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Abstract

A fundamental requirement for effective automated anal-

ysis of object behavior and interactions in video is that each

object must be consistently identified over time. This is dif-

ficult when the objects are often occluded for long periods:

nearly all tracking algorithms will terminate a track with

loss of identity on a long gap. The problem is further con-

founded by objects in close proximity, tracking failures due

to shadows, etc. Recently, some work has been done to ad-

dress these issues using higher level reasoning, by linking

tracks from multiple objects over long gaps. However, these

efforts have assumed a one-to-one correspondence between

tracks on either side of the gap. This is often not true in real

scenarios of interest, where the objects are closely spaced

and dynamically occlude each other, causing trackers to

merge objects into single tracks. In this paper, we show how

to efficiently handle splitting and merging during track link-

ing. Moreover, we show that we can maintain the identities

of objects that merge together and subsequently split. This

enables the identity of objects to be maintained throughout

long sequences with difficult conditions. We demonstrate

our approach on a highly challenging, oblique-view video

sequence of dense traffic of a highway interchange. We suc-

cessfully track the large majority of the hundreds of moving

vehicles in the scene, many in close proximity, through long

occlusions and shadows.

1. Introduction

As video becomes more and more pervasive in security

and surveillance applications, it becomes more and more

critical to have robust, automated analysis of object behav-

ior and interactions to effectively process the large amount

of data. This requires robust, automated tracking of objects,

and, more importantly, it requires that objects are consis-

tently identified through indefinite durations, despite long

occlusions, sensing gaps, nearby traffic, pose changes, and

other issues.

The vision community has mostly focused on tracking

objects, and little work addresses explicitly the problem of

maintaining identity. In general, the approach to maintain-

ing identity has been to incorporate some concept of oc-

clusion into the tracking algorithm. This enables tracking

through short gaps, and thus maintains identity. However,

these approaches fail when the gaps are even moderately

long and the number of objects is high.

The main issue with tracking across long gaps is that the

number of potential matches on the far side of the gap in-

creases as the length of the gap increases. A common ap-

proach to address this problem is particle filtering, which

maintains a probability density that captures the possible

hypothesis. The expectation is that the likelihoods of the in-

correct hypothesis will reduce over time, and they can thus

be pruned away. Unfortunately, particle filtering is often

only effective over short gaps; the search space becomes

unmanageably large over long gaps. More recently, data as-

sociation techniques have become more popular in tracking.

In particular, multi-hypothesis tracking (MHT), developed

initially for radar tracking, is another way of managing the

hypothesis space. However, like particle filter algorithms,

MHT algorithms suffer from a state space explosion when

applied to real video tracking.

Another approach to solving the identity maintenance

problem is to track objects until they become occluded, but

not attempt to track across long gaps. Instead, the tracks

are linked together at a higher processing level. This ap-

proach was used to identify vehicles in distributed cameras

in highway monitoring [2, 5]. This track linking approach

was also used to recover from tracking failures even within

a single view in [8] and [3]. In both cases, short tracklets

where linked together to form longer tracks, for automat-

ically determining entry/exit points in the former, and for

more robust tracking over long occlusions in the latter. One

deficiency of the linking formulation of [3, 8] when applied

to complex tracking scenarios is the assumption that a sin-

gle tracklet tracks one object. In such scenarios, multiple
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objects are often merged into single detections, yielding a

single track containing multiple objects. As objects merge

and separate, the tracker must be able to merge and split the

tracks to compensate. Some work has been done in incorpo-

rating merge and split hypothesis into the data association

based trackers [4], but they have been developed for scenar-

ios where the objects are continuously visible. Moreover,

the identities of the objects are lost (confused) when objects

merge and subsequently split. To our knowledge, the split-

ting and merging of tracks has not been addressed with the

track linking approach.

This paper describes a technique that handles merges and

splits in the track linking approach to maintaining identity.

We follow the general scheme of [3], but we use different al-

gorithms in the moving object detection and tracking layers,

and overhaul the track linking layer to cope with merges and

splits. An additional innovation in our work is that we show

how to maintain the identity of objects through merges and

subsequent splits.

Overall, our approach provides a fully automated tracker

that correctly identifies objects in the sequence through oc-

clusions and merges with other objects. Through the track

linking framework, we can handle the difficult cases of track

merges and splits that occur just before and after long occlu-

sions. We demonstrate this on difficult aerial surveillance

video of a highway interchange. We quantify our results

against ground truth and show improvement over (1) track-

ing without linking and (2) tracking with one-to-one link-

ing.

