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Abstract
Purpose of Review In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and
degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of
care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual
cohesion and common signaling pathways between bone and skeletal muscle in DMD.
Recent Findings The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin
cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In partic-
ular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteopro-
tegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD.
Summary This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determin-
ing the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating
muscle and bone disorders regardless of the underlying genetic mutations in DMD.
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Introduction

Skeletal muscle and bone form a large functional unit that
enables locomotion and that contributes to metabolism, ho-
meostasis, and thermogenesis [1, 2]. This muscle-bone unit
adapts in synchrony during development and also during pe-
riods of modified mechanical loading such as exercise or sit-
uations of disuse or disease-like microgravity, long-duration

bed rest, aging, spinal cord injury, critical illness, and neuro-
muscular diseases [3–7]. Duchenne muscular dystrophy
(DMD) is one of the best examples of synchronicity where
muscle degeneration/atrophy and bone loss occur in concert
throughout the progression of the disease [8, 9]. Beyond the
mechanostat theory, cumulative evidence also supports the
existence of bi-directional muscle-bonemolecular interactions
[10–13]. Muscle and bone cytokines contribute to lifelong
paracrine crosstalk while the underlying biological processes
involve common signaling pathways [11–13].

Muscle and Skeletal Decline in DMD:
the Scope of the Problem

DMD is a rare X-linked recessive disorder that occurs in
1:5000 live male births and is caused by loss-of-function
mutations in the dystrophin gene [14, 15]. The absence of
dystrophin in the cytoskeleton of skeletal muscle cells
causes architectural fragility and sarcolemmal permeabili-
ty, leading to chronic inflammation, fibrosis, and progres-
sive skeletal and cardiac muscle deterioration [16].
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Children with DMD generally display clinical signs of
muscle weakness or motor dysfunction by 3–5 years of
age, are wheelchair-bound by 12–15 years of age, and
manifest cardiorespiratory failure in their late 20s or early
30s [17–22]. Patients with DMD also present with a high
prevalence of fractures with a poor prognosis for recovery
in the absence of osteoporosis therapy [8]. While long-term
glucocorticoids (GCs), the standard of care for patients
with DMD, prolong ambulation, cardiorespiratory func-
tion, and life expectancy, they are a key risk factor for
reduced bone mineral density (BMD) and fractures due to
their potent osteotoxicity [23–29]. Studies have shown that
20 to 60% of patients with DMD present low-trauma ex-
tremity fractures, while up to 30% have symptomatic ver-
tebral fractures [8, 30–32]. The true prevalence of vertebral
fractures is likely higher than this, since spine fractures are
frequently asymptomatic and will go undetected in the ab-
sence of a routine spine imaging monitoring program [28,
33–35]. While vertebral fractures have been observed to
occur on average 2 years following GC initiation, they
have been reported as early as 6 months after the start of
GC therapy [27]. In patients with DMD, untreated verte-
bral fractures are linked to chronic back pain and spine
deformity, while leg fractures can cause premature, irre-
versible loss of ambulation and challenges in daily care
[27, 32]. To date, osteoporosis management in pediatric
DMD is based on standard-of-care principles that are sim-
ilar to those applied to all chronic pediatric illnesses.
Treatment with an intravenous bisphosphonate such as
pamidronate or zoledronic acid (preferred over oral bis-
phosphonate therapy) is reserved for patients with clinical-
ly significant bone fragility that is detected in early, as
opposed to advanced, stages of development [36, 37•].
The main objectives of osteoporosis therapy instituted at
the earliest signs of bone fragility include resolution of
back pain, stabilization of vertebral fractures, prevention
of new vertebral and non-vertebral fractures, and increases
in BMD Z-scores [38].

