012) used genetic programming combined with self-
organized maps (SOM) to simulate agents in a constantly changing economy. The hypothesis
that a constant evolution of strategies is needed for the agents survival is concluded from the
experiments.

Game theory concepts are a useful tool to model market behavior (Sinha, Malo, Frant-
sev, & Deb, 2014). That reference proposed a study about multi-period, multi-leader-follower
Stackelberg game to model oligopoly economies. They are based on Cournot games. Cournot
games consider an economy where many companies compete with each other to sell the same
type of product. Each agent can influence supply and market price with their own production.
They should estimate future price and decide their production based on their estimations to
maximize profit. Stackelberg games differ form Cournot games because the former ones have
two types of agents: leaders and followers. Leaders move first and posses the necessary infor-
mation about followers to estimate their future actions. Followers observe the leader’s actions
and make decisions conditioned to them. This is a case of bi-level optimization because both
leaders and followers are part of a Cournot game among their equals. This work proposed a
model and applied it to an aircraft manufacturing industry case. A steady state, real-coded
genetic algorithm is proposed to solve the model, making decisions for a number of periods
ahead. The genetic algorithm works first the leader part of the chromosome. Parent centered
crossover (PCX) and polynomial mutation were used for this end. The closest individuals to
the offspring are identified and their follower part of the chromosome is copied into them.
n − 1 random low-level individuals are generated to form a sub-population along with the
copied information. New low-level individuals are generated using crossover. The low-level
individual with less violations to restrictions is finally chosen. The algorithm stops when the
average normalized population variance is smaller than η. The algorithm was capable of solv-
ing the instances presented in the experiments. Parallelizations were proposed in the future
work section.

Co-evolutionary approaches were also reported in the literature (Franke, 1998). That
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reference proposed a co-evolutionary genetic algorithm scheme to simulate a cobweb econ-
omy with heterogeneous beliefs. A cobweb model explains prices fluctuation based on the
expectations of producers about the future demand of their product. Producers should plan
production based on their expectations. Changes in their expectations affect supply along with
price. The modified genetic algorithm is similar to the one found in learning classifier sys-
tems. Martinez-Jaramillo and Tsang (2009) simulated a market populated with fundamental-
analysis-based traders, technical-analysis-based traders, and noise traders. Technical agents
used a co-evolution genetic programming approach to find their strategies. Both Single Pop-
ulation and Multiple Population models were studied. Single population models consider
each individual as an independent agent. On the other hand, multiple population models use a
whole population to represent a single agent. The red queen principle (RQP) is included in the
model by taking forecasting precision as the fitness measure. The red queen principle holds
constant evolution is observed in competitive environments. In this case, individuals must
improve constantly, lest they will be left behind by new individuals with better accuracy. This
work concludes heterogeneity, learning, and the red queen principle are factors that should be
present in real markets.

Protopapas, Battaglia, and Kosmatopoulos (2010) used co-evolutionary genetic algo-
rithms to simulate agents in Cournot games. They can affect prices with their own produc-
tion. They should decide their production to maximize profit. The work concludes the games
converges to Nash equilibrium in social learning scenarios. In these scenarios the information
of all the populations is used together to update their strategies.

Procurement(PRC)

Procurement is the systematic process used by companies to purchase their necessary goods
and services. Procurement is important to ensure purchases satisfy their requirements at the
lowest price possible.

Some references treated this problem as a case of stochastic Programming (Tezuka,
Munetomo, & Akama, 2007). They proposed modifications to a regular genetic algorithm to
accomplish this task. This algorithm is applied to noisy objective functions, where the mean of
individual fitness is estimated using a Monte-Carlo approach. The approach tries to determine
the sample size of a pair of individuals which need to be discriminated using tournament
selection. An F-test based method is proposed to estimate the sample size to minimize the
variance of the average fitness of individuals. Bootstrapping is applied to avoid excessive
evaluation. The experiments studied a case of procurement planning where a company should
decide the amount of materials and time of purchase based on estimations of the market price
of products. Market prices were treated as stochastic variables.

Portfolio Optimization (PSP)

Portfolio optimization is based on the concept of investment diversification. Modern portfolio
theory (MPT) considers each investment decision implies risk, which is a measure of the
possible loss investors could face when they make a particular decision. This theory proves
a set of assets (i.e. portfolio) can attain less risk for the same expected return. Portfolio
optimization searches these optimal portfolios, which is a case of Pareto optimization.
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Modern portfolio theory proposes a quadratic optimization algorithm which solves effi-
ciently a mean-variance description of portfolios. Nevertheless, the problem turns to be dif-
ficult when real-world restrictions are considered. Transaction costs, round-lots, composition
boundaries, and non-stationary time-series are examples of these restrictions.

Gupta, Mehlawat, and Mittal (2012) proposed a hybrid method based on genetic algo-
rithms and support vector machines. The first part applies a support vector machine to classify
assets based on selected financial indicators: Liquidity, high return and low risk. The second
part applies a real-coded genetic algorithm to build the portfolio. The investor’s preferences
are included when selecting one of the sets of securities determined by support vector ma-
chines. An optimal portfolio is searched using a weighted sum of these financial indicators.
Boundaries of portfolio composition are considered into the process.

Wang, Hu, and Dong (2014) proposed a portfolio optimization model based on a con-
vex risk measure called weighted expected shortfall (WES). In this measure, the cumulative
probability of final portfolio value (which should be less than xα) is weighted by an expo-
nential function to compute WES. A coefficient λ is included in its argument to control risk
aversion. The proposed model is a case of nonlinear optimization. Genetic algorithms were
chosen to optimize the model. WES is the fitness value to be minimized. 10 random stocks
from the Shenzhen index were randomly chosen. Portfolios optimized with different values
of risk aversion coefficient were compared in the experiments. The optimized portfolios were
kept in buy-and-hold for 60 days to test their performance.

Some references reported combinations of genetic algorithms with local search algo-
rithms (Hochreiter, 2014). They proposed a genetic algorithm combined with local search to
solve a risk parity portfolio selection problem. Risk parity portfolios are those where each
stock weight is adjusted in a way each asset contributes equally to the total risk of the portfo-
lio. The problem is trivial when long-only portfolios are allowed, but it turns difficult when
short positions are possible. The objective functions is the sum of differences of average risk
per stock. Elitist selection, and random addition of individuals are some of the specific prop-
erties of this algorithm. The best solution found by the genetic algorithm is then optimized
using local search. The method was tested with data from the Dow Jones index the and S&P-
100 index. It was compared against a minimum variance portfolio and an equal-weighted
portfolio for the long-case. The long-short case was compared against randomly generated
portfolios. The proposed method obtained the best results.

Genetic programming has also been studied to solve portfolio selection problems with
different performance measures (Wagman, 2003). That reference proposed a genetic pro-
gramming algorithm to find rules based on technical analysis indicators to design portfolios
with high return of investment (ROI) rate. The algorithm searched for portfolios with higher
ROI than the current market interest rate under conservative market conditions. The average
from past prices, historic minimum, and maximum historic data were used as inputs to the
system. Data from the DJI from 1979–1980 were used in the experiments. Future work in-
volved considering capital adequacy into the optimization process. In other references, Krink
and Paterlini (2011) used a differential evolution multi-objective approach for a similar appli-
cation.

Static restrictions to portfolios are also of interest of some references (Lwin, Qu, &
Kendall, 2014). That reference studied a mean-variance portfolio selection problem with car-
dinality, quantity, pre-assignment, and round-lots restrictions. Cardinality restricts the number
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of stocks in the portfolio. Quantity refers minimum and maximum proportion of assets in the
portfolio. Pre-assignment restriction forces the algorithm to include certain stocks in the port-
folio. Lots of a specific number of stocks can be traded only. This work proposed a new
multi-objective algorithm for the task, and compared it against four popular multi-objective
evolutionary algorithms: The non-dominated sorting genetic algorithm (NSGA-II), the Pareto
envelope selection algorithm (PESA-II), the strength Pareto evolutionary algorithm (SPEA-
2), and the Pareto archived evolutionary strategy (PAES). The proposed algorithm encodes
portfolios using two vectors: One to indicate if the specific asset is part of the portfolio and
another for the portfolio weights. The composition of non-dominated portfolios is observed;
each one of their assets are given a concentration value proportional to their number of oc-
currences. Candidate assets are selected using their concentration values. Pre-assigned stocks
are compulsory included. Three random portfolio are chosen from the population. Candidate
portfolios are generated from these ones using mutation operators or scaling factors. Portfolio
weights of individuals are determined selecting one of these methods randomly. The result-
ing weights are modified to comply with quantity and round-lots restrictions. The methods
were compared using typical multi-objective measures like the ∆ metric or the hyper-volume
of solutions. The proposed method showed better performance than the benchmarks in the
experiments.

Garcı́a, Quintana, Galván, and Isasi (2014) studied the effect of re-sampling in multi-
objective algorithms. This work solved a mean-variance portfolio selection problem with
cardinality and quantity restrictions. Re-sampling was implemented using a bootstrapping
method where a sliding window is used to determine the sample data; expected return of
assets and covariances matrix were recomputed from this new sample. Popular multi-objective
algorithms were modified to implement re-sampling. Data from the Frank Russel indexes
and the Standard & Poor were used for the experiments. SPEA-2 attained the maximum
improvement in quality solution by the inclusion of re-sampling.

Portfolio selection can be understood as a stochastic optimization problem (Hochreiter
& Wozabal, 2010). That work made a review about single-state portfolio selection and
multiple-period portfolio selection. Stochastic optimization considers parameters in the model
to be probability distributions instead of deterministic ones. Monte-Carlo approaches and
clustering methods are used to estimate these distributions. The conclusion was evolutionary
algorithms allow considering a wide variety of risk measures and restrictions.

Some references (Adebiyi & Ayo, 2015) have proposed modifications to the differential
evolution algorithm for portfolio problems. That reference presented the generalized differen-
tial evolution algorithm 3 (GDE3) to solve a mean-variance portfolio selection problem with
the following restrictions: Bounded portfolio weights, cardinality, minimum transaction lots,
and expert opinion. Expert opinion is a weight in the range ei = [0, 1] which describes the
likelihood the asset to attain its expected return. Assets with ei < 0.5 are not included in the
portfolio. This value is randomly initialized for this study. The model includes the investor’s
desired return. GDE3 generates both feasible and unfeasible offspring. Feasible offspring
are always preferred. On the other hand, their parents should dominate the offspring to be
selected. Crowding is used to determine which individuals are located at less populated ar-
eas of solution space. Individuals are sorted according with this measure. Non-dominated
and feasible individuals are saved for the next generation. The proposed method was tested
with data from the Hong-Kong Hang Seng index and the German DAX-100. The method was
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tested with different desired return values and portfolio sizes. Mean variance of solutions,
worst variance, standard deviation of solutions variance and mean execution time were the
proposed performance measures. The method was compared against genetic algorithms, sim-
ulated annealing, taboo search (TS) and particle-swarm optimization (PSO). The proposed
method outperformed the benchmarks in the experiments.

Ranković, Drenovak, Stojanović, Kalinić, and Arsovski (2014) proposed the solution of
a Value-at-Risk (VaR) portfolio selection problem using genetic algorithms. That references
stated the Pareto front of optimal portfolios is not restricted to be connected and convex when
value-at-risk is considered. This work studied the proposed problem using a single-objective
genetic algorithm and the multi-objective algorithm SPEA2. This work proposed the use of
portfolio weights computed from the number of shares instead from the asset value. This
modification avoids dynamic properties of markets to be mixed with static portfolio optimiza-
tion. The single objective genetic algorithm combines both objectives using the parameter λ
and its complement 1 − λ, where λ = [0, 1]. α = 0.05 to compute value-at-risk in the ex-
periments. 10 exchange-trade funds (ETFs) were considered. Data was taken from February
2008 to December 2010. An equally-weighted buy-and-hold portfolio was used for compar-
ison. Different values of λ were used to build the efficient frontier using the single-objective
genetic algorithm. Two methods were used to obtain the efficient frontier: The first one used
a fixed set of increasing λ values. The second compute the necessary λ value to attain a par-
ticular return level. This latter method obtained the best results. These results were also better
than the ones obtained using SPEA2. The authors remarked solutions obtained using single-
objective genetic algorithm were not necessarily Pareto optimal because value-at-risk is not a
coherent risk measure. SPEA2 has the advantage to compute all the solutions simultaneously.
All three methods outperformed the benchmark.

Trading (T)

Trading is the practice of finding profitable investment strategies. Forecasting is related to
trading because an estimation of the future is usually required to make correct decisions.
Trading is concerned about what to do with the forecast to make profit. For example, risk
(i.e. uncertainty) can be considered to minimize loss probability along with maximizing ex-
pected return.

M. Lim and Coggins (2005) used genetic algorithms to find trading rules. The fitness
function was based on the volume-weighted averaged price (VWAP) measure. The approach
outperformed buy-and-hold, which is the strategy to keep a security until the end of time
horizon. It was concluded volume information is useful for trading. A reinforcement learning
approach was suggested in the future work section.

Some references (Hirabayashi, Aranha, & Iba, 2009) proposed to find the best trading
time instead of forecasting. The estimation is based on technical analysis indicators like the
relative strength index (RSI), moving averages, and percent difference from moving averages.
It was applied to FOREX data for USDs, Euros, and Japanese yens. Positive returns were
reported in stationary statistics time windows. A multi-objective approach was suggested in
the future work section to include risk in the optimization.

Matsui and Sato (2009), proposed a solution based on genetic algorithms using binary
and integer representation of rules. Technical indicators like moving averages, exponential
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moving averages, and Bollinger bands were used to conform these trading rules. In the pre-
sented experiments, the integer representation obtained higher profits at less computational
cost. A later contribution (Matsui & Sato, 2010) extended this work suggesting the use of
neighborhood evaluation in genetic algorithms for trading applications. The idea is to reduce
over fitting by considering the average of neighbors and individual fitness. The experiments
showed the method presented less over-fitting than the former approach, although the com-
putational cost increased proportionally to neighborhood size. Further investigation of this
approach was recommended in the future work section.

Lipinski (2012) described a similar approach for trading using technical indicators. Ge-
netic algorithms and simulated annealing were proposed to solve the problem. Both tech-
niques were improved with local search operators. A parallel processor architecture is de-
scribed and tested in this work. Some references have combined the concept of portfolio
optimization with trading to create investment methods. This is possible because a portfolio
change implies a trading action (J.-S. Chen, Hou, Wu, & Chang-Chien, 2009). That work
defined portfolio optimization as a combinatory optimization problem. A new combination
genetic algorithm was suggested to solve the problem. Custom operators for combinatory
problems were proposed.

Some references have studied the efficiency of traditional approaches (e.g. equally
weighted portfolios) for trading (Sarijaloo & Moradbakloo, 2014). In that work, genetic
programming was proposed to solve a mean-variance portfolio problem with maximum and
minimum limits in their composition. The best 50 securities from the Tehran stock market
index (2006 − 2009) were chosen for this study. Optimal portfolios were chosen yearly and
compared against equal-weight portfolios and random search. The approach showed better
performance for the time range used in the experiments.

Yaman, Lucci, and Gertner (2014) used evolutionary programming (EP) to generate
trading agents with different investment strategies. Agents were modeled using echo-state
network models (ESNMs). They are a type of neural network with three layers: Input layer,
hidden layers, and output layer. Feedback is connected from the output layer to the hidden
layer and from the hidden layer to itself . All connection but the ones going to the output layer
are randomly initialized and fixed from the beginning. Evolutionary programming is used to
optimize the free connections. The individuals have two parts: The objective vector and the
variance vector. Only the first one is evaluated, but both of them evolve with time. Mutation
is the only operator used. This work used an EP(µ + µ) type in the experiments. This means
µ new individuals are generated from µ original individuals. The half of the population with
the lowest fitness values is discarded. Resulting agents have different behavior depending on
their initialization. Exchange rate from different currencies and technical indicator were used
as inputs. The experiments concluded that having a set of different behavior agents is more
profitable than one single type of agents.

Some works (Lohpetch & Corne, 2009) have stated other references who report prof-
itable strategies were unable to repetitively outperform buy-and-hold. This work proposed a
genetic programming algorithm to attain this goal. Technical analysis indicators are used for
the rules. Some of the modifications to ensure solution quality were the following: The use
of monthly data, a reduced function set, over-complexity penalization, and an objective func-
tion which penalized lower than buy-and-hold performance. The approach was successful
in the presented experiments, although, the conclusion suggested conducting more tests with
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different time windows.
Y. Chen and Hirasawa (2010) proposed robust genetic network programming (R-GNP)

to find trading strategies. A genetic relation algorithm (RGA) was proposed to find optimal
portfolio to be managed using the R-GMP model. This approach has the property to work with
graphs instead of trees. On the other hand, relational genetic network programming encodes
trading strategies using graphs. Judgment nodes, processing nodes and delays are part of this
graph. Judgment nodes represent conditions, processing nodes represent trading actions and
delays represent the technical indicator used. This work used the β parameter as risk measure.
β has its origins in the capital allocation pricing model (CAPM). β is the fraction of market
risk borne by the portfolio. The initial portfolio was build using a relational genetic algorithm
(RGA). The paper concluded that further tests are necessary to evaluate the performance of
relation genetic network programming.

Other works (Hochreiter, 2015) have also proposed a method based on genetic pro-
gramming for trading applications. This reference used genetic programming and sentiment
indicators to find trading rules. Sentiment indicators were extracted from a social media ser-
vice to determine the expectations of the online trading community. The estimations are based
on the number and contents of messages in the service about stock from the Dow Jones in-
dustrial average. If-then type rules were obtained with this method. Dow Jones data from
2010–2013 were used for training. The classical portfolio optimization model was used to
build buy-and-hold portfolios. Equal weighted portfolios were also used for comparison. The
proposed approaches outperformed both benchmarks in the experiments. The inclusion of
transaction costs was left as future work.

Other references which proposed combinations of technical indicators and evolutionary
algorithms were found in the literature (Radeerom, 2014). This reference is an example. The
system generates a trading signal to indicate the best moments to buy or sell stock. The process
consists of two phases: The first one is the selection of the most suitable stocks, the second
is the trading of the selected stocks. The technical indicators used are the following: Relative
strength index (RSI) and moving average convergence/divergence. The algorithm maximizes
the last-day Sharpe’s ratio. This risk-weighted measure allowed to treat the multi-objective
problem as single objective. Stocks with negative Sharpe’s ratio or negative shareholder’s
equity value are eliminated. Trading rules based on the mentioned indicators and their com-
binations are optimized with training data. The approach was tested with the Thai-100 stock
index. The results showed the proposed method outperformed buy-and-holds.

A.-P. Chen and Chang (2005) proposed the use of the XCS for trading. The rules were
encoded to process sentiment indicators. Sentiment indicators are variables which measure
general expectation of investors about market trend. For example, a bull market means in-
vestors expect a rise in prices, while bear markets indicates price drops. The volatility index,
put-call ratio, and trading index were used in this work. The XCS found rules to decide when
to sell or by futures. It was compared against buy-and-hold (the future was kept until last
day), a trend-based strategy and a mean-reversion strategy. This last strategy made transac-
tions when sentiment indicators reached a threshold. The XCS showed better performance
than the other strategies.

H. Huang, Pasquier, and Quek (2009) proposed a hybrid system which combines a hier-
archical co-evolutionary fuzzy System (HiFECS) and a hierarchical co-evolutionary genetic
algorithm (HCGA) to forecast stock prices. A prudent strategy based on the price percentage
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oscillator (PPO) is run using these forecasts. The experiments showed HiFECS outperformed
buy-and-hold and other predictive models like evolving neural networks (EFuNNs), dynamic
neural-fuzzy inference systems (DENFIS), and rough set-based pseudo outer-product fuzzy
neural networks (RSPOP).

Estimation of distribution algorithms have also been considered in some references
(Lipinski, 2007). This work made a comparative study about the extended-compact genetic
algorithm (ECGA) and BOA. Some modifications were necessary to perform online trad-
ing. In the experiments, both algorithms attained better returns than static strategies like
buy-and-hold. Although, ECGA proved to be time-consuming and not suitable for an online
application. BOA was faster, but with lower returns.

Matsumura and Kakinoki (2014) proposed a multi-objective genetic programming ap-
proach for portfolio-based trading. The algorithm first determines the 10 most suitable stocks
to be traded. A multi-objective genetic algorithm is proposed for this end. The algorithm is
a regular genetic algorithm where the fitness value is the number of individuals which domi-
nate the individual to be evaluated. The average return along the time horizon and covariance
are used to determine domination of individuals. Elitism and an end-cutting operator ensures
solutions to be non-dominated and well spread. This approach is used in a second step for
portfolio selection. Investment ratio is the fitness value to be maximized. This step uses a
real-numbered representation of individuals. A third step uses genetic programming to opti-
mize strategy trading trees. In this case, an optimal initial portfolio is selected and buy/sell
operations rules are determined based on technical indicators. Experiments used data from
the Nikkei-225 index. The results were compared against the performance of buy-and-holds.
The performance of the proposed technique varied with the market current scenario.

Hu, Feng, Zhang, Ngai, and Liu (2015) proposed a XCS was to find trading rules based
on trend following strategies (TF). Technical indicators were computed from history data to
input the system. Moving averages and volume moving averages were used for this end.
Their state is binary encoded for each stock. The XCS estimates short-term trading only,
while long-term trend is estimated using moving averages only. Both signals are combined
to generate the final trading signal. Buying occurs only when the XCS recommends it at bull
market condition. Selling occurs when the XCS recommends a sell at bear market condition.
No new position is opened while there is one already on course. Stop loss was implemented
to avoid heavy loss. Data from the Shangai stock exchange from January 1, 2001 to July 31,
2013 were used for the tests. Performance was measured using the Sortino’s ratio, which is
a risk-weighted return measure where rise fluctuation is distinguished form fall fluctuation.
Buy-and-holds, neural networks and decision tree models were implemented for comparison
purposes. The XCS method attained higher return than the benchmarks. Besides, the gener-
ated rules were analyzed to reach some conclusion about the best behavior at different market
conditions. The conclusion was that the generated rules were consistent with general financial
knowledge.

Schmidbauer, Rösch, Sezer, and Tunalioğlu (2014) studied the effectiveness reduction
suffered by trading rules-based systems when they are tested with out-of-sample data. The
authors indicated this is a consequence of data-snooping bias. An a-priori robustness strategy
is proposed to reduce this adverse effect. This approach used general programming, which
encodes rules using a Backus-Naur form grammar. Fitness of individuals is computed from
their profit and their hit-miss ratio. The approach requires opening, minimum, maximum,
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and closing prices to be input to the algorithm. A-priori robustness is ensured by generating
simulated realizations of these time series. Time series realizations for closing are created
using maximum entropy bootstrapping. Minimum and maximum signals are generated from
ARMA models. The opening signal realizations are generated using kernel density estimation.
The method was tested for FOREX trading of Euro/USD exchange with intra-day data from
February to June 2011. A-priori robustness genetic programming was tested against regular
genetic programming. The method was tested with different out-of-sample data, and different
sets of set-up parameters. The results indicated the implementation of a-priori robustness and
the time period chosen for the test were the main sources of variation for final profit. In-sample
data robustness was curbed by the method, but it enhanced robustness of the out-of-sample
tests. Profit seemed to be increased, but further work is needed to ensure the repeatably of the
results. Fridays proved to be a day with higher uncertainty than others, the a-priori robustness
method seemed to be more effective at that day.