Following [3], the overall system consists of three parts,

which are described in the following sections.

1. Moving object detection. We use the Stauffer-Grimson

algorithm [9].

2. Automatically initialized tracking. We use a nearest-

neighbor data association tracker to track objects based

on the output of step 1.

3. Track linking with merges and splits. We link the

fragmented tracks output by 2 to generate long ob-

ject tracks through inaccurate moving object segmen-

tations. This is the main contribution of this paper.

2. Moving object detection

We use the Stauffer-Grimson background modeling al-

gorithm [9] to detect moving objects in the scene. This

algorithm models the intensity of each pixel as a mixture

of Gaussians, and flags a pixel as belonging to a moving

object when it does not match the modes that correspond

to the background intensities. Since our sensor is mov-

ing, we stabilized the video using homographies estimated

from KLT [7] features before applying background model-

ing. After stabilization, the scene is essentially stationary

except for parallax-induced motion.

This approach produces far fewer false alarms and arti-

facts compared to the frame differencing approach of [3],

but does require a much longer sensor dwell time: it takes

about 30 frames to initialize the background model.

We use simple morphology to separate the foreground

pixel mask into separate moving object detections. Since

vehicles are compact, mostly convex objects, we fill each

detection with the convex hull to further reduce pixel-level

noise.

Ideally, each detection contains a single object, but many

contain multiple objects if they are visually close or over-

lapping.

3. Tracking

We use a simple nearest-neighbor data association

tracker to generate the basic tracks. Since our focus is on the

subsequent track linking, we did not experiment with more

complex trackers. Note, however, that (1) our overall results

are quite good even with this simple tracker (section 5), and

(2) it is more difficult to derive good termination conditions

with more complex trackers. The latter point is important

for the track linking approach, since it expects conservative

tracks.

Tracking Each tracker maintains a Kalman filter with a

state consisting of position and velocity. At each step, each

tracker produces a validation gate and associates the detec-

tion with the gate that is nearest to the predicted position.

Each tracker then updates its state using the associated de-

tection.

Termination Trackers are terminated for one of two rea-

sons. First, if a tracker is not associated with a detection

for n consecutive frames (n = 3 in our experiments), the

tracker is terminated. Second, if two or more trackers as-

sociate with the same detection, all of them are terminated,

and the detection is marked as unassociated. Terminated

tracks are recorded in a database for later linking.

Initialization Each unassociated detection launches a

new tracker. These trackers are marked as “initializing” for

m frames (m = 3 in our experiments). Being marked as

initializing has two consequences for a tracker. First, it has

stronger conditions for termination (for example n above

is 1 for initializing tracks). Second, if an initializing track

is terminated, it is not recorded in the database; it is as if

they never occurred. If a tracker survives for m frames, it is

marked as “formed”. The initializing phase greatly reduces

the number of false alarm tracks.
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4. Track linking

4.1. One-to-one correspondence

Following [3, 8], we formulate the track linking prob-

lem by computing pairwise linking costs and using the Hun-

garian algorithm to solve the resulting assignment problem.

This formulation makes the assumption that joint probabil-

ity of associating tracks with an object can be decomposed

as the product of pairwise probabilities. That is,

P({T1, . . . , Tn}) =

n−1∏
i=1

P1-1(Ti�Tj), (1)

where P({a, b, c}) is the probability that tracks a, b, and c

are associated with the same object.

We define the pairwise probability of associating two

tracks as the product of three components (temporal, kine-

matic, and appearance):

P1-1(Ti�Tj) = Pt(Ti�Tj) Pk(Ti�Tj) Pa(Ti�Tj). (2)

Temporal Pt captures the temporal nature of the associa-

tion:

Pt(Ti�Tj) =

{
1 if ei < sj ,

0 otherwise,
(3)

where ei = end(Ti) and sj = start(Tj).

Kinematic Pk captures the kinematics of the tracks. Each

track Ti has a set of tuples (xi
k, yi

k, tik) indicating the loca-

tion of the object at time tik. We use multi-variate regres-

sion to estimate with a linear model to this tuples, using t

as the independent variable. This corresponds to a constant

velocity estimate of the motion. The regressions provides

both the model parameters and parameter covariance ma-

trix. These can be used to obtain an estimate of the object

position x̂
i(t′) and error covariance Σ̂

i(t′) at any time t′.