The importance of treating early signs of vertebral fractures
in DMD is highlighted by the fact that prevalent vertebral
fractures predict new vertebral fractures at subsequent time
points, even when the initial vertebral fractures are mild or
asymptomatic, a phenomenon known as the vertebral fracture
cascade [39]. The importance of bone health in DMD children
has also been underscored by a recent study showing that early
treatment of osteoporosis may improve survival in DMD [40].
At the present time, there have been no studies which have
been undertaken to assess the safety and efficacy of first-
fracture prevention in DMD; therefore, the current approach
is in line with secondary prevention—to identify and treat
early instead of late signs of bone fragility, including timely
identification of vertebral fractures through periodic spine im-
aging [37•, 41].

Muscle-Bone Interactions in Muscular
Dystrophy

Our understanding of the mechanisms underlying dystrophic
muscle and bone interactions originate predominantly from
studies in mdx mice, a well-established DMD model. Seven-
week-old dystrophic mdxmice present an acute onset of mus-
cle weakness associated with a 20% decrease in bone biome-
chanical properties compared to wild-type mice [42, 43].
Moreover, dystrophin-utrophin double-knockout mice, a
more severe phenotype than the mdx mouse, exhibit muscle
degeneration, spinal deformity, cardiomyopathy, a reduced
capacity for bone healing, and spontaneous heterotopic ossi-
fication in the hindlimb muscles [44]. Nakagaki et al. found
that 21-day-old mdx mice present changes in the mechanical
and biochemical properties of bone prior to the appearance of
significant muscle fiber degeneration, suggesting that the in-
flammatory environment of dystrophic muscles (release of
growth factors, interleukins, or other pro-inflammatory cyto-
kines) may contribute to the uncoupling of osteoclastic and
osteoblastic activity, eventually leading to osteopenia and os-
teoporosis [45, 46]. Nevertheless, not enough studies have
been carried out to reach definitive conclusions on how
muscle-bone interactions and muscle-derived molecules
(myokines) and bone-derived molecules (osteokines) influ-
ence the course of muscular dystrophy.

Myokines and Their Effects on Bone Tissue
in DMD

Myokines are interleukins, growth factors, or peptides re-
leased by skeletal muscles that may influence remote tissues
such as bone (Fig. 1). Interleukin-6 (IL-6), which is often
classified as a pro-inflammatory cytokine, is a crucial media-
tor of bone homeostasis and an essential regulator of satellite
cell-mediated skeletal muscle hypertrophy [47, 48]. It is se-
creted by muscle and bone and is present at significant levels
in patients with DMD and mdx mice compared with age-
matched healthy controls [46, 49–51]. It has been shown that
IL-6 contributes to GC- and rheumatoid arthritis-induced os-
teoporosis in mice [52, 53]. Rufo et al. demonstrated that wild-
type calvarial bone cultures maintained ex vivo that are sup-
plemented with 10% sera from mdx mice have increased os-
teoclast and bone resorption parameters that are rescued by an
IL-6 antibody treatment [46]. Tocilizumab, a monoclonal an-
tibody directed against the IL-6 receptor (IL-6R), is a poten-
tially valuable therapeutic strategy for counteracting necrosis
and the consequences of chronic inflammation in muscular
dystrophy [53, 54•]. It has been shown that IL-6R blockade
results in decreased muscle damage, improved muscle fiber
regeneration, increased muscle fiber diameter, and reduced
fibrosis, while some mice exhibit an improvement in the
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kyphosis index [54•]. Interestingly, IL-6 is significantly down-
regulated in the muscles of 24-week-oldmdxmice with a mild
muscle wasting phenotype, unlike in younger 4-week-old
mice that overexpress IL-6 during the most severe peak of
muscle degeneration and regeneration [51].