Trading Execution (TX)

The trading execution problem is concerned with the methods used to fulfill trading orders
efficiently. For example, a trading method could make the order to sell a stock which price
has dropped dramatically, but the probability the actual order could be executed is low until
stock price seems to stabilize. Another interesting case occurs when transaction volume is
high enough to impact prices. Brokers should schedule partial orders to avoid adverse effects.

Almgren and Chriss (2001) suggested the problem of execution schedules. This ap-
proach considers investor wishes to liquidate a specific asset before some fixed time limit.
Prices are affected by volatility, unbalance and market impact. The impact on the market
depends on the volume of transactions. The authors used stochastic dynamic programming
to find optimal execution strategies, and Monte-Carlo simulations to investigate their perfor-
mance. Nevertheless, this work did not made use of evolutionary algorithms. Nevertheless, it
was included in the review because of the novelty of the problem.

2.2.4 Evolutionary Algorithms and Financial Applications Review Con-
clusions

Results of the review are summarized in table 2.3, and figures 2.1 and 2.2. The surveys used
to define the scope of this review were not considered. Table 2.3 presents the percentage of
references which treated a particular problem and used a particular solution method. Open
research areas can be identified as white spaces at the table. White spaces indicate the specific
problem has not been solved with a specific solution method. Figure 2.1 summarizes total
percentage of references per solution method. Figure 2.2 summarizes the total percentage
of references per problem. Table 2.4, and figures 2.3 and 2.4 provide the same information
about the references covered by other similar surveys. The references found in other surveys
are called past references in this discussion. Care was taken to avoid counting repeated ref-
erences. Most of the references of this review were published later in time than the scopes of
other surveys. Some references which were published before the scope of other surveys were
included for completion purposes.
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Table 2.4 shows genetic algorithms are the solution approach with the widest applica-
tion to solve different financial problems in the past. Table 2.3 shows this tendency has been
continued. Figure 2.3 shows genetic algorithms references are about 45% of total. Genetic al-
gorithms seemed to have become even more popular through time. Figure 2.1 shows genetic
algorithms references augmented to about 60% of the total. The rise of interest in genetic
algorithms is probably due their popularity has spread outside of the evolutionary computing
community. This means people from other fields has adopted genetic algorithms to solve their
respective problems. Other Darwinian approaches are yet in process to reach mainstream pop-
ularity outside the field. Genetic algorithms applications have also changed with time. MKS
and BKR were the most popular applications, according with past references, but new refer-
ences indicate that FC, T, and PSP are now more popular than MKS. This could be explained
probably MKS was the first link between the economics community and the evolutionary
computing community. Further research is needed to confirm it.

Multi-objective algorithms references and genetic programming references were at sec-
ond and third place, respectively. Nevertheless, while the number of genetic programming
references seems to remain unchanged (about 20%), multi-objective references percentage
has dropped significantly. Although, the drop of percentage of references does not mean the
community has lost interest in them. This drop seems a relative effect to the rise of interest
in genetic algorithms. On the other hand, The number of problems approached with genetic
programming and multi-objective algorithms seemed to have decreased with time. FC and
T problems seemed to have substituted MKS for the genetic programming case. This could
be explained by the reported advantages of its ability to build explainable rules. Genetic pro-
gramming has been applied to problems where new knowledge about markets and investors is
desired. MKS has benefited from this properties, but the idea to have several agents working
simultaneously appears to be costly. Island genetic algorithms allow a similar effect with a
single population. Islands could be implemented in genetic programming as well.

Learning classifier systems are the fourth approach with more references. Table 2.4
showed they have been used in the past for ABN and MKS. New references show the in-
terest has changed to FC and T applications. The references only mentioned LCS and XCS
types. Other variations of learning classifier systems have yet to be applied to financial prob-
lems. Nevertheless, figure 2.1 shows the interest for learning classifier systems in financial
applications have augmented with time.

Figure 2.4 shows the percentage of total references per problem. MKS, PSP, and BKR
were the three most addressed problems in past references. Newer references indicate the
interest has changed to FC and T applications. One hypothesis about this change is, proba-
bly, PSP applications were re-defined to be trading problems in new references. Changes in
portfolio are equivalent to trading decisions. The difference between PSP and T is the factor
of risk, which is explicitly stated in PSP. Trading surely benefits from a return/risk model
because it allows to include uncertainty into the optimization process. FC seemed to have
attained higher levels of attention because better estimations of the future has direct impact in
profit. Therefore, trading applications try to manage risk in the most profitable manner while
FC applications try to reduce risk. In other words, T and FC interest raised together because
they are closely related to each other.

Figures 2.1 and 2.3 show new references have payed more attention to co-evolutionary
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approaches and estimation of distribution algorithms. There is the possibility some of the ref-
erenced works has made use of co-evolution without explicitly report it. Co-evolution is more
a concept than a concrete technique. This means there could be co-evolutionary approaches
using genetic algorithms, genetic programming, or any other technique. The co-evolution
term was found in past references, but these cases did not associated it to a evolutionary ap-
proach. Therefore, it could not be counted as such. Other cases did not clearly stated their
evolutionary computing approach was co-evolutionary.

On the other hand, estimation of distribution algorithms are a relatively new approach.
It seems natural they are yet to find application on different fields. Besides, their references
are specially concerned with deception, linkage and hierarchical problems. A methodology to
characterize real-world problems using these concepts seems an open question. Nevertheless,
both co-evolution and estimation of distribution algorithms seem solution methods with high
potential to be exploited in financial applications.

Figures 2.2 and 2.4 show there are problems which have received relatively few attention
in the literature. TX, PRC, ITR, and CM are the problems with less references. Most of
these problems seemed to be neglected also in past references. Darwinian approaches are a
promising option to find solution to them.

Finally, tables 2.3 and 2.4 indicate financial applications of Darwinian approaches is yet
open to further research. Both tables show many combinations of problems and approaches
where no references were found. This occurs in both tables. Moreover, references in both ta-
bles are concentrated at few problem-approach pairs. This indicate even the problems already
addressed are still open to further investigation.

Table 2.3: Summary of Open Problems. Percent of References per Problem and Approach.
Problem GA GP LCS MO CV EDA

ABN 2.778
ARB 1.389 4.167
BKR 1.389 1.389
CS 6.944
CM 1.389
CP
FA 2.778
FC 20.833 6.944 2.778 1.389
ITR 2.778

MKS 1.389 2.778
PRC 1.389
PSP 6.944 1.389 4.167

T 8.333 8.333 1.389 2.778 2.778 1.389
TX
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Figure 2.1: Summary of References per Solution Approach.
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Table 2.4: Summary of Other Surveys. Percent of References per Problem and Approach.
Problem GA GP LCS MO CV EDA

ABN 3.846 0.769 0.769
ARB 0.769
BKR 16.154 3.077
CS 2.308 1.538
CM
CP 2.308
FA 0.769 2.308
FC 3.077 2.308
ITR

MKS 15.385 10.769 0.769 4.615
PRC
PSP 0.769 18.462

T 3.077 2.308 3.846
TX

Figure 2.2: Summary of References per Problem
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Figure 2.3: Summary of Other Surveys per Solution Approach.
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Figure 2.4: Summary of Other Surveys per Problem
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2.3 Conclusions
This chapter presented the State-of-the-Art of the problem. It was divided in two parts. The
first one focused on the solution of multi-period portfolio decision problems, and the second
one was devoted to the application of evolutionary algorithms to finance.

The multi-period portfolio theory was proposed in the references to include transaction
costs and other dynamic restrictions to portfolio optimization. The problem is relevant when
state-dependencies are part of its definition. Most of the references are focused on finding
closed-form solutions to the problem, which has proved to be a difficult task. Also, some
reference has proposed numerical methods could be useful to find solutions in real-world ap-
plications. Extending the last idea, this work proposes using evolutionary algorithms to solve
the problem applying Monte-Carlo methods. The evolutionary approach has the advantage to
include any kind of restriction with less difficulty than purely mathematical approaches.

The second part was a review about evolutionary algorithms and financial problems.
The review identified the coverage of other similar works and limited its scope to uncovered
references. This approach allowed an analysis about the change of the problems and solu-
tion approaches along time. The review concluded the interest about problems and solutions
approaches have changed with time, and genetic algorithms are the most popular approach.
Also, it identified some research opportunities which deserve further attention.

The conclusion was multi-objective optimization has been widely used to solve port-
folio selection problems, but multi-period portfolio selection have received limited attention.
Therefore, this approach is a good suggestion to implement the solution model proposed in
this work.





Chapter 3

Structure-based Evolutionary Algorithm

The hypothesis of this work states evolutionary algorithms are well suited to devise an invest-
ment method which considers dynamic restrictions, the investor’s preferences, and data inno-
vations to make decisions. The solution model considered a multi-period framework for the
portfolio selection problem because it allows the inclusion of transaction costs, inflation, and
other state-dependent factors into the optimization. Last chapter concluded multi-objective
evolutionary algorithms (MOEAs) are a natural choice to solve this type of problems.

Multi-objective evolutionary algorithms have been mainly used to solve static portfo-
lio selection problems with different constraints combinations in the literature. The multi-
objective approach is preferred because it is able of finding several Pareto-optimal solutions
in a single run. Several multi-objective algorithms have been proposed in the literature, al-
though, this work introduces a new algorithm to implement the investment decision method.

The first part of the chapter makes a brief introduction to multi-objective optimization
and evolutionary algorithms. The second part describes the new algorithm. The last section
shows some tests about its performance. The explanation assumes the algorithm is applied
to classical multi- objective optimization. Stochastic optimization will be developed in later
chapters.

3.1 Multi-Objective Optimization
Multi-objective optimization deals with the problem of finding optimal solutions for many
objective function simultaneously. The objectives can be contradictory. For example, the
design of engines with maximum power and minimum fuel consumption imposes a conflict
because fuel consumption increases with the engine’s power.

In general, the specific problem addressed by evolutionary multi-objective algorithms is
the following (Ponsich et al., 2013):

min F(x) := [f1(x), f2(x), . . . , fm(x)] ,
subject to gj(x) ≤ 0, j = 1, 2, . . . , J ;

hk(x) = 0, j = 1, 2, . . . , K;

 (3.1)

where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : Rn → R, i = 1, 2, . . . ,m
are the objective functions, and gj, hk : Rn → R, j = 1, . . . , J, k = 1, . . . , K are the problem
constrains.

45
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Moreover, the optimality concept assumed by these algorithms is the following (Ponsich
et al., 2013):

Definition 1 Given two vectors x, y ∈ Rm, F(x) ≤ F(y) if fi(x) ≤ fi(y) for i = 1, . . . ,m,
and x dominates y (denoted by F(x) ≺ F(y) ) if F(x) ≤ F(y) and F(x) 6= F(y).

Definition 2 A vector of decision variables x ∈ X ⊂ Rn is non-dominated with respect
to X , if there does not exist another x ∈ X such that F(x′) ≺ F(x).

Definition 3 A vector of decision variables x∗ ∈ F ⊂ Rn (where F is the feasible region) is
Pareto Optimal if it is non-dominated with respect to F .

Definition 4 The Pareto Optimal Set P∗ is defined by:

P∗ = {F(x) ∈ F| x is Pareto optimal} .

Definition 5 The Pareto Front PF∗ is defined by:

PF∗ = {F(x) ∈ Rm| x ∈ P∗} .

3.1.1 Classical Approaches
Some classical techniques to deal with multi-objective problems are the following (Deb,
2001):

• Weighted sum methods.

• ε-constraint methods

• Weighted metric methods

• Benson’s Method

• Goal programming methods

The first method converts a multi-objective problem into a single-objective problem. A vector
of weights w is used to combine the objectives as a summation of the form:

min
∑M

m=1wmfm(x), m = 1, 2, . . . ,M ;
subject to gj(x) ≤ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;
xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n;

 (3.2)

Where fm(x) is the m-th objective function from F(x) to be optimized. [L,U ] are the limits
imposed to the value of x. In equation 3.2, wm is the m-th weight from the vector w, which is
used to combine the objectives. One single solution is found for a given w.

The main difficulty of this approach is determining the weight values. They are chosen
considering scaling factors and the importance of objectives. Nevertheless, this method suffers
the inability of finding certain solutions for non-convex problems (Deb, 2001).
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The ε-constraint method was proposed to alleviate these limitations. This method rede-
fines the problem imposing a limit ε to all the objectives but one. The problem definition now
includes this restriction:

min fu(x)
subject to [f1(x), f2(x), . . . , fu−1(x), fu+1(x), fM(x), ] ≤ ε

gj(x) ≤ 0, j = 1, 2, . . . , J ;
hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n;

 (3.3)

In equation 3.3, ε is not restricted to be a small quantity. The modified problem can be solved
using mathematical methods (e.g. Lagrange multipliers). The method simplifies the problem
because the search space is reduced by the new limits.

Weighted metric methods use metrics instead of sums to combine the individual objec-
tives. An ideal reference point z∗ is determined to compute the metrics. The new problem
seeks to minimize the distances. The problem is now defined in the following manner:

min Lp(x) =
(∑M

m=1wm |fm(x− z∗m)|p
)1/p

subject to gj(x) ≤ 0, j = 1, 2, . . . , J ;
hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n;

 (3.4)

Where p ∈ [1,∞]. The value of p determines the type of norm used. The Tchebycheff’s norm
allows to find all the optimal solutions. Norm rotations or dynamic change of reference points
are applied to find undiscovered solutions. Nevertheless, previous knowledge is needed to
determine the best reference points. Single-objective optimization is needed to provide this
information.

The Benson’s method consists on choosing z∗ randomly from the feasible region. The
method maximizes the sum of the non-negative distances from the solution to the reference.
The problem is defined by

max B(x) =
∑M

m=1 max (0, (z∗m − fm(x)))
subject to F (x) = [f1(x), f2(x), . . . , fM(x)] ≤ z∗

gj(x) ≤ 0, j = 1, 2, . . . , J ;
hk(x) = 0, k = 1, 2, . . . , K;

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n;

 (3.5)

This method alleviates scaling problems and can be applied to non-convex instances. Al-
though, more constrains are imposed to the problem and the new objective functions are usu-
ally non-differentiable.

Goal programming methods define targets for each objective function. The method
search for the solution which evaluations match the targets. The method minimizes the devi-
ations from the targets even if the solution is unfeasible. Targets can be treated as constraints.
The optimization problem is turned into a constraint satisfaction problem (CSP). The problem
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is defined by
min

∑M
j=1 (αjρj + βjηj)

subject to fm(x)− ρj + ηj = tj m = 1, 2, . . . ,M
x ∈ S

ρj, ηj ≥ 0 j = 1, 2, . . . , n.

 (3.6)

Deviations ρ and η allow the method to handle both less-than-equal and more-than-equal
restrictions. Different methods minimize deviations in their own way. For example, lexico-
graphic goal programming assigns priorities to goals, solving restrictions sequentially accord-
ing with their priority values. The method stops when a solutions satisfies all the restrictions.
On the other hand, min-max goal programming minimizes the maximum deviation from each
target.

3.1.2 Evolutionary Computation Approaches
Past chapters mentioned some multi-objective evolutionary algorithms proposed in literature.
Their ability to optimize simultaneously many solutions is one of their advantages. Although,
traditional genetic algorithms generally converge to one solution. Therefore, multi-objective
algorithms include mechanisms to preserve different solutions and promote their spread along
the Pareto front.

The literature reports several examples of multi-objective evolutionary algorithms. The
first one reported is probably the vector evaluated genetic algorithm (VEGA) (Schaffer, 1985).
VEGA was designed to maintain different solutions, according with each objective. The
niched Pareto genetic algorithm was proposed by Horn, Nafpliotis, and Goldberg (1994).
This algorithm used the idea of domination along with sharing to find different Pareto-optimal
solutions. Sharing is applied to the non-dominated solutions, modifying their fitness values
according with the distance among them. Individuals located at crowded areas are penalized.
Sharing is defined by the following function:

Sh(dij) =

1−
(
dij
σs

)2
if dij < σs

0, otherwise.
(3.7)

Where dij is the distance between the individuals. σs is called maximum niche distance.
Individuals beyond this point are not considered for sharing calculations. This parameter
should be adjusted by the user.

Fonseca and Fleming (1993) introduced the multi-objective genetic algorithm (MOGA).
It uses a ranking system to evaluate individuals. Non-dominated individuals have a rank 1,
while dominated individuals have a rank proportional to the density of the population. Sharing
is used for diversity of Pareto solutions.

J. Knowles and Corne (1999) proposed the Pareto archived evolution strategy (PAES).
This is an (1 + 1) evolutionary strategy. This means the algorithm generates a single off-
spring per cycle and it comes from a single parent. The worst individual from the extended
population is deleted. Besides, the algorithm relies on an external archive to keep the best
non-dominated solutions. Special rules are needed to manage this archive effectively.

The Pareto envelope-based selection algorithm (PESA) is another example of this type
of methods (Corne, Knowles, & Oates, 2000). It uses an external archive to save the optimal
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solutions, and the population is deleted each generation and generated from random members
of the external archive or their offspring. Only non-dominated individuals are saved to the
archive. Diversity is promoted using a grid. Individuals from low populated sections of the
solution space are preferred for reproduction.

Zitzler et al. (2001) proposed the strong Pareto evolutionary algorithm (SPEA), and
later a second version: SPEA-II. The fitness of individuals is computed from the fraction of
population dominated by them (i.e. strength). It also implements an archive to save the non-
dominated solutions. SPEA-II modified the definition of strength to consider both dominated
and non-dominated individuals, prevented bounder solutions to be deleted from the archive,
and provided a density estimation to promote diversity.

Deb et al. (2002) proposed two versions of non-dominated sorting genetic algorithm
(NSGA). The fist version relied on sharing to spread solutions along the Pareto front. NSGA-
II was created to appease the criticism about the computational complexity and the lack of
elitism of the first version. NSGA-II uses non-domination sorting to compute fitness and
crowding to promote the diversity among non-dominated solutions. Elitism allows the best
solutions to be always included into the current population.

Laumanns and Ocenasek (2002) proposed a combination of the NSGA-II with the Bayes-
ian optimization algorithm (BOA) to obtain MO-BOA. MO-BOA uses a Bayesian network to
generate new individuals in the same fashion BOA does. This algorithm has been tested
against multi-objective versions of deceptive and linked problems.

Ponsich et al. (2013) mentioned other MOEAs besides the ones described: AbYSS,
FastPGA, IBEA, and MOCeLL are some examples. AbYSS uses a (1 + 1)-Evolutionary
Strategy to search solutions and includes an external archive. Crowding is used for density
estimation in a fashion similar to PESA. FastPGA proposes an archive of dynamic size to
avoid rejection of non-dominated solutions. IBEA (Indicator Based Evolutionary Algorithm)
uses arbitrary performance measures which are defined by the user. MOCeLL uses an external
archive and random individuals are deleted from the population and substituted by random
archived individuals. A neighborhood is defined to determine which individuals can be paired
for reproduction. Crowding is used to determine how to delete individuals when the archive
is full.

3.2 Proposed Method

The review showed multi-objective evolutionary algorithms share some common features:
Mechanisms to preserve multiple solutions and their spread along the non-dominated front,
and methods to store the optimal solutions. Some algorithms define an external archive to
store solutions. Others, like NSGA-II, do it implicitly through elitism. The proposed al-
gorithm, called structure-based multi-objective evolutionary algorithm (Sb-MOEA), includes
these features in the following manner:

• Solutions are stored using a non-generational population scheme.

• Multiple solutions are preserved using a fitness measured based on Pareto structure.
This measure is called Area measure Ams in this work.
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• Diversity is promoted using an alternative crowding measure (Cms) proposed in the lit-
erature (Köppen & Yoshida, 2007). Crowding becomes useful when most of individuals
are non-dominated. This happens at the last stages of execution.

Algorithm 3.2 shows the pseudocode for Sb-MOEA. Details about the implementation of
these features are presented in the following subsections.

Algorithm 1 Sb-MOEA Pseudocode
function SB-MOEA(N ,M ,fobj,Ncyles)

pop = INIT POPULATION(N ,M )
for i = 1:Ncycles do

pop = EVALUATE(pop,fobj)
ams = AREA MEASURE(pop)
cms = CROWDING(pop)
cnms = STOCHASTICFIT(pop,cms)
parents = SELECTION(pop,tokill,ams,cnms)
offspring =CROSSOVER(parents)
offspring =MUTATION(offspring)
pop = NG-CYCLE(pop,offspring)

end for
return pop

end function

3.2.1 Non-generational Genetic Algorithm

Non-generational schemes can be found early in the literature. Whitley (1989) proposed Gen-
itor, where the weakest individual is deleted from the population and substituted by a new one.
Linear ranking selection was used to determine the parents of the new individual. Goldberg
and Deb (1991) determined non-generational schemes have higher selective pressure, which
could be beneficial in some cases. Non-generational multi-objective genetic algorithms were
also reported in the literature (Valenzuela-Rendón & Uresti-Charre, 1997).

Non-generational schemes have the advantage to preserve individuals. Therefore, non-
generational populations can be used to save non-dominated solutions in the same way archives
do. Besides, this approach simplifies storage management, which is a problem in archived-
based methods. Elitism is implicit in non-generational populations, which is considered ben-
eficial to multi-objective evolutionary optimization (Deb et al., 2002).

Sb-MOEA computes fitness from the sum of Ams and Cms. The two weakest individu-
als are deleted from the population. Two parents are chosen using roulette wheel, and their
children are included in the population. A pair is chosen to allow wider exploration of search
space per cycle.

In algorithm 3.2, Evaluate( ) is used to evaluate the objective function. Functions
Selection( ), Crossover( ), Mutation( ), and NG-Cycle( ) implement the non-generational
genetic algorithm.
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3.2.2 Area measure (Ams)

The non-domination sorting method, used in the NSGA-II (Deb et al., 2002), gives an integer
rank to each individual based on the number on the domination relationships between them.
As a consequence, a large number of individuals in the population have the same fitness value,
making impossible to determine which one is better from them. On the contrary, the proposed
metric intends give a continuous fitness value to each individual based on its relative position
in the solution space and the positions of the non-dominated individuals. This method intends
to avoid ties between individuals and provide a better description of their closeness to the
non-dominated front.

