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Abstract— Selective laser melting (SLM) is an additive man-
ufacturing process that creates 3D parts through layer by
layer melting and fusion of a metal powder bed. Although a
number of finite element models (FEM) have been developed
that describe the coupled and complex physics associated
with this process, they are typically not suitable for control
algorithm design. In this manuscript, a control oriented reduced
order model (ROM) to adequately capture these temperature
dynamics is proposed and validated against high fidelity FEM
simulations. Further, since the laser paths are often repetitive
(or consist of repeating sub-trajectories), iterative learning
control (ILC) algorithms can be used to obtain suitable laser
power profiles to deliver desired temperature field profiles.
However, the process is inherently multiple input single output
(MISO), therefore, a suitable output is constructed in such a
way so as to the make the system passive. A passivity-based
ILC law is then designed to drive this synthesized output to a
desired profile and a convergence criterion for this law derived.
The proposed ILC update law is implemented on both models
and the results are compared for a set of candidate laser paths.
Finally, the ILC update law is implemented on the high-fidelity
FEM to melt a ring geometry to demonstrate the capability of
the ILC algorithm to generate optimal laser power profiles for
creating complicated geometries on large powder beds.

I. INTRODUCTION

There are tremendous opportunities for metal selective

laser melting (SLM) in a variety of industries, including

aerospace, tool manufacturing, and medicine [1]. However,

making reliable, high quality parts has proven to be challeng-

ing. Generating suitable temperature profiles is one of the

critical factors for creating consistent parts with low residual

stresses and small feature sizes. Residual stress originates

from a local phenomenon that affects the part as a whole.

During the processing of an individual layer, a large thermal

gradient is created when the powder bed locally melts and

subsequently consolidates. This gradient causes both local,

thermally-induced residual stress as well as a more global

stress stemming from nonuniform, thermal expansion within

the previously formed layers and substrate [2]. Similarly,

controlling the melt pool shape directly affects the feature

size of parts and the geometric tolerance. Therefore, opti-

mizing (time-varying) parameters like the laser velocity and
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power can improve the performance of the process, from a

geometric tolerance as well as residual stress standpoint.

The ability to optimize laser power and scan paths de-

mands a grounded understanding of the evolution of temper-

ature dynamics, as well as the manipulation of these tem-

perature dynamics through the controllable inputs. During

the in-layer SLM processing various radiative, convective,

and conductive heat transfer mechanisms occur and are

coupled with the metal melting, evaporating, ionizing, and

solidifying [3], [4], [5]. Finite element models (FEM) have

been developed to describe many of the dynamics associated

with SLM [6], [7], [8] and have had significant success in

replicating the laser melt pool dimensions and temperature

fields seen in experiment by modeling the laser absorption,

heat conduction, and solid/liquid phase transitions in the

powder and substrate while ignoring other complex dynamics

mentioned above. However, these complex, coupled partial

differential equation are computationally intensive to solve,

which limits the use of any control scheme for manufacturing

applications. In addition, establishing the performance of

these (closed loop) systems is notoriously challenging when

a control scheme is introduced.

Several attempts have been made to demonstrate a variety

of control schemes in experimental or simulated implemen-

tations of SLM. [9] provides a review of some of these

publications. One of the seminal works in this area was

done in [10], where a closed-loop PID control was used

with either a pyrometer or a CMOS sensor for feedback

measurement to maintain the geometry of the melt pool,

which improved the dimensional accuracy of SLM built

parts. More complex strategies that also employ melt pool

geometry control have supported these findings [11]. All of

these works were performed on experimental apparatus and

do not provide provable stability or performance guarantees.

On the other hand, there has been some effort in Direct

Energy Deposition (DED) manufacturing methods, which is

a similar 3D printing method [12], towards development of

lumped parameter models along with more advanced controls

to improve part quality [13], [14], [15], [16]. By simplify-

ing the coupled physics of DED, these models adequately

capture the temperature and build height dynamics while

minimizing computational complexity. Using these lumped

parameter models as design tools, these approaches have

successfully demonstrated control algorithms for tracking

temperature dynamics, melt pool geometry, and layer height,

among others. Of particular importance is the use of Iterative

Learning Control (ILC) to adaptively control DED parame-
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ters. [14] used ILC to adjust DED parameters to guarantee

consistent layer height.