Consistent evidence has also shown that IL-6 has an anti-
inflammatory effect and may be involved in mediating the
beneficial health effects of exercise by increasing the levels
of interleukin-10 (IL-10), an anti-inflammatory cytokine
[55–57]. IL-10 plays a central role in regulating the switch
of muscle macrophages from the pro-inflammatory M1 to
the anti-inflammatory M2 phenotype in injured muscle in
vivo, a transition that is necessary for normal muscle growth
and regeneration [58]. Levels of IL-10 and its receptor are
higher in dystrophic muscles during the acute onset of the
pathology and during muscle regeneration. In addition, the
ablation of IL-10 expression in mdx mice (IL-10 −/− mdx)
increases muscle damage in vivo and reduces muscle strength
in mice with chronic inflammation and severe cardiorespira-
tory dysfunction [59, 60]. However, in vitro treatments of
isolated mdx macrophages with IL-10 reduce the activation
of the M1 phenotype and promote a shift toward the M2c
phenotype [59]. Interestingly, IL-10−/−mice develop the hall-
marks of osteoporosis associated with a reduced expression of
osteoblast and osteocyte markers [61–63]. Moreover, in vitro
bone cells treated with IL-10 exhibit an upregulation of oste-
oprotegerin (OPG) expression associated with a downregula-
tion of the expression of the receptor activator of NF-κB li-
gand (RANKL) [64]. The strategy of inhibiting osteoporosis

and enhancing the switch to the M2 anti-inflammatory pheno-
type in isolated mdx macrophages may be beneficial for the
treatment of DMD.

Furthermore, interleukin-15 (IL-15) is another cytokine
that is currently considered a myokine due to the abundant
expression of IL-15 mRNA in skeletal muscle [65]. IL-15
induces muscle hypertrophy and protein synthesis in vitro,
and IL-15 treatments partially inhibit skeletal muscle wasting
in models of cancer cachexia and sepsis [66–68]. It is well
established that IL-15 has a stimulatory function on osteoclast
differentiation but can also decrease the number of both oste-
oclasts and osteoblasts in bone marrow cell cultures [69–71].
Interestingly, the release of IL-15 into the circulation by skel-
etal muscle tissue can modulate remote tissues and increase
bone mineral content in vivo [72]. In terms of DMD, the
administration of IL-15 improves the pathophysiology of dys-
trophic muscle, reducing fibrosis and collagen levels in the
diaphragmatic muscles of mdx mice. However, its effect on
bone health remains to be determined in the context of mus-
cular dystrophy [73]. In addition, levels of pro-inflammatory
cytokines such as interleukin-17 (IL-17) and interleukin-1 (IL-
1), which play key roles in bone homeostasis, have been
shown to be elevated in dystrophic muscles, suggesting that
other muscle-bone interactions may be in play [74–78].
Further investigations are needed to decipher the role of these
ILs in DMD and the suitability of an approach based on IL
modulation to treat muscle-bone disorders.

In addition to ILs, transforming growth factorβ (TGF-β), a
pleiotropic cytokine, plays an important role in muscle