The approach is illustrated in figure 3.1. The solid line represents the non-dominated
front, and the points are solutions. The term non-dominated front is used to indicate this
one is not necessarily the true Pareto front. Non-dominated solutions are labeled by roman
numbers, and dominated solutions are labeled using capital letters. The shaded areas denote
the region dominated by a particular solution. Darker tones indicate that particular area is
dominated by more individuals than clear toned areas.

Figure 3.1: Structure of Pareto Front and Dominated Individuals.

In figure 3.1, we can observe the areas close to the non-dominated front have clearer
shades than the ones far away from it. This occurs because areas covered by non-dominated
individuals overlap more frequently with each other at far away areas from the non-dominated
front. The information provided by the position of non-dominated individuals can be used to
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guide the optimization process. Individuals located at clear-shaded areas are favored because
this indicates they are closer to the non-dominated front.

In this example, C is the best solution because it is only dominated by IV.A is dominated
by I and II while D is dominated by IV and V. B is dominated by I, II, and III. E is dominated
by all of them. A and D would have the same fitness value under this criterion.

Also, the spread of individuals is promoted by this method. Highly populated sections
of the non-dominated front will overlap more frequently than sections with fewer individuals.
For example, if II was not present, then both A and C would be dominated by only one
solution. Besides both B and D would be dominated by two solutions. In this case, both
A and B were benefited because they were covered by a less populated section of the non-
dominated front. The method assumes the empty sections will be covered by the offspring of
the favored individuals. Similar underlying assumptions are common in other multi-objective
algorithms.

In the example, both A and D have the same fitness value. A method merely based
on the number of dominating individuals could have a limited resolution. To overcome this
problem, the area covered by the dominating individuals is computed instead to have a con-
tinuous fitness value. To make a difference for the cases with the same number of dominating
individuals, the area covered by the evaluated individuals is also considered by the method.
In this case, D covers a larger area of the solution space than A, then D would have a higher
fitness value. Therefore, an expression for the proposed fitness measure is the following:

Ams(Jk) =



M∏
i=1

Jki

Ndk∏
j=1

M∏
i=1

Jji

, if Ndk > 0

1, if Ndk = 0.

(3.8)

In this work, the individuals from the non-dominated front which dominate a particu-
lar solution will be called dominants. The ratio of areas (or hyper-volumes) covered by the
dominated individual and their dominants can be used to measure the degree of closeness to
the Pareto front and population density of the individual. Equation 3.8 computes the product
of the areas instead of the unified area, but it behaves in the same manner than the exact cal-
culation. A non-dominated individual has Ams = 1. Duplicated, non-dominated individuals
receive anAms value inversely proportional to the number of existing copies in the population.
This rule prevents the population converge to a single solution. Nevertheless, the Ams from
one of these individuals is computed using equation 3.8 to avoid the loss of valuable schemata.

In this method, suitable boundaries are needed to compute the areas (or hyper-volumes).
In figure 3.1, the axis delimit these boundaries. The final implementation exempts the user
from the difficulty to define suitable boundaries to computeAms. The idea is based on dynamic
weighted metric methods, where the reference point changes accordingly with the current
conditions of the problem. In this case, the user should provide the vector z0 where

z0 = [z0(1), z0(2), . . . , z0(M)] , z0(i) ∈ {0, 1} . (3.9)

In this case, z0 is used to indicate the algorithm if objectives should be maximized or mini-
mized. Maximization of objectives is denoted by 1, and minimization by 0. The algorithm



3.2. PROPOSED METHOD 53

computes the suitable magnitude vector zmag in the following manner:

zmag = [zmag(1), zmag(2), . . . , zmag(M)] ,

zmag(i) = max (JNM(j, i)) , j = 1, 2, . . . , N.
(3.10)

In equation 3.10, zmag contains the maximum value of each objective and JNM is a matrix
which contains the fitness values of all the objectives for each individual from the popula-
tion. JNM is dynamically transformed each cycle using z0 and zmag. The transformation allows
the algorithm to perform maximization of all the objectives regardless of the original prob-
lem. Computations from different cycles are comparable because Ams is normalized. JNM is
modified to be

J′NM = |JNM − 2 (zmag � z0)| . (3.11)

Where the � operator denotes element-wise product of vectors or matrices. Equation 3.11
describes a coordinate transformation of the original fitness values. A new origin is defined
from the product of zmag and z0. The new coordinates are translated to locate this point at
the origin of the new coordinates plane. The absolute value of the coordinates is computed
to flip the fitness values to the first quadrant of the new coordinates system. This transforma-
tions allows the problem to be handled as a maximization problem regardless of the original
definition. The new axis are the boundaries required to compute Ams.

3.2.3 Crowding Measure (Cms)

The area metric Ams gives preference to uncrowded individuals which are close to the non-
dominated front. Nevertheless, it offers no further guidance once most of the individuals
become non-dominated. A crowding measure is useful for this end. For a non-dominated
individual, the total fitness is the sum of both area measure and crowding measure. For domi-
nated individuals, Cms will be 0.

This work will use the term crowding to refer other population density metrics as well.
For example, the called −ε-domination (negative ε) method computes the smallest value
which will turn the evaluated individual (which is non-dominated) into a dominated indi-
vidual (Köppen & Yoshida, 2007). This value decreases with the distance from the evaluated
individual to their neighbors, therefore, it can be used as a density metric. A definition of
−ε-domination is shown below (Xia, Zhuang, & Yu, 2014):

Definition 6 if fi(x) + εi ≤ fi(y)∀ i = 1, 2, . . . ,m and fi(x) + εi < fi(y) for at least one
objective, we say x negative epsilon-dominates y (denoted by x ≺−ε y).

Köppen and Yoshida (2007) proposed this metric to substitute crowding in the NSGA-II
and improve its performance in many-objective problems. Their results showed−ε-domination
could contribute to find better distributed non-dominated fronts. An algorithm to compute−εi
is the following:
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Algorithm 2 Crowding Pseudocode
function CROWDING(JNM, k,N,M )

if N == 1 then
eps = 1

else
eps =∞∗ ones(1, N)
for i = 1 : N do

for j = 1 : M do
if i 6= k then

eps(i)=MAX(eps(i),|JNM(i, j)− JNM(k, j)|)
end if

end for
end for

end if
return MIN(eps)

end function

This algorithm computes εi as the minimum of the maximum differences from individ-
ual i to the rest of the population for each objective. Normalizing is used to avoid scaling
problems. These calculations are computed in the Crowding( ) function.

3.2.4 An Example
The example is defined for maximization of all the objectives. This allows using the coordi-
nates axis to define the areas covered by the individuals and makes them easier to visualize.
This change can be done without loss of generality. In figure 3.2, the non-dominated indi-
viduals are denoted by roman numbers. The coordinates of each individual are the following:
A = [1, 4], I = [2, 6], II = [5, 5], and III = [6, 3]. Ams(I) = Ams(II) = Ams(III) = 1
because they are the non-dominated individuals from the population. Equation 3.8 is ap-
plied to compute Ams(A). In this case, Area(A) = 1 × 4 = 4, Area(I) = 2 × 6 = 12,
and Area(II) = 5 × 5 = 25. Area(III) is not necessary because III ⊀ A. Therefore,
Ams(A) = 4

12×25 = 1
75

.
On the other hand, Cms(A) = 0 because A is a dominated individual. The difference

between individuals is defined as ∆a−b = |Ja − Jb|. Therefore ∆I-II = |[2, 6]− [5, 5]| = [3, 1],
∆I-III = |[2, 6]− [6, 3]| = [4, 3], and ∆II-III = |[5, 5]− [6, 3]| = [1, 2]. In a similar fashion,
∆I-A = [1, 2], ∆II-A = [4, 1], and ∆III-A = [5, 1]. For individual I, the relevant differences
are ∆I-II, ∆I-III, and ∆I-A. The maximum differences for each objective are computed and the
result is [4, 3]. The minimum from the vector is −εI = min[4, 3] = 3. The values −εII = 2
and −εII = 3 are found in the same manner. These value are finally normalized based on the
maximum −ε from the population, therefore, Cms(I) = Cms(III) = 1, and Cms(II) = 2

3
.

3.2.5 Stochastic Fitness Mechanism
Density measures have proved to be useful to find well-spread solutions. These measures
promote individuals to be more separated from each other. In this case, when new individuals
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Figure 3.2: Example of the Application of Area Measure and Crowding Measure.

appears at a low-populated section of the solution space they will be favored with higher
fitness values. As a consequence, these individuals will have higher chances to reproduce. If
the parent is non-dominated and its offspring also appear at these low-populated areas, they
will be eventually “fill the holes” at the non-dominated front and the spread will be improved.

Nevertheless, the assumption that the offspring will have similar evaluation than their
parents cannot be assured, specially when high non-linear relationships are present in the
search space. This situation limits the power of crowding measures because they cannot fully
direct the search towards unexplored areas. Estimation of distribution algorithms (e.g. BOA)
try to discover the nonlinear relationship between the chromosome’s bits to overcome this
difficulty (Pelikan et al., 2000a).

A simpler way is proposed to obtain similar effects. This method adds noise to the
fitness value of non-dominated individuals to stimulate the algorithm to keep looking for better
solutions. The magnitude of noise should be small to avoid the algorithm to become a random
search. This procedure is inspired by the literature; some references have reported that a low
level of noise helps genetic algorithms to escape local optima (Branke & Schmidt, 2003).
Besides, genetic operators induce noise to fitness optimization process naturally. A uniform
distribution U was preferred to avoid bias towards some particular group of individuals. δ
controls the magnitude of induced noise. Noise is added to Cms. The noisy crowding measure
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Cnms(k) is computed in the following way:

Cnms(k) = Cms(k) + U(0, δ). (3.12)

This quantity is normalized using the maximum value from the vector of population noisy
crowding measures Cnms:

C∗nms(k) =
Cnms(k)

max(Cnms)
. (3.13)

The value of fitness fk is computed from both Ams and C∗nms.

fk = Ams(k) + C∗nms(k). (3.14)

This calculation is applied to non-dominated individuals only. The rest of individuals have
Cms = 0. Ams(k) refers to the area measure of k-th individual of the population. Function
StochasticFit( ) implements this feature.

3.3 Experiments
Sb-MOEA was tested against benchmarks proposed in the literature (Deb, 2001). These prob-
lems were used to test performance of NSGA-II, PAES, and SPEA in other references (Deb
et al., 2000). Sb-MOEA was tested using some of these problems and compared against the
results reported in the latter reference. The comparison was done using the Υ-metric and the
∆-metric proposed by Deb et al. (2000).

3.3.1 Test Problems
Deb et al. (2000) presented a series of problems to test the NSGA-II and other multi-objective
algorithms. Although, not all them had a closed-form solution, turning any comparison cum-
bersome. Therefore, these problems were discarded to compare Sb-MOEA. A pair of test
problems was selected for the experiments: The Scheaffer’s problem (SCH) and Fonseca’s
(FON) problem. These problems include convex and non-convex instances. The SCH prob-
lem is defined in the following equation:

SCH(x) =


f1(x) = x2

f2(x) = (x− 2)2

x ∈ [−103, 103].

(3.15)

The solution to equation system 3.15 is x ∈ [0, 2]. This is a convex problem. On the other
hand, the FON problem can be defined by the following equation system:

FON(x1, x2, x3) =



f1(x) = 1− exp

(
−
∑3

i=1

(
xi − 1√

3

)2)
f2(x) = 1− exp

(
−
∑3

i=1

(
xi + 1√

3

)2)
x1 ∈ [−4, 4]

x2 ∈ [−4, 4]

x3 ∈ [−4, 4].

(3.16)
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The solution for the equation system 3.16 is x1 = x2 = x3 ∈ [−1/
√

3, 1/
√

3]. This is a
non-convex problem.

3.3.2 Performance Metrics
The performance was measured with the Υ-metric and the ∆-metric. The Υ-metric measures
the distance from the non-dominated front to the Pareto front, and the ∆-metric measures the
spread of non-dominated solutions. The Υ-metric is the average of Euclidean distances from
the non-dominated individuals to the closest optimal solution. Closed-form solutions allow
to compute the Υ-metric exactly. An algorithm to compute the Υ-metric from the matrix of
fitness evaluations J∗NM is shown below. J∗NM is the matrix of optimal fitness evaluations. N1
and N2 are the number of individuals of each population.

Algorithm 3 Υ-Metric Pseudocode
function UPSM(JNM,J∗NM, N1, N2)

ups =∞. ∗ ones(N, 1)
for i = 1 : N1 do

for j = 1 : N2 do
Ups(i)= MIN(Ups(i), ‖JNM(i, :)− J∗NM(j, :)‖)

end for
end for
return AVERAGE(ups)

end function

The ∆-metric is computed using the following equation:

∆ =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

. (3.17)

Equation 3.17 measures spread and evenness of the solutions. The fitness values of the indi-
viduals are sorted along one of the objectives to compute the Euclidean distance among subse-
quent individuals. d̄ denotes the average of the differences, df and dl are the distances between
the extreme solutions to the extremes of the Pareto front. ∆ → 0 when the distances among
the solutions are closer to the average d̄. This indicates the solutions are uniformly spread
along the non-dominated front. Extremes are computed separately because multi-objective
evolutionary algorithms have shown difficulties to find these solutions.

3.3.3 Results
The results are summarized in table 3.1. Sb-MOEA was run for 5000 cycles. Crossover
probability was pc = 1 and mutation probability was pm = 0.01. The population had a size
of N = 100. NSGA-II-R uses a real number codification genetic algorithm. Sb-MOEA
obtained lower values of Υ and ∆ for the tested problems. Nevertheless NSGA-II-R showed
lower standard deviation values. The reference did not report the sample size used to compute
their results. On the other hand, 10 tests were conducted to compute the metrics for Sb-MOEA
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Figure 3.3: Example of Pareto Front computed with Sb-MOEA for SCH Problem.

experiment. Examples of the solutions computed by Sb-MOEA are shown in figure 3.3 and
3.4. The difficulty of the SCH problem consists the Pareto Front region is comparably smaller
than the solution space. Usually, the Pareto front spreads along a large region of the solution
space, enveloping it. In the SCH problem, more cycles are needed for the algorithm to produce
individuals close to the Pareto front region.

The FON problem has the property of being non-convex. This kind of problem was
specially difficult for traditional approaches. Sb-MOEA also showed good performance for
this problem. Ams was useful during the stage where most individuals of the population are
dominated. Ams provides information about closeness to the non-dominated front and spread,
which is useful to find more non-dominated individuals. Nevertheless, the critical stage oc-
curs when most individuals are non-dominated. At this point Ams cannot provide further
information to guide the process. Cms becomes useful at this stage.

The stochastic fitness mechanism was implemented to stimulate the algorithm to keep
looking for non-dominated solutions. δ = 0.01 was used in the experiments. The results
seem to indicate a controlled level of noise can improve the performance of multi-objective
algorithms. Nevertheless, determination of the required level of noise requires further inves-
tigation.
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Figure 3.4: Example of Pareto Front computed with Sb-MOEA for FON Problem.

3.3.4 Conclusion
This chapter explained a new multi-objective algorithm to implement the investment method
proposed in this work. The literary review showed most of the multi-objective evolution-
ary algorithms include the following elements: A measure of the closeness of the solutions
to the non-dominated front, a measure of density of solutions, and a devise to store the non-
dominated solutions. Sb-MOEA implements a new area measure for the first task, the negative
ε-domination method to promote well-spread solutions, and a non-generational genetic algo-
rithm to store the solutions found. Moreover, the algorithm features a stochastic fitness mech-
anism to promote further optimization when most of the solutions are already non-dominated.

The new algorithm was tested against results reported in the literature. The chapter
explained the test problems and the performance metrics of the experiment. The results in-
dicated Sb-MOEA has good performance when compared with other popular multi-objective
algorithms, although, further experimentation should be conducted about this matter. The
induction of a controlled noise into the algorithm seemed to be beneficial to find better so-
lutions. Noise was used to overcome the limitations imposed by the assumptions made by
density metrics.
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SCH Sb-MOEA NSGA-II-R NSGA-II SPEA PAES
E[Υ] 0 0.003391 0.002833 0.003403 0.001313

Std. Dev. 0 0 0.000001 0 0.000003
E[∆] 0.104393 0.477899 0.449265 1.02111 1.063288

Std. Dev. 0.001026 0.003471 0.002062 0.004372 0.002868
FON Sb-MOEA NSGA-II-R NSGA-II SPEA PAES
E[Υ] 0.001085 0.001931 0.002571 0.125692 0.151263

Std. Dev. 0.000115 0 0 0.000038 0.000905
E[∆] 0.123577 0.378065 0.395131 0.792352 1.162528

Std. Dev. 0.001922 0.000639 0.001314 0.005546 0.008945

Table 3.1: Experiment Results for SCH and FON problems.



Chapter 4

Multi-Objective Risk Optimization

The past chapter introduced a new multi-objective algorithm called Sb-MOEA. Although, the
algorithm was designed for classical multi-objective optimization. This chapter explains fur-
ther modifications to Sb-MOEA to solve multi-objective stochastic optimization problems.
The enhanced algorithm will be used to solve multi-period portfolio selection problems in
later chapters. The proposed method implements a Monte-Carlo approach to overcome the
limitations encountered when the problem is defined within a dynamic programming frame-
work. Monte-Carlo methods rely on simulations of many possible scenarios to estimate
the probability distribution of the phenomenon. Although, this approach is computationally
costly. This chapter proposes some methods to save evaluations. The original structure of
Sb-MOEA was considered when devising the proposed methods.

The first part presents a brief review about stochastic optimization. Some evaluations
saving methods are derived form the review conclusions. The modified algorithm was tested
with a stochastic version of the traveling salesman problem. This problem was selected to
provide further information about the properties of the proposed methods from a perspective
outside the finance framework. The results are discussed in the last section.

4.1 Stochastic Optimization Review

Uncertainty is a practical problem to be overcome in a wide number of applications. Some
examples are incomplete surveys, noisy signals from sensors, unknown future prices of stock
markets, and unexpected outcomes from control signals.

The literature about uncertainty and evolutionary algorithms can be classified in two
groups: Noisy optimization and robust optimization. References from each type are presented
below. The differences from both approaches were identified based on this review. The term
stochastic optimization is used in this work to refer to any of these terms instinctively. Related
concepts will be addressed by this term as well.

Noisy optimization is concerned with finding the best estimation of the optimal solution
even when noise is present. Noise is a nuisance to be eliminated in this approach. On the
other hand, robust optimization admits variations and tolerances are inherent to most prob-
lems. Moreover, some of them are out of the control of the designer or they are only partially
known. The objective of robust optimization is finding the best solution which is insensitive

61
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to these variations. Uncertainties could be understood as restrictions to the original problem.
The optimal solution and the optimal robust solution are usually different from each other.
Variations on temperature and manufacturing tolerances are some examples of uncertainties.

4.1.1 Noisy Optimization and Evolutionary Algorithms

The study of noisy optimization using genetic algorithms can be traced to early contribu-
tions. DeJong (1975) was probably the first one testing genetic algorithms on noisy functions.
The results showed genetic algorithms are capable of working properly even when noise was
present. The effects of averaging and population size were investigated in later references
(Fitzpatrick & Grefenstette, 1988). Zero-mean Gaussian noise was considered in that work.
Besides, the problem was solved considering a fixed amount of available evaluations. Differ-
ent combinations of sample size and population size were compared in the experiments. The
conclusion was that a large enough population can cope with noise even when the estimation
of fitness used small sample sizes.

Later, the interest of noisy optimization changed to study the performance of genetic
algorithms (i.e. convergence speed) in noisy environments (Aizawa & Wah, 1994). The num-
ber of evaluations used to solve the problem could be variable, giving room to evaluation
saving opportunities. A couple of evaluations saving methods were proposed: The duration-
scheduling strategy and the sample allocation strategy. The former changes the number of
evaluations per generation while individual sample size is fixed. The latter is the contrary
case. Both schemes were tested with problems where Gaussian noise was added to fitness
values.

Branke and Schmidt (2003) studied the effect of noise during the execution of genetic al-
gorithms. The conclusion was a low level of noise is not a nuisance because genetic operators
purposely add noise to the selection process. This allows the algorithm escaping from local
optima. Besides, probabilistic tournament selection was further investigated in that reference.
They reported expressions for the number of necessary evaluations to choose correctly the best
individual at tournament selection with certain probability. Some other references extended
these ideas and devised methods decide the sample size dynamically (Cantú-Paz, 2004).

Also, some references reported the application of multi-objective evolutionary algo-
rithms to solve noisy problems. These references indicate this approach still remains with
open questions (Jin & Branke, 2005).

Other works also studied the performance of non-generational multi-objective evolution-
ary algorithms when solving noisy problems (Hughes, 2000). The non-generational approach
was considered greedy for this application because of its high selective pressure. Poorly esti-
mated individuals had a high probability to be unfairly deleted from the population. A proba-
bilistic insertion/cut operator was proposed to alleviate this problem. The operator sorts both
parents and offspring and gives deletion probabilities proportional to their ranks. The ranking
is also used for the selection process. The operator can be tuned to allow good algorithm
performance for a given level of noise in the objective function.

The concept of convex hull has been reported to be useful when measuring the uncer-
tainty of individuals (Trautmann, Mehnen, & Naujoks, 2009). In this approach, the convex
hull of an individual is computed from a fixed amount of evaluations. The average distance
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from the median of measurements to the convex hull determines the uncertainty limit. Dom-
ination of individuals beyond this limit can be computed directly. On the contrary, uncer-
tain (i.e. overlapping) individuals are considered non-dominated by default. The NSGA-II
was modified to include the convex hull concept. Also, estimation of distribution algorithms
(EDAs) has also been applied to solve noisy problems. For example, Shim, Tan, Chia, and
Al Mamun (2013) proposed an EDA based on restricted Boltzmann machines for noisy opti-
mization.

4.1.2 Robust Optimization and Evolutionary Algorithms
An early contribution reported the application of evolutionary algorithm to find robust multi-
layer optical coating designs (Wiesmann, Hammel, & Back, 1998). They considered uncer-
tainties in the thickness of layers. A (25+50)-ES was compared to a parallel diffusion model,
where a grid is used to determine neighborhoods and compute robustness. The solutions found
with the (25 + 50)-ES showed higher robustness than the ones found with the other method.
Both approaches showed to be computationally expensive, although, they are faster than the
traditional design approach.

Robustness can be measured in different ways. For example, Jin and Sendhoff (2003)
proposed using the average of the ratio of the standard deviations of the individual’s fitness
and the standard deviations of the design parameters to measure robustness. These values are
computed from a neighborhood around the individual. A single-objective measure is obtained
using a dynamic weighted aggregation method. An evolutionary strategy (ES) was imple-
mented to solve some mathematical test problems. The conclusions discussed the possibility
of using the proposed method to solve multi-modal robust optimization problems.