ILC aims to improve tracking performance in repetitive

processes by updating the feed forward control signal based

on previous iterations’ information. ILC algorithms can often

achieve excellent tracking performance in spite of imperfect

model knowledge and are well-suited to reject systematic

repetitive disturbances [17]. Typically in SLM processing,

most laser paths are repetitive or can be partitioned into sev-

eral repeating segments. This repetition, in conjunction with

the fact that SLM process models are difficult to determine,

offers the opportunity to use ILC to learn from previous

iterations in order to generate suitable laser power profiles for

each path segment. These path segments will ultimately be

stitched together. However, the scope of this paper is limited

to determining the power profiles for individual segments.

The stitching process has already been presented in other

work [18].

In this work, an ILC algorithm is designed based on a

proposed control-oriented model and validated through high

fidelity FEM simulations. First, a control-oriented reduced

order model (ROM) for the temperature dynamics of a

single layer SLM process is proposed. Second, to leverage

potential repetition during in-layer, layer-to-layer, and part-

to-part SLM manufacturing, an ILC update law is designed to

track a (weighted) averaged temperature field. Based on the

strictly output-incremental passivity of the ROM, a sufficient

convergence condition for the proposed ILC update law is

proposed and proven. Finally, the ROM is validated against

a high fidelity FEM developed by Roy et. al [6], and both

models are used to demonstrate the performance of the

aforementioned ILC update law for typical laser scan paths.

The paper is organized as follows: First the problem

description is given in Sec.II. Second, the reduced order

model of the SLM temperature dynamics is proposed in

Sec. III, then the ILC update law is described in Sec. IV,

the convergence criterion for the ILC update law and the

corresponding proof are also presented in this section. Third,

in V, the ROM is verified and validated with FEM simulation

results and simulation results using the passivity-based ILC

law are compared between the ROM and FEM. Finally, the

ILC update law is shown to be capable of melting a more

complex, 2D ring shape in the powder bed when using FEM

simulations.

II. PROBLEM DESCRIPTION

In SLM processing, the laser beam (with either fixed or

varying power) moves along a predetermined path (ie. a

square spiral path in Fig. 1) to melt the powder and substrate

underneath into a dense monolithic layer. The surface is

consequently covered with a new powder layer and the

process is then repeated until the 3D part is created.

As mentioned in Sec. I, the scope of this paper is limited

to a single repeating laser path segment with a prescribed

velocity profile, and time duration of tf . We assume that

there is desired temperature field profile Td(t), t ∈ [0, tf ],
the controlled variable is the laser power p(t), t ∈ [0, tf ],

and the measured temperature field is localized around the

laser beam spot. The feedforward control objective is to

design a learning law pk+1(t) = F (pk(t), Tk(t), Td(t)) to

achieve the tracking objective: Tk(t) → Td(t) in some sense

as k → ∞, where k is the iteration number.

Fig. 1. Basic overview of the SLM process for one layer. The laser beam
moves along a predetermined path (ie. a square spiral) to melt the powder
bed into a dense, monolithic layer.

In order to design a feedforward learning control algo-

rithm, we need a suitable model of the dynamics of SLM

process. In the next section, an overview of some current

modeling techniques are presented, the difficulty of using

these techniques for control design are mentioned, and,

subsequently, a control-oriented model is proposed.

III. CONTROL-ORIENTED MODELING OF SLM

TEMPERATURE DYNAMICS

In this section, a brief introduction to SLM dynamics and

existing high-fidelity FEM methods is provided. Using this

as a foundation, a control-oriented model is proposed for

control design.

A. High-Fidelity Modeling of SLM

There are many complex and coupled physical phenomena

that occur during SLM processing of a single layer of powder

that affect the temperature field, T . In spite of these complex-

ities, many groups have had significant success reproducing

powderbed temperature fields by neglecting the temperature

dependencies of powder grains’ optical properties, local

powder grain kinetics and porosity, melt pool convection,

possible atmospheric convection and plasma generation oc-

curring near the powderbed surface, the increase in vapor

pressure of the powder material before and after the powder

reaches its evaporation temperature, as well as many other

physical phenomena [7], [8], [19]. In addition, many of these

models assume that the laser acts as a volumetric heat source

that has been scattered and attenuated inside the powder

layer. In these models, much of the powder bed temperature

phenomena is thus captured by

dH

dt
= ∇(k∇T ) + U, (1)
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where H represents the volumetric enthalpy of the powder

layer and the platform beneath it; k represents the thermal

conductivity of the powder, melt pool, the densified metal,

and the substrate; and U is the volumetric heat source

originating from the laser. H relates to T by

T =











H
Cs

, H ≤ CsTm

Tm, CsTm < H < CsTm + L

Tm + (H−CsTm−L )
Cl

, H ≥ CsTm + L

,

(2)

where Cs is the specific heat of the powder grains and

platform; Cl is the specific heat of the materials in the liquid

phase; Tm is the melting temperature of each material; and

L is the latent heat of melting. The FEM used in the work,

which is Roy et. al’s FEM ([6]) without incorporating the

melt consolidation of the powder layer, is also based on this

set of equations.