To predict forward in time (past the end of the track), we use

an estimate based on the last n frames. To predict backward,

we use an estimate based on the first n frames. We denote

the forward estimates by x̂
i
f(·) and Σ̂

i
f(·), and the backward

estimates by x̂
i
b(·) and Σ̂

i
b(·). In our experiments, n = 15,

corresponding to 2.5 seconds. We define

Pk(Ti�Tj) =Pgn(x̂j
b(sj); x̂

i
f(sj), Σ̂

i
f(sj), σ

2
g)×

Pgn(x̂i
b(ei); x̂

j
b(ei), Σ̂

j
b(ei), σ

2
g),

(4)

where σg is a parameter and Pgn is a gated normal dis-

tributed defined by

Pgn(x; μ,Σ, σ2
g) =

f(x; μ,Σ, σ2
g)∫

x
′
f(x′; μ,Σ, σ2

g)
, (5)

with

f(x; μ,Σ, σ2
g) = g

(
(x− μ)�Σ

−1(x− μ), σ2
g

)
(6)

and

g(x2, σ2
g) =

{
exp(− 1

2x2), x2 < σ2
g ,

0, otherwise.
(7)

Appearance We define the appearance probability using

template matching, which is a stronger appearance model

than the color histogram matching in [3] or the mean color

matching in [2]. To associate Ti and Tj , we estimate an ap-

pearance template Ai for Ti using the last few frames of Ti,

and a template Aj using the first few frames of Tj . Further,

we estimate the orientations of the objects as θ̂i = ∂
∂t

x̂
i
f(ei)

and θ̂j = ∂
∂t

x̂
j
b(sj). Then, we define

Pa(Ti�Tj) = corr
(
Ai, R(Aj , θ̂i − θ̂j)

)
, (8)

where R(A, θ) rotates the template A by θ.

4.2. Merges and splits

Suppose two objects A and B merge for a while, so that

A ={Ta,1, . . . , Ta,m, Tc,1, . . . , Tc,o, Td,1, . . . , Td,p}

B ={Tb,1, . . . , Tb,n, Tc,1, . . . , Tc,o, Te,1, . . . , Te,q}.
(9)

Using the pairwise assumption,

P(A,B) =P({Ta,1, . . . , Ta,m})× P({Tb,1, . . . , Tb,m})×

Pm(Ta,m, Tb,n�Tc,1)× P({Tc,1, . . . , Tc,o})×

Ps(Tc,o�Td,1, Te,1)× P({Td,1, . . . , Td,p})×

P({Te,1, . . . , Te,q})

(10)

with Pm and Ps defining the probability of a merge and split,

respectively. As with the one-to-one case, we define each of

these as the product of three components. For merges, we

define

Pm(Ti, Tj �Tk) =Pt,m(Ti, Tj �Tk)× Pk,m(Ti, Tj �Tk)×

Pa,m(Ti, Tj �Tk)

(11)

with

Pt,m(Ti, Tj �Tk) =

{
1, if ei < sk and ej < sk,

0, otherwise.
(12)

Pk,m(Ti, Tj �Tk) =Pgn(x̂k
b(sk); x̂i

f(sk), Σ̂i
f(sk), σ2

g)×

Pgn(x̂k
b(sk); x̂j

f (sk), Σ̂j
f (sk), σ2

g),

(13)

Pa,m(Ti, Tj �Tk) =Pa(Ti�Tk) Pa(Ti�Tk). (14)

Observing that a split is essentially a merge reversed in

time, we compute Ps exactly the same way as Pm except

that the time axis is temporarily reversed.
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4.3. Finding the assignment

For the one-to-one correspondence case with n tracks,

finding the optimal assignment is straight-forward: form an

n× n cost matrix C = {Cij} with

Cij = − log P1-1(Ti�Tj) (15)

and apply the Hungarian algorithm. Tracing through the

pairwise assignments then yields a linked track.

If we hypothesize a merge of, say, Ta and Tb with Tc, we

can form a new matrix C ′ exactly the same as above, delete

rows a and b, and add a new row g such that

C ′
gi =∞ ∀i �= c, and (16)

C ′
gc = − log Pm(Ta, Tb�Tc). (17)

If the cost of the solution to C ′ is less than the cost of the

solution to C, then Ta and Tb did merge, and the solution to

C ′ is the final solution; if not, the tracks did not merge and

the solution to C is the final solution.

Unfortunately, with this approach, if we hypothesize m

merges, then we have to solve 2m assignment problems to

find the final solution. This will be prohibitively expen-

sive in practice, so we describe a suboptimal algorithm that

works well in practice.

Suppose we have m merge hypotheses

M = {(Tai
, Tbi
�Tci

)}, i = 1, . . . , m. (18)

We write M = {(ai, bi, ci)} for notational convenience.

