
Anton BorgBlekinge Institute of Technology | BTH
Anton Borg
About
31
Publications
6,721
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
429
Citations
Publications
Publications (31)
During the last decade we have witnessed how artificial intelligence (AI) have changed businesses all over the world. The customer life cycle framework is widely used in businesses and AI plays a role in each stage. However, implementing and generating value from AI in the customer life cycle is not always simple. When evaluating the AI against bus...
Network anomaly detection for critical infrastructure supervisory control and data acquisition (SCADA) systems is the first line of defense against cyber-attacks. Often hybrid methods, such as machine learning with signature-based intrusion detection methods, are employed to improve the detection results. Here an attempt is made to enhance the supp...
As machine learning and AI continue to rapidly develop, and with the ever-closer end of Moore’s law, new avenues and novel ideas in architecture design are being created and utilized. One avenue is accelerating AI as close to the user as possible, i.e., at the edge, to reduce latency and increase performance. Therefore, researchers have developed l...
The evidence that burglaries cluster spatio-temporally is strong. However, research is unclear on whether clustered burglaries (repeats/near-repeats) should be treated as qualitatively different crimes compared to spatio-temporally unrelated burglaries (non-repeats). This study, therefore, investigated if there were differences in modus operandi-si...
Customer satisfaction is an important aspect for any corporations customer support process. One important factor keeping the time customers’ wait for a reply at acceptable levels. By utilizing learning models based on the Random Forest Algorithm, the extent to which it is possible to predict e-Mail time-to-respond is investigated. This is investiga...
Classifying e-mails into distinct labels can have a great impact on customer support. By using machine learning to label e-mails, the system can set up queues containing e-mails of a specific category. This enables support personnel to handle request quicker and more easily by selecting a queue that match their expertise. This study aims to improve...
The importance of cellular networks continuously increases as we assume ubiquitous connectivity in our daily lives. As a result, the underlying core telecom systems have very high reliability and availability requirements, that are sometimes hard to meet. This study presents a proactive approach that could aid satisfying these high requirements on...
Customer support is important to corporate operations, which involves dealing with disgruntled customer and content customers that can have different requirements. As such, it is important to quickly extract the sentiment of support errands. In this study we investigate sentiment analysis in customer support for a large Swedish Telecom corporation....
Streaming data services, such as video-on-demand, are getting increasingly more popular, and they are expected to account for more than 80% of all Internet traffic in 2020. In this context, it is important for streaming service providers to detect deviations in service requests due to issues or changing end-user behaviors in order to ensure that en...
For any corporation the interaction with its customers is an important business process. This is especially the case for resolving various business-related issues that customers encounter. Classifying the type of such customer service e-mails to provide improved customer service is thus important. The classification of e-mails makes it possible to...
Information spreading is an interesting field in the domain of online social media. In this work, we are investigating how well different seed selection strategies affect the spreading processes simulated using independent cascade model on eighteen multilayer social networks. Fifteen networks are built based on the user interaction data extracted f...
Objectives: The present study aims to extend current research on how offenders’ modus operandi (MO) can be used in crime linkage, by investigating the possibility to automatically estimate offenders’ risk exposure and level of pre-crime preparation for residential burglaries. Such estimations can assist law enforcement agencies when linking crimes...
Information spreading is an interesting field in the domain of online social media. In this work, we are investigating how well different seed selection strategies affect the spreading processes simulated using independent cascade model on eighteen multilayer social networks. Fifteen networks are built based on the user interaction data extracted f...
Law enforcement agencies, as well as researchers rely on temporal analysis methods in many crime analyses, e.g., spatio-temporal analyses. A number of temporal analysis methods are being used, but a structured comparison in different configurations is yet to be done. This study aims to fill this research gap by comparing the accuracy of five existi...
Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating...
Online social networking services like Facebook provides a popular way for users to participate in different communication groups and discuss relevant topics with each other. While users tend to have an impact on each other, it is important to better understand and analyze users behavior in specific online groups. For social networking sites it is...
To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based on a novel process for collecting structured crime...
According to the Swedish National Council for Crime Prevention, law enforcement agencies solved approximately three to five percent of the reported residential burglaries in 2012. Internationally, studies suggest that a large proportion of crimes are committed by a minority of offenders. Law enforcement agencies, consequently, are required to detec...
Clustering algorithms have been used to divide genes into groups according to the degree of their expression similarity. Such a grouping may suggest that the respective genes are correlated and/or co-regulated, and subsequently indicates that the genes could possibly share a common biological role. In this paper, four clustering algorithms are inve...
A majority of E-mail is suspected to be spam. Traditional spam detection fails to differentiate between user needs and evolving social relationships. Online Social Networks (OSNs) contain more and more social information, contributed by users. OSN information may be used to improve spam detection. This paper presents a method that can use several s...
Spyware detection can be achieved by using machine learning techniques that identify patterns in the End User License Agreements (EULAs) presented by application installers. However, solutions have required manual input from the user with varying degrees of accuracy. We have implemented an automatic prototype for extraction and classification and u...
Today, computer users have trouble in separating malicious and legitimate software. Traditional countermeasures such as anti-virus tools mainly protect against truly malicious programs, but the situation is complicated due to a ”grey-zone” of questionable programs that are difficult to classify. We therefore suggest a software reputation system (SR...
Today, there are difficulties finding all malicious programs due to juridical restrictions and deficits concerning the anti-malicious programs. Also, a "grey-zone" of questionable programs exists, hard for different protection programs to handle and almost impossible for a single user to judge. A software reputation system consisting of expert, ave...