However, the modeling of these SLM temperature dynam-

ics is computationally intensive. This work shows that much

of the temperature dynamics occurring below Tm can be

captured with a simplified heat transfer equation applied onto

a directed graph. The implementation of the simplified heat

transfer equation using a directed graphs is presented next.

Fig. 2. Powderbed is discretized into nx × ny + 1 nodes: n×m planar
grid of powder nodes and a substrate node. Blue lines represent the thermal
links between powder nodes and the substrate node. The inlay shows the
local thermal links between a powder node and its nearest neighbor powder
nodes. The red curve above the grid represents the distribution of absorbed
laser power at time t.

B. Simplified Thermal Dynamics

The powder bed is first discretized into a grid of N =
nx×ny grid of nodes where each node represents a volume

of δx× δy× δz, as shown in Fig. 2. In this implementation

of the ROM nx = ny = n and δx = δy. The substrate is

represented by a single node with its temperature being held

at some Tsub. These nodes are connected together via links,

which capture the heat transfer between nodes. Every powder

node is directly linked to their nearest neighbors, which the

inlay of Fig. 2 locally visualizes. In addition, each powder

node is directly linked to the substrate node. Note that the

direction of the links serves only as a sign convention in

the incident matrix and does not indicate direction of heat

transfer.

The simplified (discretized) heat transfer equation (without

melting) for the ith node can thus be written as

CiṪi(t) =
∑

j∈Ni

kp,ij

(

Tj(t)− Ti(t)
)

+ ksub

(

Tsub − Ti

)

+ h∞
(

T∞ − Ti

)

+ bi(t)p(t), (3)

where Ci

[

J
K

]

is the heat capacity of the ith node, Ti[K] is

the temperature of the ith node, Ni is the set of neighbors

of the ith node, kp,ij

[

W
K

]

is the conductivity between the

ith and jth nodes, ksub

[

W
K

]

is the conductivity between

nodes and the substrate node, Tsub is the temperature of the

substrate which is held constant, h∞
[

W
K

]

is the convection

between nodes and ambient atmosphere, T∞[K] is the tem-

perature of the ambient atmosphere, bi is the percentage of

power absorbed at the ith node from the laser power p[W ].

C. Control Oriented Reduced Order Model

Collecting (3) for each node, the dynamics of the temper-

ature field can be written as:

CṪ (t) = −DKDTT (t) +Ksub(Tsub − T (t))

+H∞(T∞ − T (t)) +B(t)p(t), (4)

where C ∈ R
N×N is a diagonal matrix with Ci being

the ith diagonal element, T ∈ R
N is the temperature field

of the power bed, D ∈ R
N×q is the directed incidence

matrix where q is the number of links. D(i, j) represents

the relationship between node i and link j,

D(i, j) =







1, node i is the arrowhead of link j

−1, node i is the end of link j

0, link j is not attached to node i

.

The diagonal matrix K = kpI
m×m is a diagonal ma-

trix where the ith diagonal element describes the ther-

mal conductivity of the ith link, Ksub = ksubI
N×N and

H∞ = h∞IN×N , which describe the thermal conductivity

and convection to the substrate and ambient atmosphere,

respectively.

The time-varying matrix B(t) ∈ R
N×1 describes how

much of the laser power, p(t), at time t is absorbed by

each element in the powder bed. As shown by the red curve

overlaid on top of the powder layer in Fig. 2, the laser is

incident on a local area of the powder surface. At time t,

B(t)p(t) inputs a fraction of p(t) to nodes inside this area,

while nodes outside of this area will absorb zero power. The

overall laser transmission efficiency η =
∑

i Bi(t), where

η ∈ [0, 1] and i is the ith element of B(t). Without loss

of generality, this is set to 1. Naturally, as the laser moves

along the scan path, this distribution of where the laser

heating is distributed changes. Hence, B(t) is a time-varying

vector directly related to the laser path and the laser power

distribution.
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The laser power distribution, Q, is formulated as a pseudo-

Gaussian distribution. Q is centered at the laser center, and

described below using r, as the local polar coordinate within

the laser spot, and R, as the radius of the laser beam

Q =
3

πR2
(1−

r2

R2
)2. (5)

IV. ITERATIVE LEARNING CONTROL ALGORITHM

In order to accurately track the desired temperature profile

Td(t), we propose an ILC algorithm. ILC algorithms rely on

tuning the current iteration control input based on previous

iterations’ input and the corresponding error information, as

illustrated in Fig. 3.