Fig. 1 Myokines, osteokines, and
dual-origin cytokines involved in
Duchenne muscular dystrophy
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inflammation and fibrosis associated with DMD. It has been
shown that TGF-β is activated in patients with DMD andmdx
mice and induces progressive fibrosis and that treatment with
a neutralizing antibody directed against TGF-β1 improves
respiratory function and functional performance and decreases
fibrosis and serum creatine kinase (CK) levels in mdx mice
[79–82]. TGF-β also plays an important role in postnatal bone
homeostasis. The release of TGF-β from the bone matrix un-
der pathological conditions contributes to muscle weakness
by increasing the oxidization of skeletal muscle proteins [83,
84]. Halofuginone, a collagen synthesis inhibitor, is a novel
anti-fibrotic agent that prevents estrogen deficiency-induced
osteoporosis [85]. In muscle diseases, halofuginone prevents
the age-dependent increase in collagen synthesis in the dia-
phragm (Dia) muscle and the late outcome of dysferlin knock-
out mice and improves the cardiac muscle function of mdx
mice [86, 87]. In addition, activin and myostatin are multi-
functional growth factors belonging to the TGF-β superfam-
ily. Activin/myostatin pathway antagonism may serve as a
new therapeutic approach for countering muscle wasting and
bone degeneration in disease. Myostatin null mice have ap-
proximately twice the skeletal muscle mass and a greater bone
mineral content than wild-type mice [88]. Moreover, treat-
ment with a soluble myostatin decoy receptor (ActRIIB-Fc)
increases both muscle and bone mass in a mouse model of
osteogenesis imperfecta [89]. A recent study showed that the
systemic inhibition of the activin/myostatin pathway in mdx
mice increases muscle mass, bone volume, and the trabecular
number [90•]. Nevertheless, it is not known whether the in-
crease in bone volume following activin/myostatin inhibition
is a direct effect or whether it occurs indirectly through an
increase in muscle mass. However, recent evidence suggests
that activin receptor signaling directly and negatively regu-
lates bone mass by osteoblasts. Indeed, primary osteoblasts
express activin signaling components, and the conditional
knockout of the activin IIA receptor (ActRIIA) in osteoblasts
increases the femoral trabecular bone volume in mice [91]. It
has also been shown that soluble ActRIIA-Fc, which binds to
circulating ligands such as activin A, decreases bone resorp-
tion and increases bone formation in monkeys and postmen-
opausal women [92]. Since myostatin is a direct regulator of
osteoclast differentiation and muscle mass and that there is a
GC response element in the myostatin promoter, it is thus
doubly important to discuss activin/myostatin in the context
of GC-treated patients with DMD [93].

In addition to soluble ActRIIA-Fc, follistatin has emerged
as a myostatin antagonist that can increase muscle mass and
strength and is considered part of the muscle-bone crosstalk
[10, 94]. It is a modulator of bone metabolism and develop-
ment, possibly acting via activin and myostatin signaling [95].
Recent evidence has confirmed that follistatin has a positive
effect on regulating muscle and bone wasting associated with
microgravity [94, 96]. In skeletal muscle, follistatin has a

positive effect on muscle mass via myostatin and myostatin-
independent pathways, increasingmusclemass and enhancing
regeneration following injury [97–99]. Interestingly, in dys-
trophic preclinical and clinical investigations, follistatin gene
therapy reduced fibrosis and central nucleation, increased
strength, and improved ambulation [100–102]. It is thus clear
that myokines contribute to the regulation of bone and muscle
mass and that investigating the mechanisms involved in the
positive association between bone and muscle is important in
the context of muscular dystrophy.

Osteokines and Their Effects onMuscle Tissue
in DMD

Like muscle cells, bone cells release osteokines (Fig. 1) such
as osteopontin (OPN), which is a well-known inhibitor of
bone mineralization [103]. OPN is also expressed by inflam-
matory cells such as macrophages, and its expression in-
creases significantly during inflammation [104]. Higher serum
OPN levels are associated with low BMD in postmenopausal
women and are significantly correlated with the phenotypic
severity of dystrophic dogs [105, 106]. Interestingly, OPN
promotes fibrosis and is the most highly upregulated transcript
in dystrophic muscles [107, 108]. The ablation of OPN
switches dystrophic macrophages toward a pro-regenerative
phenotype, leading to reduced serum CK levels and improved
muscle mass and strength based on the results of long-term
functional testing [109•]. However, the effects of OPN abla-
tion on the bone quality of mdx mice have not been
investigated.