Another robustness measures was proposed by Gunawan and Azarm (2005). They intro-
duced a multi-objective approach to solve robust optimization problems along to a worst-case
sensitivity region measure. This region represents the hyper-sphere surrounding the evaluated
individual and its neighbors. All the neighbors whose fitness values are lower than a thresh-
old of maximum variation are inside the hyper-sphere. A larger radius means the solution is
less sensitive to parameters variation. This method was integrated with the multi-objective
genetic algorithm (MOGA) and tested with a pinned-pinned sandwich beam design problem.
The method was compared against to MOGA without the robustness measure. The proposed
method was able to find more robust solutions. An extension of that work considered robust-
ness to be one of the optimization objectives instead of a problem restriction (M. Li, Azarm,
& Aute, 2005).

Ong, Nair, and Lum (2006) proposed two methods to measure robustness. The first one
is an implicit averaging approach where noise is added to build a neighborhood. The second
one generates a set of mutated individuals for the same end. In both cases, the fitness value
of the worst-case individual from the neighborhood was used to measure robustness. The
methods were tested against a single-evaluation approach. Explicit averaging was also used
for comparison. All the measures were implemented using genetic algorithms. The proposed
approaches showed better performance and used less evaluations than the other techniques.

Some surveys about the application of evolutionary algorithms of to uncertain envi-
ronments are available in the literature (Jin & Branke, 2005). In that work, four sources of
uncertainty were identified: Noisy objective functions, uncertainty in parameters, uncertainty
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in the objective function and non-stationarity. Jin and Branke (2005) reported implicit averag-
ing and special selection mechanisms are usually applied to noisy optimization problems. On
the other hand, explicit averaging was usually applied to robust optimization problems. More-
over, robust optimization has the advantage disturbances can be deliberately chosen, allowing
to have good estimations with smaller sample sizes. Uncertainty in the objective function is
usually induced by the application of approximated models. Non-stationarity is usually coped
with diversity-generation schemes and memory-based approaches.

D. Lim, Ong, and Lee (2005) presented the called inverse robust design approach to
solve multi-objective robust problems. That work claimed robust optimization approaches
introduce a prior structure to uncertainty and take advantage of it to solve the problem. A
combination of the NSGA-II with sequential quadratic programming was proposed to solve
robust problems without any previous assumptions. The expected fitness of individuals is
estimated from a set of mutations. Local search is used to identify the worst case, which is
used as the robustness measure. The algorithm was tested with mathematical test problems
and different parameter configurations. The method was able to find robust optimal solutions
but it was regarded as computationally costly.

Paenke, Branke, and Jin (2006) studied the application of Monte-Carlo methods and
local models to solve the problem. They were used to estimate the expected quality and
variance of the solutions. A regular genetic algorithm was modified to have an archive, and
local models were constructed from it. Interpolation and local regression are applied for the
estimation. The results showed the method required less evaluations than implicit averaging.

Robust optimization surveys were also found in the references (Beyer & Sendhoff,
2007). Three general approaches were identified in that work: The robust counterpart ap-
proach, the aggregation approach, and probabilistic threshold measures. The first one assumes
the limits of the parameters variations are fixed. This is a worst-case approach. The second ap-
proach assumes the user provides the probability distribution of the uncertain parameters. The
probability of the parameter exceeds a particular value is computed directly from the distribu-
tions. A Pareto front of solutions can be found with this method. The last approach generates
realizations of the performance of a particular design. This approach pretends maximize the
number of realizations which performance is below a threshold. Evolutionary algorithms are
often used with the third approach but their application are limited because of computational
cost.

The problem of reliability optimization was distinguished from robust optimization in
the literature. The difference is the solutions should satisfy the uncertainty constrains with a
specified probability (Deb et al., 2009). The problems of single-objective multi-modal opti-
mization, and multi-objective reliability optimization were studied in that reference. Different
reliability measures were also tested in that work. The results were compared against clas-
sical reliability methods. A real-coded genetic algorithm and the NSGA-II were applied to
the proposed problems. Mathematical functions were used to test the first two cases, and
a car-side impact design problem was used to test multi-objective algorithms. Double-loops
methods and the sequential optimization and reliability assessment method (SORA) were used
for comparison. The evolutionary algorithms needed less computational effort, compared to
the classical methods.
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4.1.3 Review Conclusions

The review found other concepts related to optimization under uncertainty besides noisy op-
timization and robust optimization. Approximated evaluations methods were proposed when
the actual evaluations were costly or scarcely available. Noise is artificially induced in the op-
timization process by these methods. Some noisy optimization applications proposed meta-
models to save evaluations in noisy environments. Another related case is non-stationary
problems. Both concepts can be referred under the stochastic optimization label.

The references indicate noisy optimization is highly concerned with saving evaluations
for the explicit averaging method. On the other hand, robust optimization considers explicit
averaging and Monte-Carlo methods to be costly; other approaches have been preferred in-
stead. On the other hand, the literature reported robust optimization approaches have the
advantage of defining perturbations and the probability distributions of parameter variation.
In this way, a structure is imposed to uncertainty and exploited by the methods to make good
estimations with reduced computational costs. Noisy optimization references does not make
any assumption about the noise structure. Besides, some references have indicated robust
optimization approaches where no assumptions about uncertainty are made is an interesting
problem deserving of further attention (D. Lim et al., 2005).

The proposed approach is focused solving multi-objective robust optimization problems
where no assumptions are made about uncertainty. This is the case of finance applications,
where returns data do not necessarily follow a theoretical distribution. Also, the distribution
of final return cannot be known beforehand in the case of multi-period portfolio selection
problems.

The chapter is divided in the following sections: Section 4.2 explains the required mod-
ifications to the algorithm to perform stochastic optimization. Section 4.3 presents a variation
of the traveling salesman problem (TSP) where the time required to travel from a city to an-
other is variable and should be estimated from samples instead of being defined by the user.
This problem is used to test the algorithm regardless the framework of finance. Section 4.4
describes the experiments and their results. A Discussion is presented in section 4.5. Section
4.6 presents the conclusions.

4.2 Multi-Objective Risk Optimization Algorithm

In this section, Sb-MOEA is modified to perform multi-objective robust stochastic optimiza-
tion without uncertainty assumptions. From this point, the term risk optimization will be
used interchangeably with robust stochastic optimization when referring to this type of prob-
lem. The proposed approach is based on a Monte-Carlo method to estimate the probability
distribution of the individuals. Although, the literature about robust optimization considered
Monte-Carlo methods are too costly. Therefore, this section proposes some methods to save
evaluations. The complete algorithm is called structure-based multi-objective risk optimiza-
tion algorithm (Sb-MORiOA). The methods are explained below.
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4.2.1 Evaluations Saving Methods

The proposed approach applies a Monte-Carlo method to estimate the probability distribution
of the fitness of individuals. Several realizations are simulated to estimate this distribution,
and robustness is measured through its variance. The difficulty of risk optimization problems
consists robustness (i.e. variance) estimation requires many more samples than the mean esti-
mation. This can be seen when comparing the variance of the sample mean against variance
of the sample variance (Leon-Garcia, 1989). The variance of the sample mean is described by
the following equation:

Var [Mn] =
σ2
n

n
, (4.1)

where Mn is mean estimator, n is the sample size, and σ2 is the sample variance. On the other
hand, the variance of sample variance is

Var
[
σ2
n

]
=

1

n

(
µ4 −

n− 3

n− 1
σ4

)
, (4.2)

where µ4 is the fourth moment of the distribution. From these equations, it can be seen that
the variance of the sample variance is greater than the variance of the sample mean because
the former is proportional to σ4 while the latter is proportional to σ2.

Cantú-Paz (2004) proposed a hypothesis testing method to discriminate among two in-
dividuals engaged in tournament selection. This method is iterative; individuals are evaluated
with a minimal sample size (two samples), then the highest variance individual is progres-
sively evaluated until both individuals pass the test or they reach the maximum evaluations
limit. The evaluated individual can change during the process.

In the proposed method, the sample size of the new individuals (i.e. the offspring) is
firstly estimated using one of the methods explained below. The actual re-evaluation occurs
after the method determines the new sample size. The new sample size is truncated when it
exceeds the maximum limit of evaluations per cycle. These methods are based on the com-
parison of two samples. In this case, the closest non-dominated individual which dominates
the offspring (i.e. its dominant) is selected for this end. This one is selected because it is the
most critical individual when computing Ams. The closest non-dominated individual is used
in the case the offspring is also non-dominated. This one is selected because it is the most
critical individual when computing Cms. The method is applied to the offspring only, but re-
evaluation of the dominant is recommended to prevent the existence of false non-dominated
individuals. Their sample size is increased for a small fraction of the new sample size of the
offspring.

In the first method, a t-test is used for the comparison of means and an F -test is used
for the comparison of variances. A normal distribution of fitness is assumed in this method.
If both tests are positive, no more evaluations are required. On the contrary case, the cur-
rent mean and variance estimations are kept constant, but the sample size of individuals is
increased. The tests are re-calculated for the new set of parameters. The process continues
until both confidence values are acceptable or the sample sizes reach their limit. Finally, the
individual is evaluated using the sample size obtained by the procedure. The estimations of
sample mean and variance are updated accordingly.
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An alternative to this method can be found in the references (Diamond, 2001, 2006).
This method computes the sample size to guarantee that the risk β of accepting a false hy-
pothesis is small. A modified version used in this work and explained below:

1. Define δ = 0.1
∣∣σ2
i − σ2

j

∣∣
2. The tests of interest is:

H1 : σ2 ≥ σ2
0 + δ, (4.3)

In equation 4.3, σ0 is the lowest variance and σ is the highest one.

3. Compute the adjustment parameter R as:

R = 1 +
δ

σ2
0

. (4.4)

4. Compute the probability of accepting a false hypothesis Cν :

βν =
χ2
1−α,ν

R
(4.5)

Cν = P
{
χ2
ν < βν

}
(4.6)

5. Compute equation 4.5 until Cν ≤ β. Increase ν with each iteration.

The test compares the variances of two different samples. In this case, the comparison is
among the variances of two different individuals from the population. Let us assume that the
individuals are truly different from each other, but we wish to compute the sample size which
acknowledge this fact with a probability of failure equal or lower than β. Step 2 defines the
alternate hypothesis of the test, which says the difference among the variances is, at least, δ.
This value is defined to be the 10% of the difference of the variances. If the assumption about
both individuals are different is true, the sample size needed to confirm it will be relatively
small. Although, the sample size will increase when the individuals are closer from each other
at the solution space. Step 3 computes the adjustment parameter R, which depends on δ and
σ0. Step 4 computes the critical value βν from which the null hypothesis is rejected for a given
confidence level α.

The probability of the adjusted value is computed and labeled Cν . The test is passed
if this probability is truly lower than β. The test is computed from the degrees of freedom
corresponding to the current sample size N of the tested individual, given N = ν + 1. If the
test is not passed, the test is repeated with a higher sample size. The process continues until
the test is passed or the maximum sample size is reached. The individual are re-sampled once
the new size is determined. Re-sampling is applies to the new individuals from the population.

Recursive Re-sampling Methods

Finally, this section presents recursive methods to compute the sample mean and variance.
Their use avoids wasting computational effort because the old estimations of mean and vari-
ance are updated but not discarded. These methods can be implemented because of the non-
generational scheme of Sb-MOEA. Teknomo (2006) introduced the following recursive equa-
tions to compute the sample mean and variance:

x̄t =
t− 1

t
x̄t−1 +

xt
t
. (4.7)
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Figure 4.1: Example of TSP Instance.

σ2
t =

t− 1

t
σ2
t−1 +

1

t− 1
(xt − x̄t)2 . (4.8)

Where x̄t is the current average and xt is an innovation. t is the current number of samples. It
increases accordingly until the new sample size is reached.

4.2.2 Custom Modifications

Instances of the traveling salesman problem were used to test the algorithm regardless of
the finance framework. Although, further modifications are needed to allow Sb-MORiOA
to handle this problem properly. In the proposed method, random keys (RKs) are used to
encode permutations (Bean, 1994). Examples about their applications can be found in the
literature: Mendes, Gonçalves, and Resende (2009) used them to solve resource constrained
allocation problems. Also, Gonçalves and Resende (2011) proposed biased random keys to
solve combinatorial optimization problems.

The random keys method encodes individuals using a random number per gene, usually
in the range [0, 1]. They can be converted to a permutation by simply assigning them a rank in
ascending or descending order. For example, the individual (0.3, 0.45 0.91 0.55) encodes the
permutation (1,2,4,3) using ascending order. Blocks of bits of arbitrary length can be used to
represent random keys with any resolution desired. Crossover of two different individuals will
produce a new set of random keys. Therefore, the result will be always a valid permutation.
Both crossover and mutation will take place in the random keys space instead of the bits space.
In the case of mutation, a new random key is generated for the designated allele.
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4.3 Stochastic Traveling Salesman Problem
The traveling salesman problem (TSP) is a widely studied combinatorial optimization prob-
lem. A number of cities is represented by a graph. The edges represent the cost (e.g. distance)
to move from a city to another. A salesman wishes to find the lowest cost round route which
allows him to visit all cities exactly once. The graph is not necessarily complete and the edges
are not directed.

There are many variations of this problem. A stochastic version of it is proposed in this
chapter. In this version, the edges represent the time needed to travel from a given city to
another. A probability distribution of time is associated to each edge but the distribution is
unknown to the algorithm. Sampling is needed to estimate the distributions while the opti-
mization process is running. Exhaustive sampling of all the edges seems excessively costly. In
this way, the algorithm cannot do any assumptions about the structure of uncertainty, making
it a stochastic robust optimization problem. The following method is proposed to generate
random instances of TSP:

1. Let us denote the coordinates location of cities by C. p pairs are randomly generated
where Ci = {cxi, cyi} from i = 1, 2, . . . , p.

2. Let us denote the coordinates location of noise sources by D. q pairs are randomly
generated where Dj = {dxj, dyj} from j = 1, 2, . . . , q.

3. Each noise sourceDj generates a noise field Fj . Fields are modeled as bi-variate normal
distributions with the mean vector [dxj, dyj] and identity co-variance matrix I. The
mathematical expression is shown below:

Fj =
1

2π
e−

1
2π

[(x−dxj−(y−dyj)]2 . (4.9)

4. The total noise field FN is the summation of individual fields.

FN =

q∑
j=1

Fj. (4.10)

The variance σab from going to city Ca to city Cb is computed from the integration of
FN along the edge between the cities:

σab = γ

∫ Cb

Ca

FNd`. (4.11)

Where γ is a scalar scaling factor from (0, 1).

The mean of the edge Lab is the euclidean distance between Ca and Cb. Lab and σab are used
to generate different realizations of the time needed to travel from cityCa to cityCb. A normal
distribution is used for this end.

Equation 4.11 indicates the noise variance is proportional to distance. Long paths are
expected to have higher uncertainty, but short paths with high noise are also possible if these
paths are close to the noise sources. The noise sources and the cities locations are different
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Figure 4.2: Best-so-Far curves for TSP problem instances.

to assure no assumption about the uncertainty can be made from the graph. FN could be
understood as traffic density; more traffic (and delays) are expected in places with a high field
density.

Relatively small instances of the traveling salesman problem were used to avoid unnec-
essary time consumption. Pérez Rave and Jaramillo Álvarez (2013) concluded both small
and large sizes of TSP problems are of interest in the current literature. The use of relatively
small instances is justified because the presented algorithm optimizes simultaneously several
solutions. Figure 4.1 shows an example of a solved instance. The level curves represent the
noise field which is used to determine σij .

4.4 Experiments

Randomly generated instances of the problem are used for testing. These instances are pro-
duced applying the procedure explained in section 4.3. The size of instances is p = 20. They
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Figure 4.3: Pareto Fronts instances of TSP problem.
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Table 4.1: Quality Metrics for TSP Problem Instances.
Instance Υ metric Std. Dev. ∆ metric Std. Dev.

TSP Fixed 0.0052 0.0064 0.4961 0.2340

TSP F-test 0.0134 0.0142 0.5749 0.2851

TSP Diamond 0.0093 0.0117 0.5281 0.2665

are optimized using Sb-MORiOA, and the results are compared against a Sb-MORiOA with
a fixed evaluation scheme. Besides, the noiseless Pareto front is estimated and used for the
comparison. In this case, the actual values of mean and variance are provided to Sb-MOEA,
eliminating the estimation step.

In the experiments, the population size is 50, crossover probability is pc = 0.9, mutation
probability is pm = 0.1, The confidence value is α = 0.95 and β = 0.01. The maximum
number of evaluations used is 5000. 10% from this value was used to initially estimate fitness
values. The algorithm run for 8000 cycles. All instances are complete and not directed graphs.

Figure 4.2 presents the average best-so-far curves for the fixed number of evaluations
method, the t/F-test method and the Diamond’s method. The best-so-far curve shows the
evolution of fitness of the best individual against the number of evaluations along the run. This
comparison is difficult in multi-objective algorithms because the Pareto front is composed by
many solutions. The number of dominated solutions against evaluations is shown instead. 30
random instances were taken for the experiments, where 10 of them were randomly selected
to test one of the three methods. The estimated Pareto fronts were saved to collect information
about their quality.

The algorithm works with the estimations of expected fitness and standard deviation,
although, actual values of the mean and the standard deviation were used to compute the es-
timated Pareto front from the final population. The population was mostly non-dominated
when estimated values were considered, but some degradation was found when the actual val-
ues were used to compute the non-dominated front instead. This difference occurred because
the algorithm had no access to the actual values. The non-dominated front of actual fitness
values found by the algorithm is the one reported because it provides information about its
capacity finding robust solutions under the explained conditions. This one is reported in figure
4.3. The metrics Υ and ∆ are used to measure the solution quality (Deb et al., 2002). The
non-dominated front of actual values is the one used to compute the metrics of performance.
Results are shown in table 4.1.

Finally, an attempt was made to compute the average quality of the non-dominated fronts
computed by the algorithm. All the obtained solutions were clustered using the K-means
method. The number of clusters was empirically tested to determine a final value K = 11.
Figure 4.4 shows the clustered average Pareto front computed from clusters for each method.
The standard deviation of clusters for the expected time their robustness are presented in
figures 4.5 and 4.6, respectively.
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Figure 4.4: Average Clustered Pareto Front of TSP problem.
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Figure 4.5: Standard Deviation of Clustered Distance for TSP problem.
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4.5 Discussion of Results

Table 4.1 shows the average and standard deviation of the quality metrics. Υ-metric computes
the closeness of the non-dominated front to the true Pareto front. ∆-metric computes the
spread of solutions along the Pareto front. Both measures were computed from the actual
values of expected time and its standard deviation, but the algorithm relied on estimations
for the optimization. Degradation was found when the actual values were considered. The
results show the Diamond’s method was the best of the variable methods, although the fixed
evaluation method attained slightly better results. On the other hand, figure 4.2 shows the
variable evaluation methods are faster than the fixed evaluation method. In this case, the
Diamond’s method was the one with the lowest proportion of dominated individuals from the
two variable methods. The fixed evaluation method attained a slightly lower proportion than
the variable methods.

In general, the proportion of dominated individuals was around 30% to 35%. This could
be considered a high proportion for multi-objective algorithms. On the other hand, when the
estimated values (the ones truly optimized by the algorithm during the run) were considered,
the proportion of dominated individuals for the three methods was around 0% to 4%. The
latter value corresponds to the case where every individual in the population but the offspring
are non-dominated. This result indicates degradation occurs when the actual fitness values
are considered when computing the Pareto front from the final population. Degradation is
a consequence of the estimation error. There are critical cases where small variation could
lead to mistakes when determining domination between individuals. The main limitation of
precision is imposed by the maximum limit of allowed evaluations. In this case, the user
should make a decision about the trade-off among precision and computational cost.

Figure 4.4 shows the average Pareto front computed for the three methods. This figure
is presented to provide more information about the quality of the solutions obtained by the
algorithm. The three methods showed similar performance. Moreover, the t/F-test method
showed an interesting behavior. The clusters located at low variation regions of the Pareto
front attained lower performance than the other methods, but the situation reversed in the high
variation region of the Pareto front. This method outperformed the reference Pareto front so-
lution for that section. One cluster for the Diamond’s method also outperforms the reference
Pareto front. Figures 4.5 and 4.6 show the standard deviation of the clusters for each one of
the objectives. In the first figure, the standard deviation of time shows an increment which is
proportional to expected time. The t/F-test method is the one with the largest variation. The
robustness variation also shows a similar behavior, but the behavior of t/F-test method con-
tradicts the other in this case. These results seems indicate the variable evaluations methods
work better than the fixed evaluations methods when higher levels of uncertainty are present.
Further investigation is needed to fully understand this phenomenon.

4.6 Conclusion

This chapter presented the modifications to Sb-MOEA to perform stochastic multi-objective
optimization without assumptions about the uncertainty and the inclusion of Monte-Carlo
methods. Evaluation saving methods were devised based on the structure of Sb-MOEA. The
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Figure 4.6: Standard Deviation of Clustered Risk for TSP problem.
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complete algorithm was named Sb-MORiOA. This algorithm was devised to implement the
solution model to multi-period portfolio selection problem explained in later chapters. The
evaluation saving methods are mainly based on hypothesis testing techniques.

The algorithm performance was studied using a stochastic traveling salesman problem
to analyze their properties regardless the finance framework. Also, it discusses a method to
generate random stochastic instances. The evaluation saving methods were compared against
a Sb-MORiOA with a fixed evaluation scheme. The actual Pareto front was estimated using
Sb-MOEA. The actual values of mean and variance were provided to the algorithm for this
end.

The results show the saving evaluation methods are able to attain similar solution quality
than the fixed evaluation methods with less computational cost. Sb-MORiOA with variable
evaluation methods was able to outperform Sb-MOEA with actual fitness values for high
uncertainty regions of the Pareto front. Moreover, other saving evaluations methods can be
devised and tested with different stochastic problems.





Chapter 5

Solution Model

The objective of this work is to develop an evolutionary computing method for financial deci-
sion making. A literary review was conducted and the conclusion was a multi-period portfolio
allocation framework was suitable for this end. That is because the multi-period framework
allows the inclusion of portfolio selection and diversification. Also, it allows the inclusion
of dynamic effects like transaction costs, portfolio unbalance, and state-dependent investor’s
preferences. A Monte-Carlo approach was suggested in the literature to overcome the diffi-
culties to solve this problem analytically. The algorithm was fully explained in past chapters.
Nevertheless, the method to apply this algorithm to solve multi-period portfolio selection
problems has not been addressed yet.

This chapter explains the solution model to solve the problem and perform financial
decision making. The Monte-Carlo method is explained along with some modifications to
Sb-MORiOA to perform portfolio optimization. This method use multi-period Pareto fronts
for dynamic portfolio allocation with parametric inclusion of the investor’s preference.