As mentioned earlier, a single repeating laser path segment

is repeated over [0, tf ] and previous iterations’ control input

pk−1(t) and ek−1(t) are used to update the current iteration’s

control input pk, where k is the iteration number, ek(t) is

the tracking error in the kth iteration: ek(t) = yk(t)− yd(t).
Ideally, we wish to drive the temperature field, T (t) ∈ R

N ,

to Td(t) ∈ R
N . However, since we have only a single

input, namely the laser power p(t) ∈ R, we must design

a single output ỹ(t) ∈ R that can represent T (t), yd is

the desired single output corresponding to Td(t). The ILC

control objective is to design an ILC update law pk(t) =
F (pk−1(t), ek−1(t)), t ∈ [0, tf ] to achieve the tracking

objective yk(t) → yd(t) as k → ∞.

In this section, a passivity based ILC update law is

designed based on the control oriented ROM proposed in

Section III.

Fig. 3. Block Diagram of the ILC process, w−1 indicates one iteration
delay, G is the plant of temperature dynamics.

A. Proportional ILC Update Law

In this work, a proportional ILC update law is used

pk+1(t) = pk(t) + Lek(t) (6a)

ek(t) = yd(t)− yk(t), (6b)

where ỹ(t) ∈ R is the (synthesized) output, L ∈ R is the

learning gain, ek(t) ∈ R is the error, k is the iteration

number, and pk(t) ∈ R is the laser power.

As mentioned before, we must design a single output ỹ(t)
that can represent T (t). Further, choosing ỹ(t) as a passive

output naturally endows robustness to any control algorithm

that may be designed using this output as the feedback signal.

Further, the learning gain, L, needs to be designed based

on this synthesized output so that the ILC update law is stable

in the iteration domain. To satisfy these objectives, the next

section will prove that with a properly scaled output, ỹ(t), the

proposed ROM is strictly output incremental passive, which

allows the design of a stable learning gain L in a robust

manner.

B. Strict Output-Incremental Passivity

Define the deviation variable x and output ỹ,

x(t) = T (t)− Tss (7a)

ỹ(t) = B(t)Tx(t), (7b)

where Tss is the solution to

0 = −DKDTTss+Ksub(Tsub−Tss)+H∞(T∞−Tss). (8)

Apply (7) and (8) in (4) we can have

Cẋ(t) = −Ax(t) +B(t)p(t) (9a)

ỹ(t) = B(t)Tx(t), (9b)

where A = DKDT +Ksub +H∞, A is positive definite,

and ỹ(t) represents a weighted average of x from nodes that

are encompassed by the circumference of laser beam. Next,

this system is proved to be strictly output incremental passive

using an approach similar to [20].

Proposition 1: The system described by (9) is strictly

output incremental passive from the input p to output ỹ, i.e.,

there exists λ > 0 such that 〈∆p,∆ỹ〉 ≥ λ〈∆ỹ,∆ỹ〉, with

λ =
λmin(A)

max(B(t)TB(t))
, (10)

where λmin(A) is the smallest eigenvalue of A, max(BTB)
is the maximum value of B(t)TB(t) as B(t) is time-

variant. (The inner product 〈·, ·〉 is defined as 〈f1(·), f2(·)〉 =
∫ tf

0

f1(t)f2(t)dt.)