Additionally, the canonical Wnt/β-catenin pathway, which
interacts with TGF-β, plays a pivotal role in regulating bone
homeostasis, myogenesis, and postnatal muscle regeneration
[110, 111]. Specifically, Wnt/β-catenin signaling decreases
osteoclast differentiation by stimulating the production and
secretion of OPG [112]. TGF-β1 stimulates myofibroblast
differentiation and the fibrogenic features of satellite cells
via the canonical Wnt pathway, potentially increasing fibrosis
in dystrophic muscles [113]. However, treatingmdxmice with
Wnt7a efficiently induces satellite cell expansion and
myofiber hypertrophy and improves the specific force of the
extensor digitorum longus (EDL) muscle [114]. Interestingly,
transplanting Wnt3a-pretreated mesenchymal stem cells
(MSCs) into mdx mice results in long-term improvement in
the dystrophic phenotype and restores dystrophin expression
in muscles [115]. Sclerostin, which is mainly produced by
osteocytes, inhibits theWnt/β-catenin pathway. The sclerostin
antibody (romosozumab) is currently under clinical investiga-
tion for the treatment of osteoporosis [116]. With respect to
skeletal muscle, pharmacological inhibition of sclerostin does
not rescue muscle mass loss in models of spinal cord injury
and reduced mechanical loading [117, 118]. In contrast, Wnt
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signaling is also antagonized by the senescence-related protein
Klotho [119]. Epigenetic silencing of Klotho, a co-receptor for
fetal growth factor 23 (FGF23), occurs at the onset of pathol-
ogy in the mdx mouse model of muscular dystrophy [120].
Consistently, Klotho expression is 80% lower in dystrophic
muscle tissues from humans and mice during the first peak of
muscle degeneration [120, 121•]. In vivo, transgene expres-
sion of the klotho gene in mdx mice reduces TGF-β1 expres-
sion and fibrosis in older mice, improves function, and greatly
increases the pool of muscle-resident stem cells required for
regeneration [120]. Klotho is also a potent regulator of bone
formation and bone mass. Klotho deletion in osteocytes leads
to a marked increase in bone formation, while the overexpres-
sion of Klotho in cultured osteoblastic cells inhibits mineral-
ization and osteogenic activity [122]. Further investigations
are thus needed to verify how wnt/β-catenin pathway signal-
ing may mediate muscle-bone crosstalk in DMD.

In concert with cytokines and growth factors, it is well
documented that insulin growth factor-1 (IGF-1), a hormone
secreted by skeletal muscle and bone tissues, is a crucial factor
for the development of the musculoskeletal system [123].
IGF-1 therapy is a useful approach for treating osteoporosis
and fractures due to its ability to increase bonemineral density
and bone formation [124, 125]. In preclinical studies using
mdx mice, IGF-1 treatments improved excitation-contraction
coupling, reduced fibrosis, and increased force and fatigue
resistance [126–129]. It has also been recently shown that
IGF-1 enhances the anti-fibrotic effects of losartan, an angio-
tensin II type 1 receptor blocker clinically investigated in
DMD that antagonizes TGF-β signaling [130, 131], and in-
creases locomotor function in merosin-deficient congenital
muscular dystrophy type 1A [132]. IGF-1 has been tested in
clinical studies for various pathologies, and an open-label trial
for patients with myotonic dystrophy type 1 showed that IGF-
1 increases lean body mass and improves metabolism, but
does not increase muscle strength or function [133, 134].
Similarly, a 6-month trial with IGF-1 in patients with DMD
treated with GCs showed that it increased height velocity but
had no effect on motor functional outcomes [135]. It remains
to be seen how IGF-1 therapy could change the clinical land-
scape of DMD beyond stature management.

Treating the Bone-Muscle Complex
with Single or Combined Drugs in DMD

Bisphosphonates such as pamidronate and zoledronic acid are
a family of drugs used to increase bone mineral density and
prevent fractures. These molecules bind specifically to calci-
um and remain sequestered in bone mineral, with a half-life of
over 10 years. They inhibit osteoclast activity and osteoclas-
togenesis. Six-week-old mdx mice treated with pamidronate
for 8 weeks displayed increased grip strength, improved