5.1 Multi-Period Portfolio Selection Model

The references showed portfolio selection has been widely investigated, both theoretical stud-
ies and applications can be found. Multi-period approaches differ from single-period ones
when the investor’s utility function is state-dependent. Transaction costs affect utility func-
tions because they penalize state changes, and inflation makes utility time-dependent. Unbal-
ance occurs naturally when a portfolio is kept unrevised for some time, changing the state of
the portfolio. The multi-period portfolio selection problem can be stated as a dynamic pro-
gramming problem, but its solution has proved to be difficult. Theoretical works usually find
a closed-form optimal solution for some particular conditions. There were reported varied ap-
plications using evolutionary algorithms, but multi-objective algorithms seem popular because
the efficient frontier can be computed in a single run. Cardinality and minimum lot restrictions
have been considered in some reports, which differs from multi-period approaches because
they deal mainly with transaction costs and state-dependency. Single-period approaches are
distinguished from multi-period ones. Multi-period approaches generally deal with optimiza-
tion of final utility and risk. Monte-Carlo approaches have been used to allow to solve the

79
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dynamic programming problem and obtain numerical solutions instead of closed-form solu-
tions.

Single-period approaches can deal with data innovations directly, but their solutions are
not optimal when state-dependent factors are considered. On the other hand, multi-period
approaches deal naturally with state-dependency, but innovation data is not directly integrated
in the solution. The suggested approach shows a multi-period method which is able to incor-
porate data innovations, besides the state-dependent factors.

5.1.1 Portfolios Sets Wealth Model
Equation 5.1 shows the model of portfolio wealth x(t). This is a stochastic differences equa-
tion where the portfolio’s wealth depends on the current return of securities and the past
portfolio. The following equation model the portfolio’s value:

x(t) = r1(t)w(t)T (1− cost(t))x(t− 1). (5.1)

Where cost(t) depends on the current unbalanced portfolio:

cost(t) = c

∥∥∥∥w(t)− r1(t− 1)� w(t− 1)

r1(t− 1)w(t− 1)T

∥∥∥∥
1

. (5.2)

Equation 5.1 expresses the current wealth x(t) to be a function of present return, portfolio,
and the wealth of the past period. A state is described by the current portfolio and its wealth.
The model considers three dynamic restrictions: Transaction costs, unbalance, and inflation.
r1(t) = 1 + r(t) when traditional returns are assumed. On the other hand, r1(t) = exp(r(t))
when logarithmic returns are considered instead. The exponential operator is applied in an
element-wise fashion to the components of r(t).

Transaction costs are fees paid to brokers for each operation. The available operations
are the sale or bought of securities. Fees are usually a fraction of the total price of the consid-
ered security. Equation 5.1 uses the parameter c to include the transaction cost rate, regardless
its type. The limits of this parameter are to be c = [0, 1]. Portfolio costs are directly propor-
tional to ‖w(t)− w(t− 1)‖1, where ‖·‖1 is the 1-norm of the changes in the portfolio.

Unbalance is the natural change in the portfolio composition due to differences in the
return rates of assets. For example, if a 2-assets portfolio has the same amount of wealth
invested in each one of them, then portfolio weights can be expressed by the vector [0.5, 0.5].
Let us suppose the returns for each assets are [0.9, 1.2] and total wealth to be 1. The amount
of wealth of the first security will decrease, and the second one, will increase to be [0.45, 0.6].
The new portfolio weights are [0.4286, 0.5714]. Unbalanced portfolios tends to accumulate
wealth in the most profitable security. The changes in portfolio composition affect both risk
and return. Financial professionals usually recommend portfolio revision to correct unbalance
and keep risk under desired levels (Sharpe et al., 1999).

Unbalance is the cause the current portfolio to be different from the one initially selected.
Unbalance impacts directly in portfolio costs. Equation 5.2 indicates portfolio changes depend
on the current portfolio w(t), the past portfolio w(t− 1), and the past securities returns r1(t−
1). The operator � indicates element-wise matrix product. Transactions costs are directly
proportional of the difference of past and current portfolios.
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Inflation is included into the model through the interest rate. This concept comes from
the fact future wealth has less utility than current wealth. Loaners usually demand a percent-
age of the borrowed money as payment for the loan. This amount is expressed in the form of
the interest rate. This change in utility should be considered when cash flows from different
times are compared. The concept of present value (PV) allows this comparison. Any future
cash flow x(t) can be expressed in current terms at a given interest rate I as

x(0) =
x(t)

(1 + I)t
. (5.3)

I can is also useful to capture the investor preferences. For example, when the final return
is less than the inflation rate, this will be perceived as a loss for the investor. I should be
adjusted to the time window considered. For example, weekly inflation rate should be used
when working with weekly security prices, otherwise, the investor’s expectation could be
unattainable. Equation 5.1 can be modified to consider investor expectations of the future in
the following manner:

x(t) =
r1(t)w(t)T

(1 + I)t
(1− cost(t))x(t− 1). (5.4)

5.1.2 Monte-Carlo Approach
Equation 5.1 is well suited for the application of Monte-Carlo methods. It can be computed
iteratively to obtain the portfolio wealth at any time desired. Portfolio can be changed at any
time also. Besides, equation 5.1 obtains wealth values for t = [1, 2, . . . , T ], allowing to use
this information for decision making.

The solution to multi-period portfolio selection problems is the probability distribution
of portfolio wealth xT . Besides, the estimation of the second or higher distribution moments
are necessary when computing risk. Risk should be accurately estimated because is one of
the objectives to be optimized. Finding closed-form expression for the expected value and
variance of equation 5.4 can be difficult due the effects of transaction costs, unbalance and
the investor’s expectations. The probability distribution of xT is unknown even under the
assumption securities returns are normally distributed. The Monte-Carlo approach consists
generating multiple realizations of returns and use them to obtain samples of the final portfolio
return. Probability distribution moments can be estimated from the samples. On the other
hand, traditional portfolio theory computes portfolio return and portfolio risk from equations
1.6 and 1.7, respectively.

For the Monte-Carlo approach, historical data are used to generate the necessary re-
alizations. In this case, the data can be used to generate random numbers with the same
distribution of security returns and apply them to compute multiple realizations of xT . The
present work assumes returns can be modeled with a multi-variate normal distribution which
can be computed from historical data. In other words

rt ∼ N (µ,Σ) . (5.5)

Nevertheless, the proposed approach is not restricted to any particular distribution. In equa-
tion 5.5, µ is the vector of the average returns of securities, and Σ is the co-variance matrix
of securities.
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Traditional portfolio theory considers the case where a fixed-income financial instrument
is included in the portfolio. Government bonds are an example of them. Fixed-income assets
can be included into the model by using their return values directly instead of random gener-
ated numbers. Moreover, the ability to liquify the portfolio can be modeled by a fixed-income
asset with zero return rate. The current study will be limited to securities and fixed-income
assets, but the model could be extended to include other types of financial instruments.

5.1.3 Inclusion of Data Innovations
References about multi-period portfolio problems propose methods finding a set of portfo-
lios which optimize utility of the last period. These approaches are not concerned with the
utility from other periods besides the last one. The possibility of decision changing becomes
important when data innovations are included. The existence of portfolios sets of different
time duration would allow a better control of risk and return; they would provide a wider
set of options to adapt to the current portfolio state caused by changes in the market. This
work investigated this conjecture. The cited references do not realize the following possibil-
ity: Portfolios sets with shorter duration than the time horizon T can also be Pareto-optimal.
These portfolios could be plotted along the current multi-period Pareto Front and they will be
non-dominated. In that case, they should also be included in the multi-period efficient frontier.

The hypothesis was investigated using a regular genetic algorithm. Equation 5.4 can
be implemented to be the objective function. Traditional portfolio theory use a weighted
sum approach to find the optimal portfolios (H. Markowitz, 1952). Therefore, the objective
function used in this experiment is the following:

fq = kE [xT ] + (1− k)σT . (5.6)

In equation 5.6, fq represents the fitness value of the q-th individual. xT and σT represent
the wealth and risk values for the portfolio encoded by chromosome q. k is a risk weighting
factor where k ∈ [0, 1]. The extreme values of k eliminate the effect of one of the objectives.
Running the algorithm with combinations of t = [1, T ] and k = [0, 1] will lead to obtain the
multi-period Pareto fronts for different time horizons. If the initial assumption is correct, the
efficient frontier will be composed by solutions with different number of periods.

A genetic algorithm was implemented to solve an instance of this problem. Weekly
price data from some components of the Dow Jones industrial average were chosen for the
experiment. The securities are the following: American Express Company (AXP), Cisco Sys-
tems Inc. (CSCO), and Chevron Corporation (CVX), from years 2000 to 2012. The maximum
number of periods T = 5. The value I was chosen to be the average return of the less risky
security. Initial wealth is 10000. Each individual was evaluated 10000 times to compute its
expected portfolio value and risk. The result is shown in figure 5.1.

Figure 5.1 shows the Pareto fronts obtained for each time period. The multi-period
Pareto fronts for different time horizons overlap with each other. Besides, it shows how
some non-dominated solutions become dominated because of the presence of the other Pareto-
fronts. The final multi-period Pareto front will be composed by solutions with different time
duration. In that case, the investor could retract from his initial period selection and choose
portfolios with shorter horizons instead. This possibility is overlooked when the last-period
Pareto front is the only one considered. Also, this is a proof that multi-period solutions are
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different from single-period ones. If they were equal, the Pareto front from different time
periods would be unable to dominate solutions from the final time Pareto front. From this
point, the term multi-period Pareto front will be used to refer to efficient frontier composed
by solutions with different time duration.

Figure 5.1: Pareto fronts for DJI experiment and maximum period length T = 5. Pareto fronts
from T = 1 to T = 5 are shown.

Selection of Portfolios Sets

The proposed method computes multi-period non-dominated fronts where the optimal sets of
portfolios may have different number of periods from each other. For example, a set composed
by a single portfolio may appear at the same multi-period non-dominated front than a set of
5 periods if both of them are non-dominated. The multi-period non-dominated front is com-
puted from the non-dominated fronts for each period of interest by discarding the dominated
solutions when all of them are considered together.

Algorithm 5.1.3 computes the individual non-dominated fronts iteratively using the
SB-MORIOA( ) function. We assume the investor is available to provide the algorithm infor-
mation about his preference when some evidence is presented to him. The multi-Period non-
dominated front is computed from the individual non-dominated fronts through the functions
UNIFY PFs( ) and GET PARETO FRONT( ). The risk of the highest return set of portfolios
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is obtained using the function GET MAX RISK( ) and labeled σM . In the following step, the
fraction of the maximum risk ασM is compute with the equation

ασM =
σ∗

σM
, (5.7)

where σ∗ is the maximum risk tolerated by the investor. Equation 5.7 is implemented in the
COMPUTE ALPHA SIGMA MAX( ) function. Investors may have not a clear idea about
their preference about risk, but they can make an estimation when evidence is provided. In
this case, T and σ∗ are the data provided by the investor to indicate his preference. In the
algorithm, ασM > 1 indicates the investor is still willing to take higher risk for the sake of
profit, therefore, more individual non-dominated fronts with larger number of periods should
be integrated to the multi-period non-dominated front. On the contrary, ασM < 1 implies the
preferred level of risk of the investor is attainable for the current multi-period Pareto front
and no more fronts are necessary. The set of portfolios which risk is the closest to ασMσM is
chosen as the first investment decision. This set is computed using the function GET PORT( ).
The return of this set of portfolios is labeled xTm. The other returned variables by the function
GET-MPPF( ) are used later for decision making.

Algorithm 4 Pseudocode to Choose Initial Multi-Period Pareto Front and Investor’s Expecta-
tions

function GET-MPPF(N ,M ,Evmin,Evmax,atfobj,Ncyles,w0,x0,c,I ,data)
T ← 1
ασM ← 1
MPparF← φ
while ασM ≥ 1 do

fobj = CONFIG FOBJ(atfobj,w0,x0,c,I ,T ,data)
pop = SB-MORIOA(N ,M ,Evmin,Evmax,fobj,Ncyles)
parF = GET PARETO FRONT(pop)
MPparF = UNIFY PFS(MPparF,parF)
σM = GET MAX RISK(MPparF)
ασM = COMPUTE ALPHA SIGMA MAX(σM ,T )
T ← T + 1

end while
xTm=GET X T MIN(MPparF,σM ,ασM )
port=GET PORT(MPparF,xTm)
return port,MPparF,σM , ασM ,xTm

end function

Effect of Data Innovations

Data innovations are used to evaluate the current state of the portfolio.The final wealth xT can
be computed using equation 5.4 with real-data returns instead of random-generated numbers.
Evaluation of equation 5.4 also obtains the current portfolio wT , which suffered unbalancing
during the investment time. Figure 5.2 shows the effect of data innovations in the multi-period



5.1. MULTI-PERIOD PORTFOLIO SELECTION MODEL 85

Pareto front. The solid line represents a multi-period Pareto front computed from an out-of-
market scenario (i.e. the initial state). This means xt = x0 and no portfolio is selected. The
dashed lines represent multi-period Pareto fronts where x′0 = xT andw′0 = wT . xT andwT are
obtained when a portfolios set was chosen from the solid-line multi-period Pareto front and
evaluated with data innovations. The dashed-line multi-period Pareto fronts are conditioned
to the last state of the chosen portfolios set. The conditioned multi-period Pareto front starts
above the original multi-period Pareto front when wT > w0. The contrary occurs when the
selected portfolios set suffered a loss.

Investment Strategies (ISs)

There is the possibility the actual value of the portfolio xT < xTmin. In this case, further
actions are required to satisfy the investor’s goals. Besides, there is not need to stop even
when xT ≥ xTmin because further profit can be obtained. This assumption is in accordance
with the insatiability principle. Therefore, a method is needed to continuously select the next
set of portfolios. This work calls these rules Investment Strategies. ISs are defined by the
following equation:

St = [s1, s2, . . . , sM ] , si ∈ [0, 1] (5.8)

Equation 5.8 allows implement different criteria to choose the next set of portfolios. The pro-
cedure described by algorithm 5.1.3 is only one of the possibilities. There are two possible
scenarios when the multi-period Pareto front conditioned to current state is computed: The
new Pareto front dominates the original selection or the new one is dominated by it. This is il-
lustrated in figure 5.2. The solid-line Pareto front is the one computed with entering to market
conditions. Portfolios set P was initially chosen. The dashed-line Pareto fronts are computed
for scenarios of profit and loss, respectively. The dashed vertical and horizontal lines indicate
the risk and final wealth expected by investor. The profitable scenario Pareto front has most of
its portfolios above the minimum expected wealth xTmin. The loss scenario Pareto Front has
few portfolios with higher return than xTmin, and this value can only be reached at higher risk
levels than ασσmax. ISs should decide the next sets of portfolios according with the current
conditions and the investor’s goals. For example, for the loss scenario, A is the portfolio with
lower risk that reaches xTmin, but C is the portfolio which risk level is equal to investor initial
preference. The portfolio with better balance of both objectives is B. For the profit scenario,
E is the highest risk portfolio while D is the most conservative one. E is also the closest one
to original investor expectations.

This example shows different criteria could be proposed to choose the next set of portfo-
lios. Different strategies can be implemented by changing these criteria. One of the research
questions proposed in the first chapter was about the effect of different ISs and compare them
with human behavior. It wold be interesting to determine if counter-intuitive criteria could
lead to good ISs.

Algorithm 5.1.3 describes the method to implement ISs. The goal [xTmin, ασσmax]is
the point of reference, computed using algorithm 5.1.3. Algorithm 5.1.3 chooses the set of
portfolios with the closest weighted distance to the objective. ISs are expressed in the form of
the vector of weights St. The rule is applied to find portfolios sets iteratively. This algorithm
can be applied while enough innovations are available.
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Figure 5.2: MP Pareto fronts. The solid front is computed for coming into market condi-
tions. Dashed fronts illustrate the cases when the decisions were profitable and when deci-
sions caused a loss, respectively. Point P represents the initial portfolios set chosen by the
investor.

5.1.4 Selection of Suitable Securities
Fundamental analysis is concerned with the pricing of securities. This approach uses informa-
tion from the company’s financial reports and macro-economic models to estimate their true
values. Careful pricing estimation allows the identification of these profit opportunities. The
possession of the most promising securities is part of a good investment decision method.

The selection of securities is important in the framework of the present work because
computational effort increases with the number of securities optimized. For example, port-
folios from the Standard & Poor index (S&P500) will be composed by 500 securities. This
number of assets is impractical for most of the investors. The difficulty to replicate market in-
dexes portfolios is discussed in later chapters. The conclusion is a method is needed to select
the securities to be considered by the algorithm.

The proposed method consists in computing the expected return and the standard devi-
ations of the securities from historic data. The Pareto front of risk-return is computed from
them. The non-dominated securities will be the ones considered by the method explained in
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Algorithm 5 Pseudocode to Implement Investment Strategies
function APPLY IS(St,PF,N ,P ,xTmin,ασmσm,data,innovations)

[xT ,RiT ] = EVALUATE PORTFOLIO SET(P,innovations)
ix← 0
mindist←∞
for j = 1 : N do

[xj ,Rij] = OBJECTIVE FUNCTION(PF(j, :),data)
dist = ‖([xT ,RiT ]− [xj,Rij])� St‖2
if dist ≤ mindist then

mindist = MIN(mindist,dist)
ix← j

end if
end for
return PF(ix, :)

end function

this chapter.
An experiment was conducted to test the validity of this procedure. It considered all

the securities from the Dow Jones average index at 2012. History was collected from 2005 to
2012. The Critical Line Algorithm (CLC) was used to compute the efficient frontier (Sharpe
et al., 1999). Figure 5.3 shows the Pareto fronts obtained when the complete set and the
reduced set were considered. The solid-line Pareto front was computed using all 30 securities,
while the dashed-line Pareto front was computed using the non-dominated securities only.
Both Pareto fronts are similar. The difference appear at the low-risk region, where the Pareto
front of all the securities dominates the other one. Besides, Pareto front of non-dominated
assets does not reach some low risk regions the other one does. Nevertheless, the difference
in return and risk is small and the region not reached by the latter Pareto front has negative
expected returns. It is improbable the investor chooses one of the portfolios with negative
expected return even when they are non-dominated. Therefore, it seems reasonable to apply
the investment strategies method to non-dominated securities only.

5.2 Sb-MORiOA Custom Modifications
Sb-MORiOA was tested against instances of the traveling salesman problem in past chapters.
A random keys coding was used to allow the algorithm to handle permutations effectively.
Portfolios are not permutations, but special considerations should be taken to improve the
efficiency of the algorithm. Two modifications are proposed for Sb-MORiOA when handling
portfolios: Vector coding and buy-and-hold coding. They are explained below.

5.2.1 Vector Coding
The simplest way to represent a portfolio of M assets in binary form is using M groups of
bits to encode each weight. Assuming we are using b bits per gene in the chromosome, bM
bits would be necessary to represent the whole portfolio. Denoting gi to be the decimal value
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Figure 5.3: Comparison of the Pareto fronts. All-securities case and the non-dominated case
are shown.

of gene i, the way to map these values into portfolio weights is

wi =
gi∑M
j=1 gj

. (5.9)

Equation 5.9 indicates each portfolio weight corresponds to the normalized value of gi. This
approach has the problem of the existence of redundant codes to describe the same portfolio.
For example the portfolio [0.5, 0.5] can be encoded by [0001, 0001], [0010, 0010], [0011, 0011],
etc. All of them are valid codes for the same portfolio. This has proved to be a nuisance for
genetic algorithms because the optimal portfolio may have multiple genotypes, forcing the
algorithm to consider each one of them as a distinct optimal solution.

Vector coding is proposed to reduce redundancy. Vector coding uses M − 1 genes to
encode the portfolio. This approach visualizes portfolio weights as the components of an
unity vector. It takes the advantage the sum of the squares of the components of an unity
vector sums 1; the same occurs with portfolio’s weights. In vector coding, genes encode the
angles between the unitary vector and each coordinates axis plane. The weight wi is defined
in the following equation:

wi = (ci sin (θi))
2 . (5.10)
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where θi is defined as

θi =
(π

2

)( gi
2b − 1

)
. (5.11)

Equation 5.10 represents the i-th portfolio weight from i = 1, 2, . . . ,M −1. In equation 5.11,
gi is normalized using the maximum count possible with b bits and converted to radians to
obtain θi. Figure 5.4 shows θi is the complement of the angle formed between the vector and
the corresponding plane. The weights are computed from the component normal to the plane
used to define θi. ci is the magnitude of the projection of the vector on the plane used to define
θi. In the beginning, c1 = 1 because C is an unity vector. The next projection is computed
from the following equation:

ci+1 = ci cos (θi) . (5.12)

The last weight is the squared value of the last projection cM :

wM = (cM−1 cos (θM−1))
2 . (5.13)

x

y

z

Figure 5.4: Graphical description of vector coding. The components of vector c are computed
iteratively. The last component is the last projection cM−1. The portfolio weights are obtained
by squaring the component values.
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5.2.2 Variable Duration Portfolio Sets
Algorithm 5.1.3 applies Sb-MORiOA iteratively to compute the multi-period Pareto front of
portfolios. The dominated individuals are deleted until the Pareto front is complete. Nev-
ertheless, a more efficient method was found to compute multi-period Pareto fronts. This
modification allows to compute simultaneously different duration sets of portfolios.

Let us assume portfolios of M securities and T periods are to be codified using b bits.
The naı̈ve method explained above will need bMT bits to encode these portfolios. vector
coding would require b(M −1)T bits to encode the longest set. The simplest method to allow
simultaneous optimization of different periods is including a gene to indicate the number of
periods the set of portfolios should be applied. In that case, only a part of the total genes
would be considered to describe the set of portfolios. Although, this approach would cause
redundancy of solutions because the unused genetic material does not contribute to the fitness
evaluation. Redundant individuals decrease the power of the algorithm to search solutions,
because there is no way to distinguish the redundant individuals.

Although, this problem is bypassed when B&Hs portfolios are considered. B&Hs re-
quire bM to compute portfolio sets up to 2b − 1 periods. The virtual-gene genetic algorithm
(vgGA) has capabilities to process genes of any base (Valenzuela-Rendón, 2003). This fea-
tures can be applied to set the maximum duration to exactly T periods, avoiding redundancy.
Only the first portfolio is encoded when using B&Hs, and the rest are obtained while evaluat-
ing equation 5.4. B&Hs have the advantage no transactions costs are incurred, except when a
new portfolios set is chosen. Nevertheless, B&Hs require continuous revision to control risk.
Portfolio revision usually incurs in transaction costs.

5.3 Methodology
The proposed method considers the information about the market’s nature, the data history, the
investor’s preference, and the current state of the portfolio to make decisions. The market’s
nature information is considered in the model by the dynamic restrictions. The investor’s
preference is encoded through the goal and other parameters like the maximum number of
periods of the initial Pareto front. The current state of the portfolio is evaluated using the data
innovations.