Proof: Define ∆x = x1 − x2, ∆p = p1 − p2, ∆ỹ =
ỹ1 − ỹ2, and the storage function V = 1

2∆xTC∆x. Then

V̇ = ∆xT (−A∆x+B∆p)
= −∆xTA∆x+∆ỹT∆p

Note that

∆xTA∆x ≥ λmin(A)∆xT∆x

∆ỹT∆ỹ = ∆xTB(t)B(t)T∆x ≤ max(B(t)TB(t))∆xT∆x,

Thus

V̇ ≤ −
λmin(A)

max(B(t)TB(t))
∆ỹT∆ỹ +∆ỹT∆p (11)

We assume that the initial conditions for each iteration are

identical, which sets x1(0) = x2(0) = x0. Thus V (0) = 0
without loss of generality. Integrating both sides, we will

have

0 ≤ V ≤ −
λmin(A)

max(B(t)TB(t))
〈∆ỹ,∆ỹ〉+ 〈∆ỹ,∆p〉 (12)

Thus

〈∆ỹ,∆p〉 ≥
λmin(A)

max(B(t)TB(t))
〈∆ỹ,∆ỹ〉. (13)
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Thus, this system is strictly output incremental passive with

λ =
λmin(A)

max(B(t)TB(t))
. (14)

Remark: Though B is time-variant, the shape of laser power

defined by (5) is identical, thus B(t)TB(t) is constant. So

the passivity bound λ can be simplified to:

λ =
λmin(A)

B(t)TB(t)
for any t. (15)

C. Passivity-based ILC Update Law

Based on the strictly output incremental passivity of the

model, we can choose ỹ(t) = B(t)T (T (t) − Tss) as the

output in the proportional ILC update law. This choice of

ỹ(t) is also reasonable to be calculated in a SLM machine

since the thermal radiation in the laser’s optical path is

usually the only radiation that is recorded [21], [10], [22].

Correspondingly, the tracking error is e(t) = ỹd(t) −
ỹ(t) = B(t)T (Td(t) − Tss) − B(t)T (T (t) − Tss) =
B(t)T (Td(t) − T (t)), thus Tss is not needed in the ILC

update law. Next, we show that the ILC update law (6) will

converge with an appropriate learning gain L.

Theorem 2: Assume there exists an ideal input pd such

that the corresponding error ed = 0. With ILC update law

described in (6), pk → pd as k → ∞ if

0 < L < 2
ksub + h∞

BTB
. (16)

Proof: From the theorem in [20], pk will converge to

pd as k → ∞ if L is positive definite and L < 2λ. Recall

(9), (15),

λ =
λmin(A)

BTB
=

λmin(DKDT +Ksub +H∞)

BTB
. (17)

Since λmin(DKDT +Ksub +H∞) = λmin(kpDIDT +
ksubI + h∞I), thus

λ =
ksub + h∞

BTB
(18)

Recall that L ∈ R, so a sufficient condition for the ILC

update law described in (6) to be stable is

0 < L < 2
ksub + h∞

BTB
. (19)

Remark This theorem provides a sufficient condition for

the ILC update law to converge. In our FEM and ROM

simulations, the heat transfer to the ambient atmosphere is

ignored, so Tss = Tsub and the sufficient condition becomes:

0 < L <
2ksub
BTB

. (20)

V. SIMULATION RESULTS

This section will first present results of parameter iden-

tification and validation the control oriented ROM against

the high-fidelity FEM model. Then, the results of applying

passivity-based ILC to both models will be examined. Fi-

nally, the ILC law will be tested on the FEM with melting.

A. Validation of ROM

To identify the parameters of the control oriented ROM in

(4), a least squares system identification was performed from

FEM generated input-output data. The data was generated

from a simulation of a laser moving parallel to the x-axis

while holding the laser power constant at 1
[

W
]

.

The ROM simulation with these fitted parameters was

performed with the same laser path and power in order to

compare with the FEM simulation results (as verification).

Fig. 4 presents a comparison of the outputs. The generated

outputs, yROM and yFEM , are in good agreement; verifying

the performance of the ROM with respect to the FEM.

However, there is a small and gradual divergence of the two

outputs over time. This is most likely due to because the

control-oriented ROM assumes that the substrate node is a

pure heat sink, unlike the FEM model.

0 1 2 3 4
300

350

400

450

500

FEM

ROM

Time [msec]

B
T
T

[K
]

Fig. 4. Comparison of y = B(t)TT for FEM and ROM with constant
1[W] input for a straight laser raster line segment.

Fig. 5. Exact scale diagrams of the Spiral-in and zigzag paths used in the
ROM and FEM simulations (scale is in [m]).

Since the ROM is capable of simulating arbitrary laser

scan paths (Fig. 5) a spiral-in raster path on a 800µm x

800µm powderbed was chosen to validate the ROM (Fig. 6).

Again, both the ROM and FEM use a constant laser power

of 1
[

W
]

. Also, note that for all used raster patterns the laser

raster spacing is 87.5% of the laser spot diameter.