muscle histology, and markedly reduced the levels of serum
CK, a clinical marker for tissue damage [136]. The lack of
effect in the Dia muscle suggests that pamidronate may act via
a paracrine effect of adjacent bone tissues. Pamidronate also
improves the cortical bone architecture and strength of femurs,
increasing their resistance to fractures in mdx dystrophic mice
[136]. Other experiments have confirmed that intravenous
pamidronate protects against cortical bone loss in mdx femurs
during prednisone treatment [137], as is currently a recom-
mended treatment (along with other intravenous bisphospho-
nate agents) for bone protection in patients with DMD [37•,
41]. Another clinical study showed that a combined treatment
with steroids and bisphosphonates significantly increased the
lifespan of patients with DMD compared to patients on ste-
roids alone [40]. However, conventional steroid therapy is
non-specific and acts on muscles and secondary sexual organs
without discrimination and is hepatotoxic. A more targeted
approach using non-steroidal androgen receptor (AR) modu-
lators is currently being explored. The AR modulator GTx-
026 increases muscle strength and muscle mass, improves
cardiopulmonary functions, and reduces fibrosis [138]. AR
agonists have a positive effect on growing bones [139, 140].
These results highlight the importance of androgens and a
novel, potentially beneficial therapeutic approach using an-
drogen receptor agonists. In addition, selective estrogen recep-
tor modulators such as tamoxifen and raloxifene can be used
to treat dystroglycanopathy, a different form of muscular dys-
trophy, giving additional support for the use of selective ste-
roids for the treatment of muscular dystrophy [141].

Nitric oxide (NO) is another key biological messenger in-
volved in vasodilation and various biological processes. NO is
also important for muscle function and integrity and is im-
paired in dystrophin-deficient mice and humans. NO impair-
ment causes vascular dysfunction and ischemic muscle dam-
age [142–144]. A new therapeutic approach modulates the
nitric oxide-cyclic guanosine monophosphate (NO-cGMP)
signaling pathway in muscular dystrophy. The inhibition of
phosphodiesterase type 5 (PDE5) prolongs the half-life of
cGMP and induces an angiogenic response [145]. Treating
mdx mice with sildenafil or tadalafil, two PDE5 inhibitors,
significantly reduces Dia damage, fibrosis, and weakness with
no effect on fatigue resistance [146]. Sildenafil also acts on the
expression of the pro-fibrotic and pro-inflammatory cytokine
tumor necrosis factor-α (TNF-α) [146]. A study involving ten
patients with DMD treated with sildenafil or tadalafil showed
that sildenafil reduces ischemia and normalizes blood flow in
dystrophic skeletal muscle during exercise that is dampened in
boys with DMD [147], while tadalafil delays cardiomyopathy
in dogs with muscular dystrophy [148]. Several animal studies
have reported the positive effects of tadalafil and sildenafil on
bone healing following fractures [149, 150]. Tadalafil was
tested in a phase 3 randomized placebo-controlled 48-week
trial in patients with DMD but the treatment did not delay the
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loss of ambulatory ability [151]. However, tadalafil and sil-
denafil have positive effects on skeletal muscle and bone and
can prevent the adverse effects of bisphosphonate treatments
in animal models [152]. Additional studies are required to
determine whether this treatment can improve the health of
patients with DMD and slow the progression of the disease.

Nuclear factor-kappa B (NF-κB) is a key transcriptional
factor that plays a central role in muscle degeneration, muscle
atrophy, and osteolysis [153–155]. Targeting the NF-κB path-
way is thus a potential avenue for managing the muscle-bone
complex in DMD. Vamorolone (VBP15) is a new
glucocorticoid-derived molecule that has been optimized to
inhibit NF-κB. In vitro, VBP15 protects muscle cells against
damage and stimulates membrane repair, while in dystrophic
mdx mice, it enhances strength, improves the phenotype, and
limits GC-related adverse effects [156]. Unlike GCs, VBP 15
maintains bone growth and density and reduces heart fibrosis
in dystrophic mice [156]. Recent first-in-human phase I clin-
ical trials in healthy adults indicated that ascending doses of
vamorolone are well tolerated, as supported by bone and met-
abolic and immune biomarkers studies [157]. Edasalonexent
(CAT-1004), another NF-kB inhibitor, improves the activity,
muscle mass, and function of dystrophic mice while reducing
fibrosis and cardiac dysfunction [158]. A recent phase II clin-
ical trial showed that edasalonexent reduces muscle edema
and circulating CK levels and significantly improves function-
al performance [159]. The inhibition of NF-κB is thus an
important and promising target for the treatment of DMD.