The methodology to test how useful are these sources is the following: The Investment
Strategies method was devised to include these information sources into the decision making
process. Then, the improvement is measured through the performance of the method in real-
world conditions. For this end, data from real markets is used to test it. The algorithm will
be executed at random start points into the data. At those points, it will determine a goal
according with the investor’s preferences and the state of the market. Afterward, it will make
decisions until the goal is attained or a maximum time limit is reached. The performance will
be evaluated from the behavior of the algorithm against instances of different difficulty. In
this context, difficulty refers to the probability the method has to reach the goal in time for the
particular instance. Suitable performance metrics are discussed in later chapters.

Two benchmarks are proposed to draw conclusions about the usefulness of the consid-
ered information sources: Buy-and-holds and single-period portfolios. These methods rep-
resents two extremes about the use of information when making investment decisions. The
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buy-and-hold method takes information from one single set from the data history and makes
no further changes. In this case, the method relies on market trends to make profit and avoid
transaction costs. On the other hand, single-period portfolios apply the traditional portfolio
optimization methods to make revisions at each period. Therefore, this method makes use
of all the available information about the data history. The investment strategies method is
at a middle point between this two approaches because it makes revisions like single-period
portfolios, but also follow trends like buy-and-holds do. The comparison of the three meth-
ods should provide conclusions about how information affects the decision making process.
Further detail is presented in later chapters.

5.4 Conclusions
This chapter showed the method to use Sb-MORiOA for financial decision making. The first
part explained the equation which models the portfolio’s wealth. This equation considers the
effects of transaction costs, unbalance and the investor’s expectations. A Monte-Carlo ap-
proach estimates the portfolio’s wealth distribution from multiple realizations of the same in-
dividual. Sb-MORiOA is used to compute conditioned and unconditioned multi-period Pareto
fronts. A method based on Investment Strategies was proposed to choose the next set of port-
folios given data innovations. The method proposes a procedure to choose the most suitable
securities.

The proposed method includes the investor’s preference through the following param-
eters: the initial portfolio sets duration T , the maximum Pareto front risk σM , the minimum
expected final portfolio value xTmin, the maximum risk expected ασMσM , and the interest rate
I . The proposed method provides investors evidence to help them determine their preferences.
Two suggestions for I were made: I could be equal to inflation rate in the economy. Also,
I could be equal to the lowest (or the average) return of the considered securities. Rules of
thumb can be proposed to perform this step automatically. xTmin and ασMσM become the goal
to guide the decision making process. The process can run until the goal is reached. Never-
theless, Investment Strategies can be applied while data innovations are available. Finally, the
chapter proposed some custom modifications to implement portfolio selection with the Sb-
MORiOA. Buy-and-hold portfolios coding and vector coding allow the algorithm to process
different duration portfolios sets and reduce redundancy, respectively. The following chapters
show experiments about the performance of the proposed method.





Chapter 6

Investment Strategies Evaluation

Investment strategies (ISs) were proposed in past chapters for automatic management of port-
folios based on the investor’s preferences and current market conditions. Their performance
can be evaluated from the results obtained from the changes proposed by the algorithm to the
portfolio. Several methods for portfolio evaluation can be found in the literature (Sharpe et
al., 1999). Although, this task presents difficulties which have not been fully addressed in the
traditional portfolio theory. This chapter explains some of the traditional methods. Besides,
the limitations of these methods are discussed to formulate suggestions about the evaluation
of investment strategies. The methods derived from the conclusions were implemented to
evaluate the results of the experiments in later chapters.

The first part of this chapter explains some of the methods proposed in the literature.
The second part makes an exposition about market indexes, which are widely accepted bench-
marks for portfolio performance evaluation. The third part explains some of the limitations of
this approach and proposes some alternatives to portfolio evaluation.

6.1 Portfolio Evaluation Methods
The portfolio evaluation methods can be classified in return measures and risk-weighted mea-
sures. Both approaches are explained below.

6.1.1 Return Measures
Sharpe et al. (1999) have discussed how both return and risk should be considered for portfolio
evaluation. This reference has reported different manners to compute the portfolio’s return.
These methods are able to handle portfolios with cash flows, even when they occur within
the period. Some of these methods are the dollar-weighted method and the time-weighted
method.

The dollar-weighted return (or internal return) method consists on finding the value of
the rate of return r in the following equation:

Np∑
i=0

Ci
(1 + r)i

= C0. (6.1)

93
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Equation 6.1 considers each cash flow Ci occurs sometime between the beginning and the
end of the period. In this case, the frequency of the periods is adjusted to make cash flows to
coincide with it. For example, if a single cash flow have occurred at the middle of the quarter,
r is adjusted to be a semi-quarterly rate of return. Np is the number of adjusted periods. The
cash flows should be carefully examined to determine if they should be considered deposits
or withdrawals from the portfolio.

The time-weighted return method considers the current portfolio value to measure the
current rate of return. In this method, the rate of return from the beginning of the period to the
moment of the cash flow is computed along with the rate of return computed from the cash
flow to the end of the period. The final rate of return can be computed from the product of the
partial rates of return. This procedure is repeated to obtain the return from any given period
of time.

6.1.2 Risk-Adjusted Measures

The methods explained above are useful to measure the return of the portfolio when cash
flows are present. Nevertheless, both methods overlook the risk of the decision. Sharpe et
al. (1999) have discussed some methods to overcome this limitation. Most of these methods
require a benchmark to make comparisons. Market indexes are commonly used for this end.

The traditional portfolio theory computes the return of the portfolio r̄p and its risk σp
with the following equations:

r̄p =
1

T

T∑
i=1

rp(i), (6.2)

σp =

√√√√ 1

T − 1

T∑
i−1

(rp(i)− r̄). (6.3)

Equations 6.2 and 6.3 are simply the average and standard deviation of the portfolio’s time-
series of returns rp. These values are used in the calculation of the risk-adjusted measures.
Some of these methods are the ex-post β method, ex-post security market line, and the
Sharpe’s ratio. These methods are explained below.

Ex-Post-Characteristic Line Method

This method is based on the capital allocation pricing model (CAPM), which explains how
individual securities are priced. The existence of the called market portfolio is assumed by the
model. The behavior of the market portfolio is the best description of the market. Therefore, It
will be the choice of all the rational investors independently from their individual preferences.
In practice, a suitable benchmark is chosen instead of the market portfolio for evaluation
purposes. Figure 6.1 illustrates both cases when the efficient frontier is composed by securities
only and when it includes a fixed-income asset. The market portfolio is also indicated. The
optimal decisions are combinations of the market portfolio and the fixed-income asset. That
is the reason the efficient frontier which considers a fixed-income asset is a straight line.



6.1. PORTFOLIO EVALUATION METHODS 95

Figure 6.1: Examples of Efficient Frontiers

The return of these optimal portfolios are described by equation 6.4:

r̄p = rf +
r̄M − rf
σM

σp, (6.4)

where r̄p is the return of the portfolio and σp, its risk. r̄M and σM refer to the market portfolio.
rf is the return of the fixed-income asset. Equation 6.4 is called the capital market line (CML).
It can be modified to describe risk and return of individual securities. That is the case of the
following equation:

r̄i = rf +
r̄M − rf
σ2
M

σiM . (6.5)

Equation 6.5 comes from the assumption each security’s risk contributes to the total market
portfolio’s risk. Equation 6.5 can be also written written using the parameter βiM :

r̄i = rf + (r̄M − rf ) βiM , (6.6)

where βiM is defined to be
βiM =

σiM
σ2
M

. (6.7)
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Equation 6.6 is called the security market line (SML). In equation 6.7, σiM is the covariance
between the security and the market portfolio. σ2

M is the variance of the market portfolio. The
ex-post (i.e. after the fact) term refers the value of β is computed from historical data. Excess
returns are used for the sake of this calculation. Excess returns are defined to be

rep = rp − rf . (6.8)

Equation 6.8 means excess returns are the ones exceeding the return of the fixed-income asset.
The covariance and the variance from equation 6.7 are computed using excess returns.

The values of βiM can be used to compare the risk of different stocks, but equation 6.6
can be modified to compare portfolios instead of individual assets. The resulting equations is

αp = r̄p − (rf + (r̄bp − rf ) βp) . (6.9)

Equation 6.9 computes the difference of the returns between the portfolio and the benchmark,
which is denoted αp. The firs term is the actual average return of the portfolio. The second
term is the evaluation of the portfolio return using equation 6.6. βp is the ratio of the covari-
ance between the portfolio and the benchmark and the benchmark’s variance. Positive values
of αp indicate the evaluated portfolio is better than the benchmark.

Sharpe’s Ratio

This measure is derived from the capital market line model (equation 6.4). The Sharpe’s ratio
Shp for the portfolio is defined as

Shp =
r̄p − rf
σp

. (6.10)

The value of Shp is compared against the slope of equation 6.4 to determine if the portfolio is
better than the benchmark. The difference between this method and the ex-post characteristic
line method is Shp is based on the total risk instead of the market risk only. Total risk can be
separated in

σ2
i = β2

iMσ
2
M + σ2

εi. (6.11)

Equation 6.11 indicates βiM is only a fraction of the risk of a portfolio. The risk not explained
by the model is considered random noise.

6.2 Market Indexes
The explained methods are based on the capital allocation market model. The existence of the
market portfolio is one of the strongest assumptions of this model. A relevant benchmark is
used instead to apply these methods for portfolio performance purposes. Market indexes are
usually chosen for this end.

Indexes are instruments used to measure the state of the market. A specific sector can be
traced instead, depending on the securities conforming the index. The Dow Jones industrial
average (DJI), the Standard&Poor 500 (S&P500), The Índice de Precios and Cotizaciones
(IPC), the Nikkei 225, or the FTSE 100 are examples of marked indexes. A brief description
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of some market indexes appears in table 6.1. The information was taken from the following
references: (Barron’s 400, 2014, November 1st; S&P Dow Jones Indices, 2014, November
1st; FTSE, 2014, December; Metodologı́a del IPC, 2014, September 1st; NASDAQ Global
Indexes, 2015, February; Nikkei Indexes, 2015, February 2nd; S&P Dow Jones Indices, 2014,
November 1st).

The composition of market indexes changes with time because their components should
be a relevant sample of the economy. Besides, some indexes impose special requirements to
their component stocks. For example, a component from the IPC should have a at least 12%
of the shares outstanding to be free-floating to be considered a part of the index (Metodologı́a
del IPC, 2014, September 1st).

There are different methods to compute a market index. A brief introduction to some of
them is presented. The price weighting method, the capitalization weighting method, and the
equal weighting method are explained below.

Price Weighting Method (PW)

This type of market index is computed from the weighted sum of its components:

P (t) =

∑M
i=1 pi(t)

d(t)
. (6.12)

Where pi(t) is the price of the i-th asset and P (t) is the index value. The average is the
simplest case of equation 6.12. Although, The value of the divisor d(t) is not restricted to
M only. On the contrary, d(t) is constantly updated to compensate the effect of changes
in the index composition and splits. Splits is the division of the value of securities. For
example, a security of value $10 will be equivalent to 2 securities of values $5 after the split.
Companies split their securities to control their prices and liquidity. d(t) is adjusted by solving
the following equation: ∑M

i=1 pi(t)

d(t)
=

∑M
i=1 pi(t)si(t)

d(t− 1)
. (6.13)

Where si(t) represents the split value of the i-th asset. si(t) = 1 when no split was applied to
the security. A similar procedure is applied when securities are substituted by others into the
index composition.

Capitalization Weighting Method (CW)

Capitalization weighted indexes are computed in the following manner:

P (t) = P (0)

(∑M
i=1 pi(t)oi(t)∑M
i=1 pi(0)oi(0)

)
. (6.14)

Equation 6.14 indicates securities prices are multiplied by the number of securities outstand-
ing at time t. This is represented by oi(t). This product is divided by the index value at time
0. Pi(0) and time 0 are chosen arbitrarily. This method has the advantage large companies
are more heavily weighted than small ones. Besides, it does not require further considerations
about splits because they are included in the number of shares outstanding for a particular
security.
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Equal Weighting Method (EW)

This method computes the value of the index in the following way:

P (t) =
P (t− 1)

M

M∑
i=1

pi(t)si(t)

pi(t− 1)
(6.15)

Equation 6.15 computes the average of the price relatives (i.e. the ratio of present and past
prices) to compute the new value of the index. si(t) is the split value of the i-th asset, and M
is the number of components of the index. The geometric mean could be also used to compute
the index value.

Table 6.1: Examples of Market Indexes
Market Index Components Market PW CW EW

Barron 400 US Public Companies
√

DJI 30 NYSE, NASDAQ
√

FTSE 100 London SE
√

IPC 35 Bolsa Mexicana de Valores
√

NASDAQ 100 NASDAQ
√

Nikkei 225 Tokyo SE
√

S&P 500 NYSE, NASDAQ
√

6.3 Limitations of Portfolio Evaluation Methods
Some methods to evaluate portfolios has been presented in the past sections. Their main lim-
itation is the distribution of final return is computed from the time-series of the portfolio’s
returns, as shown in equations 6.2 and 6.3. This means the final expected return and the
volatility of the final return are estimated from the time-series of the portfolio. This computa-
tion assumes the standard deviation of the time series is a good estimation of the volatility of
the final return. The volatility of the market indexes is also estimated in a similar manner. This
procedures is proposed in the traditional portfolio theory because the estimation of volatility
is a difficult task. General auto-regressive conditional heteroskedasticity (GARCH) models
are an example of stochastic time-series models which are used for this end.

Nevertheless, the estimation of the volatility of the distribution of final return can be
estimated using a Monte-Carlo approach. Multiple realizations can be generated to estimate
the distribution of the final return and use them to evaluate the portfolios. In this work, this
approach is now proposed to compute the risk and the final return of the portfolios instead of
using equations 6.2 and 6.3. The return and risk obtained by this method can be applied to
any of the performance measures explained above.

In past sections it was explained that market indexes are frequently considered bench-
marks to measure the performance of portfolios. Measures based on the capital allocation
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market model (CAPM) rely heavily on market indexes to substitute the ideal market portfolio
considered in the model. Nevertheless, market indexes are not portfolios; this means they are
not subject to dynamic restrictions like transaction costs, unbalance, or inflation. For exam-
ple, the Dow Jones index value is obtained with the price-weighted method, and is equivalent
to an equally weighted portfolio. Nevertheless, unbalance and transaction costs are ignored
when computing the next index value. Besides, its value can be higher than the sum of indi-
viduals stocks depending on the current value of the divisor. Both situations are impossible
with regular portfolios. Similar situations are present in capitalization-weighted indexes. In
this work, some benchmarks with closer behavior to portfolios are preferred instead of market
indexes. The experiments considered comparisons against single-period portfolios computed
with Markowitz’s method. Buy-and-holds are also proposed for comparison purposes.

Moreover, the Sharpe’s ratio was the risk-adjusted measure preferred because its cal-
culation does not depended directly of the performance of a market index. The computation
of the risk and return of a market index becomes difficult when equation 6.2 and 6.3 are not
used. This occurs because the required information to obtain these values at any time needed
is not readily available. For example, information about the divisor used to compute the Dow
Jones index is reported only in periodic (not daily) reports. In another example, the current
number of outstanding stocks is needed to compute capitalization-weighted index values, but
it is also reported at certain periods only. The Sharpe’s ratio provides a risk-weighted measure
of portfolio performance free of these problems.

6.4 Experiments and Data Set
Experiments are presented in the following chapter. Data from the Dow Jones index (DJI)
and the Mexican Índice de Precios y Cotizaciones (IPC) were chosen for the experiments due
their relevance to domestic economy. The adjusted close data are used for the tests because
they include the effects of splits and dividends. The data are openly available online (Yahoo!
Finance, 2015, February). Although, the recollection of data form long past dates became
increasingly difficult. The reasons for the scarcity of data are diverse:

• Companies from the past could have been bankrupted and disappeared. Data about
a bankrupted company becomes scarce because there is no one to be responsible to
keep and maintain it. For example, General Motors Co. (GM) was part of DJI until
September 22th, 2008, when it was declared bankrupt (Yahoo! Finance, 2015, Febru-
ary). Data from their bleak times were retired from the GM ticker. A new company
was created to handle GM liquidation. Data generated after the bankrupt is available
under the MTLQQ ticker only (InvestorPoint.com. Investor Information Systems, 2015,
February).

• Companies could have changed names or merge with others. Data can become con-
fusing at certain times. They should be changed accordingly with these events. For
example, Southern Bell Communications (SBC) was part of DJI until November 21th,
2005. SBC merged with AT&T Wireless and kept the AT&T ticker. SBC ticker is no
longer available, but the information of historical prices can be found at the AT&T site
(AT&T Historical Quote, 2015, February).
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• Old data can be simply anymore available. Bolsa Mexicana de Valores (BMV) is re-
sponsible to compute the IPC. IPC data are available from November 8th, 1991 to the
date. Although, information about the index weights is available only from June 1st,
2012 (Notas Sobre Índices, 2015, February) to the date only. This fact limits the avail-
able data for the experiments.

The composition of DJI appears in table 6.4. History was collected from November 1st,
1999 to November 3rd, 2014. The limitations explained above prevented the recollection of
further data. The company names are shown in table 6.2. The reported dates correspond with
changes of the index. A similar description for the IPC appears in tables 6.5 and 6.6. The
tickers description is shown in tables 6.3. The IPC sample is smaller because the information
about this index is more limited. Nevertheless, more companies changes occurred at the
IPC during the sample time. This is because the tight restrictions about the minimum shares
outstanding requirement (Metodologı́a del IPC, 2014, September 1st).

6.5 Conclusion
This chapter presented some common portfolio evaluation methods used by financial profes-
sionals. The methods attempt to consider both risk and return when comparing portfolios.
Most of these methods rely on benchmarks, and market indexes are commonly used for this
end.

This chapter presented some limitations about the traditional evaluation methods. The
main limitations are the difficulty to compute the distribution of the final return and volatility.
A Monte-Carlo method was proposed to avoid this difficulty. Moreover, the use of market
indexes overlooks dynamic restrictions like transaction costs and unbalance which cannot be
ignored in real-world situations. Buy-and-holds and single-period portfolios were proposed
as benchmarks for comparison instead of marked indexes because they are subject to dynamic
restrictions even when their optimization process ignores them. Nevertheless, securities from
DJI and IPC were proposed as the data sets to be used in the experiments. The Sharpe’s ratio
is computed in the experiments to have a risk-weighted measure of the portfolio’s distribution
of returns.

Finally, the chapter presented information about the data sets to be used in the experi-
ments. The DJI and the IPC were chosen due their impact in the domestic Mexican economy.
The last sections explained the limitations about the ability to collect data from the past. Ta-
bles were used to present the content of the indexes and their changes along the years.
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Table 6.2: Tickers from DJI
Ticker Company

AA Alcoa Inc.
AIG American International Group, Inc.
AXP American Express Company
BA The Boeing Company

BAC Bank of America Corporation
C Citigroup Inc.

CAT Caterpillar Inc.
CSCO Cisco Systems, Inc.
CVX Chevron Corporation
DD E. I. du Pont de Nemours and Company
GE General Electric Company
GM General Motors Company
GS The Goldman Sachs Group, Inc.
HD The Home Depot, Inc.

HON Honeywell International Inc.
HPQ Hewlett-Packard Company
IBM International Business Machines Corporation

IP International Paper Company
JNJ Johnson & Johnson (JNJ)
KO The Coca-Cola Company

KODK Eastman Kodak Co.
KRFT Kraft Foods Group, Inc.
MCD McDonald’s Corp.
MMM 3M Company

MO Altria Group Inc.
MRK Merck & Co. Inc.
MSFT Microsoft Corporation
NKE Nike, Inc.
PFE Pfizer Inc.
PG The Procter & Gamble Company
T AT&T, Inc.

TRV The Travelers Companies, Inc.
UNH UnitedHealth Group Incorporated
UTX United Technologies Corporation

V Visa Inc.
VZ Verizon Communications Inc.