Initially, the extremely close match in Figure 4 is seen

in Figure 6. Because the FEM model does not dissipate as

much heat into the substrate as the ROM model, yFEM

increases relative to yROM . This effect compounds as the

laser spot spirals inward, overlapping with areas recently

heated by the laser. We note that adding additional node grid

layers between the substrate node and the powder bed nodes

would allow the ROM results to more closely match the FEM

results, while increasing the complexity of the ROM.
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400
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600

700 FEM
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Time [msec]

B
T
T

[K
]

Fig. 6. Comparison of y = B(t)TT for FEM and ROM with constant
1[W] input and a spiral-in laser raster pattern.

Even so, the ROM matches the FEM fairly well, even

when using a complex laser path. The largest ‖Error‖2
percentage for this comparison is 8.05%, where the scaled

‖Error‖2 is defined as:

‖Error‖2 =
‖BTTFEM −BTTROM‖2

‖BTTFEM‖2
(21)

B. ILC Implementations and Comparison

Using the model parameters identified in the previous

subsection, the sufficient condition (20) for choice of the

proportional learning gain can be calculated as 0 < L <

0.0015. Since the ROM is an informative analog for the

FEM, a range of values from 0.002 − 0.012 were chosen

for L to be used in the learning law (6). These values were

first tested on the control oriented ROM and subsequently

implemented on the FEM. Each was implemented for 9

iterations. In addition, the sufficient condition, L = 0.0015,

was tested on the ROM for completeness.

1) ILC simulation using the ROM: The previously dis-

cussed spiral-in raster path (Fig. 5) was again chosen to

demonstrate that the ILC law (6) can be used to obtain

an optimum laser power profile for a complex laser scan

trajectory. A constant power of 2
[

W
]

is used for the initial

(0th) iteration. The desired output profile, yd, is a constant

temperature value for this case. Fig. 7 illustrates the output

trajectory and the corresponding optimum laser power input

after 9 iterations of learning. Figure 8a illustrates the evolu-

tion of the scaled output error norm (
‖ek‖2√

M
against iteration

number for a range of ILC gains, where M =
tf
Ts

and Ts is

the sample time).

With sufficient iterations,
‖ek‖2√

M
converges to values less

than 22
[

K
]

(Fig. 8a) for all L < 0.012. Using L = .008

yields the fastest convergence rate and the lowest
‖ek‖2√

M
.

Figure 7(b) shows the resulting output profile yROM using

L = .008, and the close match to the desired output profile

yd. However, the effect of the laser changing direction cannot

be completely eliminated.

2) ILC on FEM simulation of SLM without Melting:

We now present results from simulation of the learning

process on the FEM simulator. The results are indeed very

similar to those obtained on the ROM discussed above,

including L = 0.008 being the most optimal ILC gain

0 5 10 15 20 25
0

1

2

3

4

5
Final

Initial

Time [msec]

p
[W

]

(a) Initial and final laser power profile

0 5 10 15 20 25
300

400

500

600

700

Final

Desired

Time [msec]

B
T
T

[K
]

(b) Desired yd and final yROM

Fig. 7. Resulting learned laser power profile and output after 9 ILC
iterations using L = .008 for the spiral-in raster path on the output

(Fig. 9), as well as the qualitative shapes of the final

output profiles(Fig. 10). This is notable considering the more

complex temperature dynamics that are captured in the FEM.

There are some interesting differences, though, which are

highlighted below. It is unclear if
‖ek‖2√

M
for L = 0.01 will

asymptotically converge given more ILC iterations, and the

error norm decrease is not monotonic. Also, even though L =
0.008 still asymptotes to the lowest

‖ek‖2√
M

, the convergence

rate is not necessarily the fastest, unlike in the ROM case.

3) ILC on an FEM simulation of SLM with Melting:

Even though the conditions for ILC convergence have not

been discussed for a model that includes phase transitions,

the ILC update law (6) was used on the FEM (with melting

dynamics) for finding the optimal laser power profile for a

zigzag raster pattern where the desired output, yd, reaches

weighted average temperatures above the melting tempera-

ture Tm for parts of the trajectory (Fig. 11). The yellow line

segments in Figure 11 represent laser center positions where

melting is desired. The desired output profile is shown as a

solid line in Figure 12b. Note that yd is extremely aggressive

in comparison to the previous desired output for the spiral-in

case (Fig. 10b). L = .008 was chosen as the learning gain,

as before.