RANK/RANKL/OPG and Muscular Dystrophy

Our most recent publications also support the hypothesis that
the muscle-bone unit may be treatable with a single drug in
DMD. The discovery of receptor activator of NF-kB (RANK)
and the RANK/RANKL/OPG triad, which is part of the TNF
superfamily, was a major breakthrough in bone biology
20 years ago [160]. RANKL is secreted by osteoblasts while
RANK, its receptor, is located on pre-osteoclastic cells. The
RANKL/RANK interaction induces the formation of multinu-
cleated mature osteoclasts, ultimately leading to bone resorp-
tion and remodeling [161]. The third contributor, OPG, is also
produced by osteoblasts and binds to RANKL, inhibiting the
RANKL/RANK interaction and subsequent osteoclastogene-
sis [162]. The fact that OPG-null mice suffer from osteoporo-
sis and that the overexpression of OPG or the injection of high
doses of exogenous OPG induce osteopetrosis-like changes
highlights the physiological relevance of OPG [163–165].
OPG also serves as a decoy receptor for the tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) and in-
creases cell survival by blocking the pro-apoptotic effects of
the RANKL/RANK interaction [166]. OPG is thus a very
efficient anti-resorptive and anti-apoptotic agent.

Additionally, RANK, RANKL, and OPGmRNAs are pres-
ent in skeletal muscle, and RANKL/OPG proteins are found
in the myoplasm [167–169]. We showed that RANK is
expressed in sarcolemmal membranes and may thus potential-
ly interact with bone-derived RANKL [170]. In addition, we
showed that fully differentiated myotubes secrete OPG,
supporting bi-directional signaling between bone and muscle
[171]. In osteoclasts, the RANKL/RANK interaction activates
the Ca2+-dependent and TNF receptor-associated factor
(TRAF) TRAF/NF-kB signaling pathways, which are dysreg-
ulated in DMD [158, 160, 172–178].

Using muscle-specific RANK receptor deletion, we
showed that muscle RANK is a regulator of Ca2+ storage
and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) ac-
tivity and function in fast-twitch EDL skeletal muscles [170].
Furthermore, muscle-specific RANK deletion has inotropic
effects in denervated EDL muscles, increasing the maximum
specific force production while inducing slight muscle atro-
phy [170]. As the RANK/RANKL pathway is important in
Ca2+ regulation, and asmdx dystrophic mice present a dysreg-
ulation of Ca2+ homeostasis, we treated dystrophic mice with
full-length OPG linked to an Fc fragment (FL-OPG-Fc), the
natural inhibitor of RANKL. We showed that the FL-OPG-Fc
treatment greatly reduces the inflammation, restores the integ-
rity, and improves the function of dystrophic EDL muscles
during the first and most important phase of muscle degener-
ation [171]. FL-OPG-Fc also significantly improves the func-
tion of slow-twitch soleus (Sol) and Dia dystrophic muscles,
albeit to a lesser extent [171]. Interestingly, FL-OPG-Fc does
not enhance the force of healthy wild-type skeletal muscles,
suggesting that, like muscle-specific RANK deletion, an un-
derlying pathology or dysfunction is required to exert its ben-
eficial effect [170, 171].

We next dissected out the contribution of RANK/RANKL/
OPG in dystrophic muscles using genetic and pharmacologi-
cal approaches and showed that RANK mRNA levels are
fivefold higher in dystrophic EDL muscles. A recent study
showed that the levels of several members of the TNF receptor
family are significantly elevated inmdxmice serum, including
the RANK protein, suggesting that it may be involved in mus-
cular dystrophy [179•, 180]. To examine the involvement of
RANK in dystrophic skeletal muscle, we generated mdx mice
with a muscle-specific RANK deletion. The deletion of mus-
cle RANK significantly improves the force of dystrophic EDL
muscles but has no protective effects against eccentric
contraction-induced muscle dysfunction. These data indicate
that the RANK/RANKL/OPG pathway may play a role in
dystrophic muscle pathophysiology.