WMT Wal-Mart Stores Inc.
XOM Exxon Mobil Corporation
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Table 6.3: Tickers from IPC
Ticker Company

ALFAA Alfa
ALPEK-A Alpek

ALSEA Alsea
AMXL America Movil
ARA Consorcio ARA

ASURB Grupo Aeroportuario del Sureste
AXTELCPO Axtel

AZTECACPO TV Azteca
BIMBOA Grupo Bimbo
BOLSAA Bolsa Mexicana de Valores

CEMEX-CPO CEMEX
CHDRAUIB Grupo Comercial Chedraui

COMERCIUBC Controladora Comercial Mexicana
COMPARC GENTERA
ELEKTRA Grupo Elektra

FEMSAUBD Fomento Econ´ómico Mexicano
GAPB Grupo Aeroportuario del Pacı́fico

GCARSOA1 Grupo Carso
GENTERA GENTERA

GEOB Corporación GEO
GFINBURO Grupo Financiero Inbursa
GFNORTEO Grupo Financiero Banorte
GFREGIOO BANREGIO Grupo Financiero

GMODELOC Grupo Modelo
GSANBOR Grupo Sanborns

HOMEX Desarrolladora Homex
ICA Empresas ICA

ICHB Industrias CH
IENOVA IENOVA

KIMBERA Kimberly - Clark de México
KOF Coca-Cola FEMSA

LABB Genomma Lab Internacional
LALA-B Grupo LALA

LIVEPOL1 El Puerto de Liverpool
MEXCHEM Mexichem
MEXICOB Grupo M´éxico

MFRISCO-A-1 Mineras FRISCO
OHLMEX OHL México
PE&OLES Industrias Penoles
PINFRA Promotora y Operadora de Infraestructura

SANMEXB Grupo Financiero Santander México
SORIANAB Organizacion Soriana

TLEVISACPO Grupo Televisa
URBI Urbi, Desarrollos Urbanos

WALMEXV Wal-Mart de México
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Table 6.4: Composition of DJI
Date S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

9/23/2013 AXP BA CAT CSCO CVX DD DIS GE GS HD
9/24/2012 AXP BA CAT CSCO CVX DD DIS GE AA HD
6/8/2009 AXP BA CAT CSCO CVX DD DIS GE AA HD

9/22/2008 AXP BA CAT C CVX DD DIS GE AA HD
2/19/2008 AXP BA CAT C CVX DD DIS GE AA HD

11/21/2005 AXP BA CAT C HON DD DIS GE AA HD
4/8/2004 AXP BA CAT C HON DD DIS GE AA HD

1/27/2003 AXP BA CAT C HON DD DIS GE AA HD
11/1/1999 AXP BA CAT C HON DD DIS GE AA HD

Date S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
9/23/2013 IBM INTC JNJ JMP KO MCD MMM MRK MSFT NKE
9/24/2012 IBM INTC JNJ JMP KO MCD MMM MRK MSFT BAC
6/8/2009 IBM INTC JNJ JMP KO MCD MMM MRK MSFT BAC

9/22/2008 IBM INTC JNJ JMP KO MCD MMM MRK MSFT BAC
2/19/2008 IBM INTC JNJ JMP KO MCD MMM MRK MSFT BAC

11/21/2005 IBM INTC JNJ JMP KO MCD MMM MRK MSFT MO
4/8/2004 IBM INTC JNJ JMP KO MCD MMM MRK MSFT MO

1/27/2003 IBM INTC JNJ JMP KO MCD MMM MRK MSFT MO
11/1/1999 IBM INTC JNJ JMP KO MCD MMM MRK MSFT MO

Date S21 S22 S23 S24 S25 S26 S27 S28 S29 S30
9/23/2013 PFE PG T TRV UNH UTX V VZ WMT XOM
9/24/2012 PFE PG T TRV UNH UTX HPQ VZ WMT XOM
6/8/2009 PFE PG T TRV KRFT UTX HPQ VZ WMT XOM

9/22/2008 PFE PG T GM KRFT UTX HPQ VZ WMT XOM
2/19/2008 PFE PG T GM AIG UTX HPQ VZ WMT XOM

11/21/2005 PFE PG T GM AIG UTX HPQ VZ WMT XOM
4/8/2004 PFE PG SBC GM AIG UTX HPQ VZ WMT XOM

1/27/2003 KODK PG SBC GM T UTX HPQ IP WMT XOM
11/1/1999 KODK PG SBC GM T UTX HPQ IP WMT XOM
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Table 6.5: Composition of IPC
Date S1 S2 S3 S4 S5 S6 S7

9/1/2014 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
6/2/2014 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
3/3/2014 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
12/2/2013 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
6/3/2013 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
3/1/2013 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
12/3/2012 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
9/3/2012 AC ALFA ALPEK ALSEA AMX ASUR BIMBO
6/1/2012 AC ALFA ARA ALSEA AMX ASUR BIMBO

Date S8 S9 S10 S11 S12 S13 S14
9/1/2014 BOLSA CEMEX COMERCI ELEKTRA FEMSA GAP GCARSO
6/2/2014 BOLSA CEMEX COMERCI ELEKTRA FEMSA GAP CHDRAUI
3/3/2014 BOLSA CEMEX COMERCI ELEKTRA FEMSA GAP CHDRAUI
12/2/2013 BOLSA CEMEX COMERCI ELEKTRA FEMSA GAP CHDRAUI
6/3/2013 BOLSA CEMEX AZTECA ELEKTRA FEMSA GAP CHDRAUI
3/1/2013 BOLSA CEMEX AZTECA ELEKTRA FEMSA GAP CHDRAUI
12/3/2012 BOLSA CEMEX AZTECA ELEKTRA FEMSA GAP CHDRAUI
9/3/2012 BOLSA CEMEX AZTECA ELEKTRA FEMSA GAP CHDRAUI
6/1/2012 BOLSA CEMEX AZTECA ELEKTRA FEMSA GAP CHDRAUI

Date S15 S16 S17 S18 S19 S20 S21
9/1/2014 GENTERA GFINBUR GFNORTE GFREGIO GMEXICO GRUMA ICA
6/2/2014 GENTERA GFINBUR GFNORTE GFREGIO GMEXICO GRUMA ICA
3/3/2014 GENTERA GFINBUR GFNORTE GFREGIO GMEXICO GRUMA ICA
12/2/2013 COMPARC GFINBUR GFNORTE GFREGIO GMEXICO GRUMA ICA
6/3/2013 COMPARC GFINBUR GFNORTE GEO GMEXICO GRUMA ICA
3/1/2013 COMPARC GFINBUR GFNORTE GEO GMEXICO GRUMA ICA
12/3/2012 COMPARC GFINBUR GFNORTE GEO GMEXICO GRUMA ICA
9/3/2012 COMPARC GFINBUR GFNORTE GEO GMEXICO GRUMA ICA
6/1/2012 COMPARC AXTEL GFNORTE GEO GMEXICO GRUMA ICA
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Table 6.6: Composition of IPC (Cont.)
Date S22 S23 S24 S25 S26 S27 S28

9/1/2014 ICH IENOVA KIMBER KOF LAB LALA LIVEPOL
6/2/2014 ICH IENOVA KIMBER KOF LAB GSANBOR LIVEPOL
3/3/2014 ICH IENOVA KIMBER KOF LAB GSANBOR LIVEPOL
12/2/2013 ICH IENOVA KIMBER KOF LAB GSANBOR LIVEPOL
6/3/2013 ICH HOMEX KIMBER KOF LAB MFRISCO LIVEPOL
3/1/2013 ICH HOMEX KIMBER KOF LAB MFRISCO LIVEPOL
12/3/2012 ICH HOMEX KIMBER KOF LAB MFRISCO LIVEPOL
9/3/2012 ICH HOMEX KIMBER KOF LAB MFRISCO LIVEPOL
6/1/2012 COMERCI HOMEX KIMBER SORIANA LAB MFRISCO LIVEPOL

Date S29 S30 S31 S32 S33 S34 S35
9/1/2014 MEXCHEM OHLMEX PE&OLES PINFRA SANMEX TLEVISA WALMEX
6/2/2014 MEXCHEM OHLMEX PE&OLES PINFRA SANMEX TLEVISA WALMEX
3/3/2014 MEXCHEM OHLMEX PE&OLES PINFRA SANMEX TLEVISA WALMEX
12/2/2013 MEXCHEM OHLMEX PE&OLES PINFRA SANMEX TLEVISA WALMEX
6/3/2013 MEXCHEM OHLMEX PE&OLES URBI SANMEX TLEVISA WALMEX
3/1/2013 MEXCHEM OHLMEX PE&OLES URBI GMODELO TLEVISA WALMEX
12/3/2012 MEXCHEM OHLMEX PE&OLES URBI GMODELO TLEVISA WALMEX
9/3/2012 MEXCHEM OHLMEX PE&OLES URBI GMODELO TLEVISA WALMEX
6/1/2012 MEXCHEM OHLMEX PE&OLES URBI GMODELO TLEVISA WALMEX





Chapter 7

Experiments Results

Past chapters have explained Sb-MOEA and its modifications to perform risk optimization
(Sb-MORiOA). Also, the investment strategies (ISs) method was proposed to manage port-
folios considering dynamic restrictions and the investor’s preference. This chapter presents
the results of the experiments conducted to evaluate the proposed method. The investment
strategies method was implemented using Sb-MORiOA.

The first part of this chapter describes the experiments and the evaluation parameters.
The second part shows explain the results. The last section shows the discussion and the
obtained conclusions.

7.1 Experiments Description

Data from the Dow Jones industrial average (DJI) and the Índice de Precios y Cotizaciones
(IPC) were selected for the experiments. A discussion about these data sets was presented in
past chapters. A random starting date is selected for each experiment. From that point, the
algorithm managed the portfolio to reach the goal, which is determined with the procedure
explained in chapter 5. The goal was set from the first Pareto front, which was computed with
a fixed number of periods T = 5 and ασM = 0.8. The interest rate I was computed to be the
average return of the selected securities by the algorithm for the particular experiment. The
possibility to use a fixed-income asset was included. Cash was used for this end. The transac-
tion cost rate was set to be c = 0.005. A maximum number of periods Tmax were given to the
algorithm to reach the goal. Time windows ensure all the experiments had an equal opportu-
nity to perform the task. Besides, a sliding window method is used to constantly update the
history. Used data became part of data history and the oldest ones were discarded. The prob-
ability distribution of stock returns was updated using the current history when the algorithm
required it. Starting points unable to comply to these restrictions were not considered for the
experiments. DJI experiments used Tmax = 120 and IPC experiments used Tmax = 60. These
values were empirically selected to make time duration of experiments reasonable. 30 random
instances were chosen from each data set for the experiments.

The experiments tested five strategies with different levels of risk: S0 = [0, 1], S25 =
[0.25, 0.75], S50 = [0.5, 0.5], S75 = [0.75, 0.25], and S1 = [1, 0]. Investment strategies were
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Figure 7.1: Average Maximum Loss for DJI Experiment per Method
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Figure 7.2: Total Periods for DJI Experiment per Method
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Figure 7.3: Final Return for DJI Experiment per Method

used to select the next set of portfolios to be used by the algorithm. Besides, the experi-
ments tested two different risk measures: The standard deviation of the final portfolio value
and the value-at-risk (VaR) of the final portfolio value. Value-at-risk can be understood as
the α-quantile of the distribution. Both risk measures were applied to the same data sets to
investigate their effect in performance.

The number of individuals in the population and the number of cycles are determined
by equation 7.1:

ninds = c1 dlog(T )e . (7.1)

Where c1 = 50 for the case of individuals, and c1 = 100 for the case of cycles.
The crossover probability was set to pc = 1, and the mutation probability was pm = 0.1.

The maximum number of evaluations per individual was 10000. The number of bits per
portfolio weight was b = 4. The total number of bits depended on the number of securities
selected by the algorithm, which was determined using the procedure described in chapter 5.

Two other investment methods were tested for comparison purposes. The first one is
buy-and-hold (B&H), which is widely used by investors. The same securities chosen by the
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Figure 7.4: Stop Loss for DJI Experiment per Method

algorithm were used for the B&Hs. They are determined from the Markowitz’s efficient fron-
tier, and 10 portfolios were chosen from it. The selected portfolios were hold until the goal
was reached or time was over. These portfolios were not re-balanced during the experiment. In
the results, S1 denotes the lowest risk portfolio. The second method is a single-period invest-
ment method where the optimal portfolio was computed at each period with the Markowitz’s
method. 10 portfolios were selected from the efficient frontier for the test, where M1 denotes
the lowest risk portfolio. These portfolios were tested against the same random instances used
to evaluate the investment strategies.

7.1.1 Measures of Performance

The same sets of random instances were used to test the different methods. This allowed a
direct comparison of the different methods for the same conditions. The overall performance
can be computed from the results obtained by a particular method from the different instances.
The performance measures considered were the following: Maximum loss, total periods, final
return, stop loss time, expected return, risk, Sharpe’s ratio, and the average periods per de-
cision. Maximum loss refers to the minimum portfolio value reached during the experiment.
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Figure 7.5: Sharpe’s Ratio for DJI Experiment per Method

Total periods is the time used by the algorithm to reach the goal. The total periods was equal
to Tmax when the algorithm was unable to reach the goal in time. The final return is usually
close to the goal because the algorithm stops when the goal is reached. Nevertheless, this mea-
sures is useful to analyze the cases when the algorithm failed the task. Stop loss time refers
to the period when the portfolio wealth dropped below a certain value. In the experiments,
a stop loss occurrence is counted when portfolio value drops below 70% of the initial value.
Investors usually apply stop loss to prevent catastrophe. The experiment did not stopped when
a stop loss had place, but it was registered to investigate the benefit of this practice.

Equations 6.2 and 6.3 indicate the current theory estimates risk and final return of port-
folios based on the time-series of the current portfolio value. Nevertheless, the Monte-Carlo
approach allows the estimation of the volatility and the final return directly. The Sharpe’s ra-
tio is used to investigate the performance of investment strategies, buy-and-holds and single-
period policies, but the estimation of risk and return were computed using the Monte-Carlo
approach instead of the traditional method. The risk and returns of the portfolios were plotted
at the risk-return plane to investigate their domination relationships.
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Figure 7.6: Average Maximum Loss for DJI Experiment per Instance
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7.1.2 Box Plots Method
Box plots were chosen to present the results from the experiments. This method was preferred
because it provides further information about the distribution of data. For example, box plots
identify outliers clearly, which could mislead results if they are not considered when interpret-
ing data. The figures below show outliers were a common occurrence in the results, therefore
this method is useful in this case. The box represents the area from first quartile to the third
quartile of the distribution. The dot inside the box represents the median, which comparison
has statistical significance. The length of the whiskers indicates the minimum and maximum
data which are not considered outliers. The maximum whisker extension is 3/2 of the size of
the box. Data beyond those limits are considered outliers.

Hypothesis testing was conducted to investigate the significance of the conclusions ob-
tained by the box plot method. The Kruskal-Wallis test is usually applied to compare the
medians of different samples (McDonald, 2015). It is a non-parametric test, this means it
does not assumes a particular distribution for the data. In general, the test explores if the
ranked samples come from the same distribution, which is the null hypothesis. Small p-values
(e.g. p < 0.05) indicate the evidence is enough to reject it. In that case, the comparison of
medians provides useful information. Table 7.1 shows the results from the test. Also, the table
presents results of the χ2 goodness-of-fit (GOF) test to investigate the normality of data. This
result is presented because other methods could be better than the Kruskal-Wallis test when
data are normally distributed (e.g. one-way ANOVA). In table 7.1, DJI and IPC denote the
results obtained from the different data sets. The label “KW Test” indicate the results are the
p-values obtained from the Kruskal-Wallis test for the corresponding experiment. The meth-
ods are denoted in the following way: Investment Strategies (IS), buy-and-holds (BH), single
period portfolios (SP), investment strategies optimized using standard deviation (SI), and in-
vestment strategies optimized using value-at-risk (VI). The Kruskal-Wallis test can be applied
to many samples simultaneously, but the results show the comparison of pairs of methods. For
example, the label “IS/BH” indicates an investment strategies sample is compared against a
buy-and-hold sample for the experiment of a particular performance metric. Table 7.1 shows
the test results for every combination of metrics and pair of methods. Although, the stop loss
occurrence metric was not included because further testing was not necessary in that case.

In general, the p-values from the χ2 goodness-of-fit test indicate the data are not normal,
which is somehow perceived in the box plots shown below. This justifies the use of the
Kruskal-Wallis test. Besides, they indicate the maximum loss of single period portfolios from
the IPC experiment (further explained below) could be normal. Nevertheless, the Kruskal-
Wallis test was applied to all the cases.

Also, the results shown in table 7.1 indicate most of the distributions of the results are
statistically different from each other. This means the difference of medians is also significant
and their comparison can be used to draw conclusions form the experiments. The cases where
the null hypothesis was not rejected are discussed in the following sections.

7.2 Discussion of Results
The results appear from figure 7.1 to figure 7.21. Box plots were chosen to display the results
because they provide further information about the distribution of the data. Figure 7.1 shows
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Table 7.1: Hypothesis Tests Results for Comparison of Methods
DJI KW Test IS/BH IS/SP BH/SP SI/VI

Maximum Loss 0.0000 0.0000 0.0000 0.9326
Total Periods 0.0008 0.0000 0.0000 0.7580
Final Return 0.0000 0.0000 0.0000 0.1509

Sharpe’s Ratio 0.2631 0.6539 0.4093 0.3654
IPC KW Test IS/BH IS/SP BH/SP SI/VI

Maximum Loss 0.0177 0.0000 0.0000 0.9738
Total Periods 0.0000 0.0004 0.0000 0.0136
Final Return 0.4940 0.0000 0.0000 0.8862

Sharpe’s Ratio 0.0000 0.0000 0.0140 0.0000
DJI χ2-GOF IS BH SP

Maximum Loss 0.0000 0.0000 0.0000
Total Periods 0.0000 0.0000 0.0000
Final Return 0.0000 0.0000 0.0000

Sharpe’s Ratio 0.0000 0.0000 0.0000
IPC χ2-GOF IS BH SP

Maximum Loss 0.0000 0.0000 0.3248
Total Periods 0.0000 0.0000 0.0000
Final Return 0.0000 0.0000 0.0000

Sharpe’s Ratio 0.0002 0.0000 0.0000
KW Test DJIs/DJIv IPCs/IPCv DJI/IPC
Duration 0.8851 0.0003 0.0000

DJIs DJIv IPCs IPCv
χ2-GOF 0.0007 0.0000 0.0000 0.0000

the maximum loss obtained by the methods for each random instance of the experiment. In the
figures, SIs and VIs refer to investment strategies which used standard deviation and value-
at-risk, respectively. IS denotes both types as a whole, BH refers to buy-and-holds, and SP is
used to identify single-periods methods.

Figure 7.1 show ISs maximum loss was less than the losses obtained by B&Hs or SPs.
The maximum loss suffered by the standard deviation ISs and the VaR ISs is similar. The three
methods suffered heavy losses in some cases. This seems to indicate there were instances
where heavy loss was unavoidable. Nevertheless, heavy loss was more common for B&Hs
or SPs. This is indicated by the extension of their whiskers. Extreme loss (around 90%) was
an outlier for every method. The difficulty of instances is investigated in figure 7.6. In this
context, difficulty of instances refers to the probability the methods had to reach the goal in
time. The box plots indicate a loss heavier than the stop loss is a common occurrence for
about 40% of the instances. The lack of outliers in most of instances confirm heavy loss is
more the rule than an exception. Cases 4, 16, and 30 proved to be the most difficult ones. They
are probably the cause of the outliers appearing in figure 7.1. On the other hand, instances 5
and 20 presented small losses in a regular basis.

Figure 7.2 shows a similar behavior. The total number of periods to reach the goal is
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Figure 7.7: Total Periods for DJI Experiment per Instance
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Figure 7.8: Final Return for DJI Experiment per Instance
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Figure 7.9: Stop Loss for DJI Experiment per Instance

shown in this one. The number of periods seems correlated to the difficulty of instances.
Besides, a short set of portfolios seems to take less risk than a long one. ISs shows to have
needed less periods than the other methods. Besides, ISs distribution is narrower than the
other methods. Outliers are also present in this case for ISs and B&Hs. A extremely large
number of periods was not a common case for ISs and B&Hs. This is contrary to the SPs
case, where failure to reach the goal was more frequent. Figure 7.7 shows around 30% of the
instances required large numbers of periods to solve them. The worst-case scenario was the
norm for instance 16. Most of the methods failed to solved it and the fortunate cases were
outliers.

Figure 7.3 shows the final return of the different methods. The termination of the run
when the algorithm reached the goal avoided the occurrence of large returns. The goal was
selected based on the investor’s preferences captured by the interest rate, the initial number of
periods, and the value of ασM . More ambitious goals would require a revision of the investor
preference. Figure 7.3 indicates ISs attained larger final returns than the other methods. Both
SIs and VIs had a similar behavior. The distributions of ISs are located above 1, this indicates
ISs usually attained profit. B&Hs have a narrower distribution, but they have a higher proba-
bility to attain negative return than ISs. SPs were prone to attain lower returns than the other
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Figure 7.10: Pareto Front for DJI Experiment

methods. ISs and B&Hs presented outliers. There were instances where the methods attained
an unexpected low return, but other where they attained an unexpected high return. This hap-
pened more frequently for ISs than B&Hs. Negative cases could be explained considering the
difficulty of particular instances. There is the possibility the easy cases are the same for both
methods, but ISs attained higher return than B&Hs for these particular instances. Figure 7.8
confirms instances 16 and 30 where the hardest ones. In general, this figure provides similar
information than figure 7.6 and figure 7.7.

Figure 7.4 presents the number stop loss occurrences for each method. This figure shows
stop loss was a common occurrence for SPs only. For the rest of the methods, this was an
outlier. Figure 7.9 shows instances 11, 16, 20, 25, 29, and 30 are the ones where stop loss
occurrences were common. The rest also presented some of them, but they were outliers.

Figure 7.5 shows the Sharpe’s ratio obtained by each method. The median of the
Sharpe’s ratio is similar for SIs and VIs, but SIs has a broader distribution and this ones is bi-
ased to negative Sharpe’s ratio values. This means the probability to attain a negative Sharpe’s
ratio using SIs, compared to VIs. SPs attained the highest median of the three methods, but
their distribution is largely biased to negative values. The median of ISs was positive while
the median of B&Hs was negative. This results seems related to the amount of information
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Figure 7.11: Average Maximum Loss for IPC Experiment per Method
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Figure 7.12: Total Periods for IPC Experiment per Method

used by the methods. For example, SPs use the largest amount of information because they do
a portfolio revision each period. B&Hs are the contrary case, they never do a revision in favor
of avoiding transaction costs. SPs seems to take less risk than other methods because of their
revision frequency. Although, excessive revision seems to incur in unnecessary transaction
costs in most of the cases.

According with table 7.1, there is no statistical evidence the Sharpe’s ratio distributions
of the methods are different. In that case, the difference of medias do not offer useful informa-
tion. Nevertheless, McDonald (2015) indicated some references warns about the similarity of
the sample’s distributions and the validity of results (Fagerland & Sandvik, 2009). The com-
pared distributions should have similar shape. For example, the fact distributions are skewed
to different directions would lead to test errors. Also, the variances of the samples should be
similar. Figure 7.5 shows the ISs distribution is approximately symmetrical while the others
are skewed towards negative values. This difference could provoke the test fail to determine
the medians of IS and the others are significantly different. On the other hand, it seems rea-
sonable the medians of SIs and VIs are similar. The same could be said about the distributions
of B&Hs and SPs.
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Figure 7.13: Final Return for IPC Experiment per Method

ISs are the middle point between SPs and B&Hs. They do portfolio revisions but at
a lower frequency than SPs. On the other hand, ISs also consider transaction costs and in-
clude a fixed-return asset which can be used to go out the market in complicated scenarios.
Nevertheless, this resource is only useful when good estimations are available. The abuse of
the fixed-return asset will negatively impact the portfolio performance. This results seems
indicate the balance between the use of information and the avoidance of transaction costs is
crucial to develop effective investment methods.

In general, table 7.1 indicates there is no significant differences between the medians of
SIs and VIs for this data set. This seems indicate the performance of investment strategies
optimized with different risk metrics is similar.

Figure 7.10 presents the Pareto front of different methods. The average of risk and return
of each method variation was plotted in the risk-return plane. The averages where computed
along instances for each possible variation. For example, the risk and return of the investment
strategy S1 was computed for each instance and their averages were plotted in figure 7.10.
The figure indicates the Pareto front of policies is exclusively composed by ISs. Both ISs and
B&Hs dominate SPs in this case. The average and medians of distributions have not necessary
the same value. Discrepancies occur when large differences in data are present.
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Figure 7.14: Stop Loss for IPC Experiment per Method
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Figure 7.15: Sharpe’s Ratio for IPC Experiment per Method

A similar analysis could be done for the IPC experiment. Figure 7.11 shows the maxi-
mum loss per method. SIs and VIs showed a similar performance. The median of ISs is lower
than the other methods. Table 7.1 indicates the difference is significant for a critical value of
0.05. Small losses are more probable with ISs than B&Hs. There is not a low whisker for
B&Hs box plot. SPs maximum loss was significantly higher than the one of other methods. In
this cases, losses in the range of the other methods are outliers. Losses higher than 15% were
outliers for both ISs and B&Hs. In general, the behavior is similar to the one shown in fig-
ure 7.1 for the DJI experiment. Nevertheless, losses were much lower for the IPC experiment,
where 40% was the lowest reported value. Figure 7.16 provides further information among
both experiments. The DJI experiment shows more extreme cases (both hard cases and easy
cases) than IPC experiment. Figure 7.16 indicates all the cases have a similar probability to
attain a particular loss level. Cases 15 and 30 are the ones with higher median.