For the initial iteration (Fig. 12a), the laser power was set

to 18
[

W
]

when the laser center is in the yellow line regions

of Figure 11 and turned off otherwise. After the 9th iteration

an optimized laser power profile was obtained. The evolution

of the scaled output error norm
‖ek‖2√

M
against iterations is

shown in Fig. 13. It is interesting to note that this rror
‖ek‖2√

M
is more than an order of magnitude greater than the spiral-in

case shown in Figure 9. The bulk of the error accrues when

yd prescribes a value that is too low given the large amount

of thermal mass previously imparted into powderbed when
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Fig. 8. Evolution of scaled error norm
‖e‖2√

M
against iterations, for the

spiral-in raster path scenario

the laser was turned on (Fig. 12b). More simply put, the local

regions of the powderbed are not able to cool fast enough

for the output profile yFEM to follow the desired profile yd.

In addition, after the second and fourth change in laser

direction, an artifact in the yFEM profile appears. There is

noticeable change in negative slope as yFEM decreases. This

change in slope corresponds to the laser changing direction.

These artifacts are the same as the dramatic changes in yFEM

observed in Figure 6 where the laser is staying in similar

locations to where laser power was absorbed.

The results shown in Figure 13 demonstrate that ILC can

indeed be used for optimizing laser power profiles in SLM.

VI. CONCLUSION

In this manuscript, a control oriented ROM that cap-

tures single layer, below-melting temperature dynamics was

proposed. Based on this model, an approach to designing

ILC algorithms was presented that exploits the passivity

of the control oriented ROM. The implementation of the

ILC law was successfully demonstrated on both the ROM

and FEM, which additionally validated the convergence.

The ILC update law showed good tracking and convergence

performance. Error convergence for the ROM and FEM were

remarkably similar for many of the tested ILC gains, which

supports the fact that the proposed ROM can be used as a

good reference during the design of ILC update laws for

real SLM processing. Finally, the use of the ILC law was

extended to FEM simulations including melting where good

tracking and convergence performance was still observed.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department

of Energy, Office of Science, Office of Advanced Scientific

0 2 4 6 8 10
0

50

100

150

200

250

300
ILC Prop. Gain= 0.002

ILC Prop. Gain= 0.004

ILC Prop. Gain= 0.006

ILC Prop. Gain= 0.008

ILC Prop. Gain= 0.01

ILC Prop. Gain= 0.012

Iterations

‖e
k
‖ 2

√
M

,
[K

]

(a) Error evolution for all simulated ILC gains

0 2 4 6 8 10
0

20

40

60

80
ILC Prop. Gain= 0.002

ILC Prop. Gain= 0.004

ILC Prop. Gain= 0.006

ILC Prop. Gain= 0.008

Iterations

‖e
k
‖ 2

√
M

,
[K

]

(b) Error evolution for stable ILC gains

Fig. 9. Convergence of FEM
‖e‖2√

M
using L = {.002 − .012} for the

spiral-in raster path

Computing Research, under Award Number DE-SC-0011327

and in part by the National Science Foundation Career Award

grant CMMI-1254313. High performance computing aspects

of the work were performed with support from SCOREC at

RPI. We thank Professor Mario Juha of the Universidad de

La Sabana for his input.

REFERENCES

[1] S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,”
Laser Technik Journal, vol. 9, no. 2, pp. 33–38, 2012.

[2] P. Mercelis and J.-P. Kruth, “Residual stresses in selective laser
sintering and selective laser melting,” Rapid Prototyping Journal,
vol. 12, no. 5, pp. 254–265, 2006.

[3] S. Das, “Physical aspects of process control in selective laser sintering
of metals,” Advanced Engineering Materials, vol. 5, no. 10, pp. 701–
711, 2003.

[4] J. Mazumder, “Overview of melt dynamics in laser processing,”
Optical engineering, vol. 30, no. 8, pp. 1208–1219, 1991.

[5] P. Fischer, V. Romano, H.-P. Weber, N. Karapatis, E. Boillat, and
R. Glardon, “Sintering of commercially pure titanium powder with a
nd: Yag laser source,” Acta Materialia, vol. 51, no. 6, pp. 1651–1662,
2003.

[6] S. Roy, M. Juha, M. S. Shephard, and A. M. Maniatty, “Heat transfer
model and finite element formulation for simulation of selective laser
melting,” Computational Mechanics, 2017.

[7] A. V. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, “Heat transfer
modelling and stability analysis of selective laser melting,” Applied

Surface Science, vol. 254, no. 4, pp. 975–979, 2007.