Alternatively, daily FL-OPG-Fc injections for 10 days in-
crease the maximal specific force of dystrophic EDL muscles,
markedly protect against eccentric contraction-induced mus-
cle dysfunction ex vivo, and significantly improve functional
performance on an eccentric downhill treadmill and on
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traveling distance post-exercise [179•]. Since OPG serves as a
soluble receptor for RANKL and as a decoy receptor for
TRAIL, we treated mdx mice with anti-RANKL and anti-
TRAIL antibodies and showed that they significantly increase
the force of dystrophic EDL muscles, but to a much lesser
extent than FL-OPG-Fc [179•]. Truncated OPG-Fc, which
only contains RANKL domains, produced modest but signif-
icant gains of force, suggesting that RANK-independent
mechanisms are also in play [179•]. In dystrophic muscles,
SERCA overexpression reduces susceptibility to eccentric
contraction-induced muscle damage, while intrinsic laryngeal
muscles that overexpress SERCA are spared from muscular
dystrophy [181, 182]. In mdx muscles, an FL-OPG-Fc treat-
ment, but not muscle-specific RANK deletion, almost
completely restores SERCA activity, providing evidence that
FL-OPG-Fc may rescue Ca2+ cycling/homeostasis through a
SERCA-dependent mechanism [179•]. To confirm that FL-
OPG-Fc also acts independently of the RANK/RANKL path-
way, mdx mice with a muscle-specific RANK deletion were
treated with FL-OPG-Fc and exhibited a significant gain in
force, indicating that the effect of FL-OPG-Fc is in part inde-
pendent of the RANKL/RANK interaction [179•].
Investigations are currently underway to understand the
RANKL-independent mechanisms of action of FL-OPG-Fc.
Since FL-OPG-Fc may protect skeletal muscles and bones
simultaneously, it may be a promising therapeutic candidate
alone or in combination with the current standard of care for
DMD. Although anti-RANKL does not protect against eccen-
tric contractions, our data point to a role for RANK/RANKL
in muscular dystrophy. Thus, denosumab, an anti-RANKL
antibody that is already prescribed for osteoporosis, GC-
induced osteoporosis, and bone metastases, may be of benefit
for patients with DMD [183], as shown in a recent case report
where 18 months of denosumab therapy improved lumbar
bone mineral density and bone turnover markers in a GC-
treated boy with DMD [184].

Conclusion

In addition to muscle dysfunctions, low bone mineral density
and bone fragility have been documented in various muscular
dystrophies, including DMD, with debilitating comorbidities
[5, 19, 36, 185, 186]. The bone weakness observed in DMD is
partly caused by the decline in locomotion, the chronic use of
GCs, and the changes in muscle-bone bi-directional molecular
interactions highlighted in the present review. These muscle-
bone crosstalks involve bone-derived osteokines, muscle-
derived myokines, and dual-origin cytokines that act on com-
mon signaling pathways, including inflammation, fibrosis, ca-
tabolism, anabolism, angiogenesis, and calcium homeostasis.
Given the delays in developing genetic approaches to restore
dystrophin expression and function, strategies to target

common signaling pathways involved in muscle and bone
diseases are an important short-term approach for treating
DMD. These novel drugs can be explored on their own, to
target the dystrophinopathy with the goal to also provide ben-
efit to bone, or as a complementary adjunct to muscle-targeted
therapies in order to counteract the negative effects of GCs on
bone. Lastly, further investigations are obviously needed to
validate muscle-bone interactions and to focus on crosstalk-
based approaches that can protect both bone and skeletal mus-
cle, with the ultimate goal of improving quality of life, and life
expectancy in DMD.
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