Figure 7.12 shows the total number of periods per method. SIs and VIs have similar
performance, but SIs have a broader distribution bias to higher number of periods. B&Hs is
the method with the lowest median and its followed by ISs. Policies larger than 20 periods
were outliers for ISs and B&Hs, while the maximum possible is a common occurrence for
SPs. Based on figure 7.2, the distribution of ISs and B&Hs was similar for both experiments.
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Figure 7.16: Average Maximum Loss for IPC Experiment per Instance

Figure 7.17 indicated about 50% of the cases were easy for the methods. Having a number of
periods larger than 10 periods is an outlier for those cases. The contrary occurred for the rest
of the instances.

Figure 7.14 shows the stop loss occurrences for the IPC experiment. In this case, stop
loss seldom occurred. Only SPs reports occurrences, and they were outliers. Figure 7.19
confirm these results. Stop losses were outliers when they had place.

Figure 7.13 shows the final return per method. SIs and VIs have similar median, but SIs
distribution is biased towards positive returns, compared to VIs. The median of ISs is higher
than B&Hs and SPs. The distribution of ISs is narrower than the distribution of B&Hs. This
indicate the probability of having negative returns is higher for B&Hs than for ISs. Table
7.1 indicates the difference is significant for a critical value of 0.05. SPs are clearly biased
towards negative returns, where the lowest value was 60%. The behavior of the different
methods was similar in both experiments. Nevertheless, the DJI experiment showed returns
spanning the range of 10% to 120%, while the IPC experiments were in the range of 60% to
105%. Although, most of the extreme cases are outliers. This seems indicate more extreme
and unpredictable scenarios occurred in the DJI market in those years. Figure 7.18 shows
negative returns are likely for about 40% of the instances.
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Figure 7.17: Total Periods for IPC Experiment per Instance
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Figure 7.15 shows the Sharpe’s ratio for the different methods. SIs have larger Sharpe’s
ratio median than VIs and their distribution are biased towards higher values. ISs attained
a higher median than B&Hs and SPs. ISs distribution is more symmetrical then the others.
Distribution of B&Hs and SPs are biased towards negative values. Although, the probability
of negative values is higher for SPs than for B&Hs. Table 7.1 indicates the difference of
medians between B&Hs and SPs is significant for a critical value of 0.05. The medians of the
IPC experiment are higher than the ones of the DJI experiment. Although, the behavior of the
methods is similar in both experiments. These results seems indicate less risks was taken in the
IPC experiment than the DJI experiment. This is concluded because figures 7.3 and figure 7.13
show similar final returns but the Sharpe’s ratio of the IPC experiment were generally higher
than the ones of the DJI experiment. Lower risk levels should have increased the Sharpe’s
ratio values in the former case. The fact SPs attained the lowest median is contrary than the
DJI experiment, where they attained the highest median value. Nevertheless, the distribution
is biased towards negative values in both cases. On the contrary, the performance of ISs and
B&Hs increased in the IPC experiment. Given IPC market seemed to be less risky than DJI
market, this seems indicate both ISs and B&Hs performed better in a low risk scenario.

In general, table 7.1 indicates there is no significant difference between SIs and VIs for
any metric but the Sharpe’s ratio. In that case SIs promised higher returns with lower risks
than VIs. Standard deviation could be regarded as optimistic compared to VaR because it
considers total risk instead of downside risk. In other words, investment strategies optimized
using standard deviation consider the final outcome could be better or worse than expected,
while the ones optimized using VaR consider negative possible outcomes only.

Figure 7.20 shows the Pareto front of the average risk-return for the different methods.
In this case, the Pareto front is composed by ISs only. Besides, there is a clearer difference
among the methods than for the DJI experiment: The variations of methods seemed clearly
clustered together. Both ISs and B&Hs dominate SPs.

Finally, figure 7.21 compares the number of periods a portfolio was hold by the algo-
rithm before revision. DJIs and DJIv denote the investment strategies applied to the DJI exper-
iment optimized with standard deviation and value-at-risk, respectively. The same applies for
the IPC experiment. This figure indicates the algorithm applied sets of portfolios of different
number of periods each time, which is a proof of the co-existence of them at the same multi-
period Pareto front. The medians of the portfolios sets optimized using VaR is higher than
the ones optimized using standard deviation, although table 7.1 indicates the difference is not
significant for the DJI experiment. On the other hand, the differences for the IPC experiment
are significant. In that case, the median of VaR ISs is higher than standard deviation ISs. Also,
the distributions of VaR strategies are broader. This indicates the algorithm had a tendency to
choose larger portfolios sets when VaR was considered as the risk measure. Moreover, The
medians of the DJI experiment are higher than the medians of the IPC experiment, which is
supported by the results of table 7.1. This means the algorithm chose shorter portfolio sets in
the IPC experiment. The DJI experiment showed some outliers, where the largest set had 24
portfolios. This could be explained from the fact the methods suffered heavier losses in the
DJI experiment than in the IPC experiment. According with a Martingale strategy, a gambler
would need an infinite amount of money to win every bet (Finkelstein & Whitley, 1981). In
a similar manner, a simple strategy to deal with loss is waiting for the market to recover by
itself. Therefore, the number of period of a set of portfolios seems to be related to the losses
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Figure 7.18: Final Return for IPC Experiment per Instance
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suffered during the run. One possible reason for these loss scenarios is the economic crisis
the United States suffered at 2008. The data covers this period of time.

The difference between markets is further investigated using hypothesis testing. The
Kruskal-Wallis test was used to compare results of the experiments from each data set. In this
case, the same pair of method and metric is compared from both markets. The p-values are
shown in table 7.2. The results show the performance is different for all the combinations but
the Sharpe’s ratio of the single period portfolios. This supports the conclusion the American
market had higher level of risk than the Mexican market.

Table 7.2: Hypothesis Tests Results for Comparison of Markets
Metric IS BH SP

Maximum Loss 0.00202 0.00000 0.00000
Total Periods 0.00000 0.00000 0.00000
Final Return 0.00000 0.00039 0.00317

Sharpe’s Ratio 0.00000 0.00003 0.10897

The presented results seems indicate ISs have better performance for the presented mea-
sures. In the DJI experiment, they showed to have lower maximum loss than other methods.
Besides, ISs took less time to reach the goal and attained higher final return. Stop loss seldom
occurred. The probability distribution of ISs Sharpe ratio has higher probability to attain pos-
itive values than the ones of other methods. The results are similar for the IPC experiment,
although the median of total periods was higher for ISs than for B&Hs. Finally, the Pareto
front of the average risk-return of the methods was composed by ISs only. In general, all
three methods showed similar behavior in both experiments. The less effective method was
SPs, which seems a prove neglecting transaction costs and other dynamic restrictions cannot
produce optimal investment decisions.

The results also indicate the DJI experiment presented a higher level of uncertainty than
the IPC experiment. For example, maximum loss and stop loss occurrences were higher in
the DJI experiment. This was explained by the economic crisis American markets suffered
in 2008, which is a period of time included in data. Also, there were found instances where
heavy loss was unavoidable regardless the method.

The effect of considering different risk measures was investigated. The result indicate
VaR ISs have a tendency to be generate larger sets of portfolios. This implies risk increase
more slowly with the number of periods when VaR was considered. In other words, the
increase in risk from sets of portfolios with T periods to sets with T + 1 periods was more
drastic when the standard deviation was considered instead of VaR. This could be from the fact
the probability distribution of final return is not symmetric. VaR considers downside risk while
standard deviation considers total risk. Finance theory considers investor is not concerned by
upward risk, which is regarded to be beneficial to investment. Although, there was not found
a significant difference between the performance of both standard deviations ISs and VaR
ISs. Although, the optimal portfolios found using each risk measure were different from each
other. The advantages of using different risk measures should be further investigated.

Finally, it was found the method truly used policies with different number of periods
at each revision time. This is a proof a multi-period Pareto front could be composed by sets
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Figure 7.19: Stop Loss for IPC Experiment per Instance



7.2. DISCUSSION OF RESULTS 131

Figure 7.20: Pareto Front for IPC Experiment
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Figure 7.21: Duration of Different Investment Strategies

of different periods. These Pareto fronts provide investors with more flexible options at the
moment of decision making.

7.3 Conclusion

This chapter presented the results of experiments conducted to investigate the performance
of the proposed method and the nature of markets. The chapter described the experiments
and the performance measures in the first part. The proposed measures were the following:
Maximum loss, total periods, final return, stop loss occurrence, Sharpe ratio, and domination.
The following section showed the results for the DJI experiment and for the IPC experiment,
respectively. Box plots were used to display the information about the probability distribution
of the results. Besides, hypothesis testing was used to support the conclusions obtained from
the box plots analysis. They showed ISs had better performance than other methods for the
considered performance measures. A higher level of risk was identified in the American
market. The economic crisis was considered one of its possible causes.

It was concluded that different risk measures could lead to different optimal portfolio
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policies. Although, significant difference in performance among them was found. The main
difference was VaR polices have a tendency to find longer policies than standard deviation
investment strategies. The asymmetry of the distribution of final return was one of the pos-
sible explanations to this phenomenon. Finally, the existence of multi-period Pareto fronts
composed by portfolio sets of different number of periods was proved in the results.





Chapter 8

Conclusions

This is the final chapter. The first part is a summary, the second part intends giving answer to
the research questions proposed on the first chapter. The next presents some final comments
and general conclusions. The last one is the future work section.

8.1 Summary

This work proposed a new evolutionary computing method based on portfolio theory to make
investment decisions. Portfolio theory was preferred because it includes the risk of the deci-
sion into the optimization process. It acknowledges our inability to make a perfect prediction
of the future and provides solutions considering the outcome could be worse than expected.
From that perspective, portfolio optimization is similar to robust optimization. Although,
there are differences which make risk optimization interesting on its own terms.

The research took two complementary directions: The first part studied the limitations
of the traditional portfolio theory and the way to overcome them. The second studied the
application of evolutionary algorithms to solve financial problems. The first study showed
traditional portfolio theory excluded dynamic restrictions from the problem definition and
relied on theoretical utility functions to explain how the investor chooses one portfolio from
all the available possibilities. These limitations diminish the effectiveness of portfolios in real-
world investment. Both investors and finance professionals have looked for methods to solve
these problems. The literature reported multi-period definitions of the problem to allow the
introduction of transaction costs and other dynamic restrictions. Nevertheless, the solution of
multi-period portfolio problems proved to be difficult from a mathematical framework. Also,
the difficulty of the problem limited the exploration of other possibilities, like the inclusion of
data innovations or identification of the investor’s preference.

The second study showed that multi-objective evolutionary algorithms have been mainly
used to solve portfolio selection problems with static restrictions. They are a natural choice for
this problem because of their ability of simultaneous optimization of risk and return. On the
other hand, the solution of portfolio selection problems with dynamic restrictions had received
limited attention in the literature. This occurred because the references about multi-period
portfolio selection are mainly concerned with finding closed-form solutions to the problem,
while evolutionary algorithms are better suited to find numerical solutions. Nevertheless, this
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latter approach has the advantage to include dynamic restrictions in a simple manner.
The conclusion was an evolutionary computing method is a good approach to solve

multi-period portfolio problems with dynamic restrictions. An investment method based on
multi-period portfolio theory could now be developed given the existence of an algorithm to
solve multi-period portfolio problems. The method could explore all kind of restrictions, but
the scope of this work was limited to transactions costs, unbalance, inflation, and the inclusion
of data innovations. It also includes identification of the investor’s preference.

The solution model can be divided in two parts: The first part is the multi-objective
evolutionary algorithm to solve multi-period portfolio problems. The other is the investment
method developed from the multi-period portfolio theory. The investment strategies method
was developed to make investment decisions which considered dynamic restrictions. The
hypothesis stated their inclusion could help making better decisions.

The experiments showed this approach had better performance than buy-and-holds and
single-period portfolios, which are common practices of investors. Risk-weighted measures
were considered to compare the different methods. Besides, the experiments concluded the
existence of multi-period efficient frontiers with heterogeneous time horizons. Also, the re-
sults identified differences about the nature of Mexican and American markets. The use of
different measures of risk leaded to different optimal sets of portfolios.

8.2 Answers to Research Questions
On the first chapter, the problem statement was further developed into a list of research ques-
tions. This section intends give an answer to them based on the results obtained from the
experiments. The questions list is shown below.

• How can the investor’s preference be included in the optimization process?

• Can utility functions be excluded from the portfolio selection problem?

• Which parameters could capture the information represented by utility functions?

• Is there inherent differences between the nature of different markets? How do the affect
the optimization process?

• What differences among markets are instrumental when performing multi-period port-
folio optimization?

• How can an evolutionary algorithm be implemented to solve multi-period portfolio se-
lection problems?

• How should be measured the performance of financial strategies?

• How the proposed method could be appealing to regular investors?

This work showed the investment strategies method includes the investor’s preferences
by defining a goal to the optimization. An iterative procedure was proposed to help the in-
vestor to define his own preference based on the evidence provided by the multi-period Pareto
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front, which is computed from the current state of the market using a Monte-Carlo approach.
The goal of return and risk is defined based on the information provided by the front. The
next multi-period Pareto front is computed based on the previous decision, which is made
based on the goal. In the experiments, the algorithm stops when the portfolio value fulfill the
investor’s expectations, but the process could continue as long as arriving data are available.
This work limited the research to fixed goals, but it is possible to define new goals based on
the market state and the portfolio’s performance. This could be reasonable because the market
is assumed to be non-stationary, therefore, the investor could aspire to better outcomes under
different market conditions. On the other hand, bear markets could turn the original investor’s
expectations into unreasonable demands. Although, definition of adaptive goals remains an
open question.

The second point inquires about the possibility of identifying the investor’s preference
instead of using theoretical utility functions to describe it. Utility functions make the assump-
tion the dynamics about preference is the same for all the investors. On the other hand, other
fields (e.g. automatic control engineering) use identification process regularly. In those cases,
general models have numerical parameters which are adjusted based on data from the par-
ticular system. This information is crucial to design effective control rules for them. In this
work, this idea was extended to the investment framework. Nevertheless, the evolutionary
algorithms approach is able to implement utility functions to define the investor’s preference.
A comparison of both approaches could draw interesting conclusions.

The third question is about the way the identification process should be done. The
investment strategies method defines the investor’s preference based on the maximum number
of periods from the initial Pareto front (Tmax), the maximum risk assumed by the Pareto front
(σmin), the fraction of maximum risk the investor’s is willing to take (α) and the minimum
return he is willing to achieve (XT min). The goal is defined by the risk and return of the
portfolio with closer risk level to ασmax. The goal and the maximum number of periods are
the most significant parameters. The goal is considered in all the investment decisions made
by the algorithm. On the other hand, Tmax captures the relationship between the investor’s
preference and the state of the market. More demanding goals will take longer times to be
accomplished. Therefore, Tmax will affect the average number of periods the algorithm will
hold the portfolios before revision.

The following point is about the nature of different markets. The experiments com-
pared indexes from the American market and the Mexican market, respectively. The results
indicated the level of risk of the American market was higher than the risk of the Mexican
market. The American market showed more dramatic losses than the mexican market. Also,
the algorithm preferred longer revision times at the American market experiments. These re-
sults seem indicate waiting is a valid investment decision when the risk is high. The results
also indicated waiting is a better strategy than continuous (probably misguided) changes to
the portfolio. The reason is unnecessary portfolio’s changes incur into excessive transaction
costs. Finally, these results indicate the possible investment decisions are the same in both
markets, but information about their current state is useful to choose the best option for a
given situation.

How can an evolutionary algorithm be implemented to solve multi-period portfolio se-
lection problems? The solution model considers the investment strategies method to make
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investment decisions based on multi-period Pareto fronts including information about the mar-
ket state, current performance and the investor’s particular preference. Also, an evolutionary
algorithm to perform multi-objective risk optimization is presented in this work. The algo-
rithm is used to compute the multi-period Pareto fronts needed to implement the investment
strategies method. The algorithm includes a Monte-Carlo approach which allows to introduce
inflation, transaction costs, portfolio unbalance, and other restrictions to the optimization pro-
cess.

How should be measured the performance of financial strategies? This question is ex-
plored on chapter 6. Traditional finance theory measures risk and return of the portfolio based
on the time series of their actual returns along time. This method estimates the distribution
of the final return of the portfolio based on the distribution of the time-series. Nevertheless,
the method is not specially suited to compute the final portfolio’s risk (i.e. volatility). Fi-
nance theory acknowledges this fact and provides more sophisticated approaches to estimate
the portfolio’s volatility. For example, GARCH models can be used for this end. In this work,
the Monte-Carlo approach was used instead to estimate the distribution of final return of the
studied methods, allowing the estimation without the encountering the complications of other
approaches. In general, this is the advantage of evolutionary algorithms. Moreover, that chap-
ter discusses some of the limitations of using market indexes as benchmarks to measure the
performance of investment methods.

How the proposed method could be appealing to regular investors? Some authors have
acknowledged some investment methods are beyond the knowledge of regular investors, there-
fore, their advantages are overlooked by the public. The solution model proposed in this work
has the advantage to be fully automatic, exempting the investor from the hard decisions he
should make when managing his portfolio. The solution model provides a method to select
the most suitable securities and provides decisions based on the investor’s preferences, market
state, and current portfolio performance. Also, the results seems indicate the proposed method
allows making decisions with higher returns and lower risk. Nevertheless, further testing is
needed to provide full evidence of this claim. More application of the method to real invest-
ment situations is needed to provide the investors with figures about the performance. On the
other hand, the proposed method was found to make conservative decisions, because the in-
clusion of the market state prevents the algorithm to set unreasonable goals. This fact should
provide some confidence to investors because the method does not make promises which can-
not be fulfilled for the current market conditions. On the other hand, the method’s decisions
could be presented to the investor as recommendations, where the investor could have the
possibility overdrive the algorithm’s decisions. Some algorithms [e.g. EDDIE (E. P. Tsang et
al., 2000)] work under that approach.

8.3 Final Comments

The method devised in this work used the information provided by the data history in a differ-
ent manner than simple-period approaches. The multi-period model allowed the method com-
pute portfolio sets with different number of periods, while the single-period method makes a
portfolio revision at each period. This means single-period methods use all the information
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available from the price data. Nevertheless, it attained the lowest performance in the experi-
ments. On the other hand, the buy-and-hold method allow the portfolio to drift with the trends
of the market. It uses the minimum possible information from the data, but it explodes the
trends to attain profit and avoid transactions costs.

The proposed method exploited information from three different sources. The first one
is the market itself. The method considered transaction costs, unbalance and inflation. All of
them can be seen as properties of the market. Therefore, the method considered information
from the market’s nature into the optimization. The second source is price data, which is the
same one used by the single-period method. Nevertheless, the investment strategies method
use it to make estimations further into the future and for evaluation of the current state of
the portfolio (i.e. data innovations). Finally, it takes advantage of the market trends like the
buy-and-holds do. The time horizon of the portfolio is an estimation about the market trend.
Therefore, information from trends is also exploited by the investment strategies method.

The conclusion from this analysis is the following: Information is crucial to make good
investment decisions, and it is better to use information from the maximum number of sources
possible. The poor performance of the single-period method could be attributed to it consid-
ered information from one source only. In other words, it used all the information from the
price data but ignored the current state of the market and its trends.

The first chapter discussed the ideas of extraordinary profit and market efficiency. The
results showed cases of both extraordinary loss and some scare cases extraordinary profit
(compared to the average value). Although, these fortunate cases seemed to be random and
non-predictable. In that case, it would not be possible to devise a strategy to exploit them.
That result favors the efficient market hypothesis. Although, the experiments stopped when
the portfolio reached the goal, therefore, there is no way to determine if the results truly
showed extraordinary profit. This is still an open question.

The technical approach is based on the idea the data history holds all the information
about a security price, but the experiments indicated some scenarios were not predictable.
There are two possible explanations: These scenarios could be predicted from other informa-
tion sources besides data history. This would contradicts the technical approach. The second
one is these scenarios are predictable with a further analysis of the data. The present method
did not consider volume information or any technical indicators. This matter needs to be
further investigated.

The decisions made by the method could be described to be conservative. The goal was
set based on the market conditions and the investor’s preference. In the original algorithm,
evidence is provided to the investor to help him determine a reasonable goal. If the investor
decides the return’s goal is not enough for him, this means he should be willing to take higher
levels of risk to attain it. In other words, the method only provides goals which are attainable
given the current market conditions. The method could be applied several times to accumulate
any desired level of wealth. This approach seems indicate profit can only be attained with
time and effort. Nevertheless, the case where the portfolio’s value is higher than the goal was
not fully investigated in the experiments. Further investigation is needed to have conclusions
about this favorable scenario and its relationship with final return. New investment approaches
could be devised from that analysis.

Finally, the investment strategies method allowed emulation of different behaviors. For
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example, the method behaves like a Martingale when the investment strategy chooses port-
folios based on its return only: It will choose the highest return portfolios when the current
wealth is less than the goal, but it will choose the lowest risk portfolios in the contrary case.
The opposite occurs when risk is the only factor considered by the investment strategy. The
behaviors observed by the method are not that different from behaviors observed in investors,
but the difference in performance would come from the information available to the method
and its to use of it. The conclusion is a good investment method should be wise enough to
decide when to take action and when to let itself to “sail freely with the wind of change”.

8.4 Future Work
The method is still open to improvement. It could include other sources of information (vol-
ume, news, etc). The experiments showed more information is better when making decisions,
but it should be used carefully. Also, static restrictions could be included as well as trading
execution capabilities.

Another improvement is the use of other techniques to model the future behavior of
returns. A multi-variate distribution was used in this work to simulate different scenarios and
estimate the distribution of the individuals. Finance theory has studied GACRH processes to
model the volatility of time-series. A combination of GARCH with evolutionary algorithms
could be the next stage of the proposed system.

Finally, this work considered the investment strategy was fixed along the run. It was
shown how the behavior of the system changes with the selected strategy. Therefore, there
could be cases where a particular strategy is better than the others. A method to update
strategies dynamically is open to further research.



References

Adebiyi, A., & Ayo, C. (2015). Portfolio selection problem using generalized differential
evolution 3. Applied Mathematical Sciences, 9(42), 2069–2082.

Aguilar-Rivera, R., Valenzuela-Rendón, M., & Rodrı́guez-Ortiz, J. (2015). Genetic algo-
rithms and Darwinian approaches in financial applications: A survey. Expert Systems
with Applications, 42(21), 7684–7697.

Aizawa, A., & Wah, B. (1994). Scheduling of genetic algorithms in a noisy environment.
Evolutionary Computation, 2(2), 97–122.

Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of
Risk, 3, 5–40.

Andriosopoulos, K., & Nomikos, N. (2014). Performance replication of the spot energy
index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian
markets. European Journal of Operational Research, 234(2), 571–582.
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