[8] F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers, “A pragmatic
model for selective laser melting with evaporation,” Acta Materialia,
vol. 57, no. 20, pp. 6006–6012, 2009.

[9] G. Tapia and A. Elwany, “A review on process monitoring and control
in metal-based additive manufacturing,” Journal of Manufacturing

Science and Engineering, vol. 136, no. 6, p. 060801, 2014.

[10] J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, and T. Craeghs, “Feed-
back control of selective laser melting,” in Proceedings of the 3rd

international conference on advanced research in virtual and rapid

prototyping, 2007, pp. 521–527.

5624



0 5 10 15 20 25
0

1

2

3

4

5
Final

Initial

Time [msec]

p
[W

]

(a) Initial and final laser power profile

0 5 10 15 20 25
300

400

500

600

700

Final

Desired

Time [msec]

B
T
T

[K
]

(b) Desired yd and final yFEM

Fig. 10. Resulting FEM laser power profile and output after 9 ILC iterations
using L = .008 for the spiral-in raster path.

Fig. 11. Schematic of zig-zag raster for melting a ring (scale is in [m]).

[11] T. Craeghs, F. Bechmann, S. Berumen, and J.-P. Kruth, “Feedback
control of layerwise laser melting using optical sensors,” Physics

Procedia, vol. 5, pp. 505–514, 2010.

[12] S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An
overview of direct laser deposition for additive manufacturing; part
i: Transport phenomena, modeling and diagnostics,” Additive Manu-

facturing, vol. 8, pp. 36–62, 2015.

[13] Q. Wang, J. Li, M. Gouge, A. R. Nassar, P. Michaleris, and E. W.
Reutzel, “Reduced-order multivariable modeling and nonlinear control
of melt-pool geometry and temperature in directed energy deposition,”
in American Control Conference (ACC), 2016. IEEE, 2016, pp. 845–
851.

[14] P. M. Sammons, D. A. Bristow, and R. G. Landers, “Iterative learning
control of bead morphology in laser metal deposition processes,” in
American Control Conference (ACC), 2013. IEEE, 2013, pp. 5942–
5947.

[15] X. Cao and B. Ayalew, “Control-oriented mimo modeling of laser-
aided powder deposition processes,” in American Control Conference

(ACC), 2015. IEEE, 2015, pp. 3637–3642.

[16] P. M. Sammons, D. A. Bristow, and R. G. Landers, “Control-oriented
modeling of laser metal deposition as a repetitive process,” in Ameri-

can Control Conference (ACC), 2014. IEEE, 2014, pp. 1817–1820.

[17] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems, vol. 26, no. 3, pp. 96–114,

0 5 10 15 20
0

5

10

15

20

25
Final

Initial

Time [msec]

p
[W

]

(a) Initial and final iteration FEM laser power
profiles.

0 5 10 15 20
0

500

1000

1500

2000

2500
Final

Desired

Time [msec]

B
T
T

[K
]

(b) Desired yd and final yFEM

Fig. 12. Resulting FEM laser power profile and output after 9 ILC iterations
using L = .008 for the concentric cylinder trajectory.

0 2 4 6 8 10
100

150

200

250

300
ILC Prop. Gain= 0.008

‖e
k
‖ 2

√
M

,
[K

]

Iterations

Fig. 13. Plot of
‖e‖2√

M
against iterations for demonstrating ILC on an FEM

simulation scenario with melting.

2006.
[18] D. J. Hoelzle, A. G. Alleyne, and A. J. W. Johnson, “Basis task

approach to iterative learning control with applications to micro-
robotic deposition,” IEEE Transactions on Control Systems Technol-

ogy, vol. 19, no. 5, pp. 1138–1148, 2011.
[19] L. Parry, I. Ashcroft, and R. D. Wildman, “Understanding the effect of

laser scan strategy on residual stress in selective laser melting through
thermo-mechanical simulation,” Additive Manufacturing, vol. 12, pp.
1–15, 2016.

[20] R. Quintanilla and J. T. Wen, “Passivity based iterative learning control
for mechanical systems subject to dry friction,” in 2008 American

Control Conference. IEEE, 2008, pp. 4573–4578.
[21] Y. Chivel and I. Smurov, “On-line temperature monitoring in selective

laser sintering/melting,” Physics Procedia, vol. 5, pp. 515–521, 2010.
[22] P. Lott, H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke,
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