First, we form the standard one-to-one correspondence cost

matrix C. Next, for each distinct merge target ci we add

a column to C, labeled c′i. These columns are initially

filled with ∞. Denote this augmented matrix C0. Finally,

for each hypothesized merge (a, b, c) ∈ M , set C0
bc′ =

C0
ac + log Pm(Ta, Tb � Tc). Observe that if the solution to

C0 assigns row a to column c, row b to column c′, and each

other row to a column ≤ n, then the cost of this solution is

exactly the cost of C ′ above, since

C0
ac + C0

bc′ = − log Pm(Ta, Tb�Tc) = C ′
gc. (19)

This is true for each merge hypothesis that was added to the

matrix. However, not every assignment corresponds to a

valid solution. For example, if row b is assigned to column

c′, but row a is not assigned to column c, then that solu-

tion cannot be interpreted as a merge case. We then have to

modify C0 somehow to find a valid solution. Our algorithm

is as follows:

1. t← 0

2. Let A be the optimal assignment to Ct, such that

A(i) = j means that row i is assigned to column j.

3. If A(bi) = c′i ⇒ A(ai) = ci ∀(ai, bi, ci) ∈M , stop.

A is a valid solution.

4. Otherwise, let M ′ =
{
(ai, bi, ci) ∈ M : A(bi) =

c′i ∧A(ai) �= ci

}
.

5. Find k such that Cik = min(a,b,c)∈M ′ Cbc′ .

6. Let Ct+1 be the same as Ct with column k set to∞.

This removes a merge to Tk from the hypothesis set.

7. t← t + 1. Goto step 2.

To handle splits, the procedure is similar; we just aug-

ment the one-to-one correspondence matrix with additional

rows.

4.4. Maintain identity through merges

Once we hypothesize and confirm a merge (Ta, Tb�Tc),
we know that Tc is a combination of tracks Ta and Tb. If

Tc subsequently splits into Td and Te, we do not know if Ta

goes with Td or with Te. There are two ways to handle this.

One is to evaluate the two hypothesis {(Ta, Td), (Tb, Te)}
and {(Ta, Te), (Tb, Td)} and choose the better one. The

other is to use Ta and Tb to explicitly split Tc into two tracks

Ta′ and Tb′ , and then do a normal one-to-one correspon-

dence with all six tracks Ta, Tb, Ta′ , Tb′ , Td, and Te. We

chose to implement the latter.

Our final track linking algorithm is as follows.

1. Hypothesize a set of merges and splits.

2. Generate and solve the augmented matrix.

3. If the solution does not have any merges, stop.

4. Otherwise, split each merge target, and go to 1.

5. Results

We validated our approach on a difficult aerial surveil-

lance scenario. Figure 2 shows examples from the se-

quence. The video was taken from a slow moving platform

with a large format camera acquiring images at 6Hz. The

sequence was stabilized after acquisition by using KLT [7]

features to compute frame to frame homographies. The se-

quence captures 162 vehicles moving on a multi-lane high-

way interchange. On average, there are 42 vehicles in each

frame. Many of the vehicles traveling on the main high-

ways dynamically occlude each other. Some of the vehi-

cles always appear merged throughout their presence in the

sequence. (For example, a car moving next to a truck at

the same speed.) Figure 3 shows the tracks overlaid on the

image frame. Each track is colored with a different color.

While it is hard to tell the difference because of the sheer

number of objects, the image on the right (the linked result)
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appears somewhat smoother and uniform. This is because

of the long, linked tracks generated by our track linking al-

gorithm.

To evaluate our algorithms, we manually generated

ground truth tracks for each vehicle. To associate generated

tracks Ti with ground truth tracks Gj , we used the following

track distance measure [6]:

D(Ti, Gj) =
1

|O(Ti, Gj)|

∑
t∈O(Ti,Gj)

‖xi
t − x

j
t‖, (20)

where O(Ti, Gj) denotes the frames where Ti and Gj over-

lap, |·| denotes cardinality, and ‖·‖ denotes the L2-norm.

An association A is a set of pairs (i, j) such that (i, j) ∈ A

iff Ti is associated with Gj . Abusing notation, we define

A(Gj) = {Ti|(i, j) ∈ A}. The performance metrics below

are computed w.r.t. the optimal association

A∗ = arg min
A

∑
(i,j)∈A

D(Ti, Gj) (21)

with the minimization subject to

O(Ti, Tk) = ∅ ∀(i, j), (k, j) ∈ A, (22)

which ensures that two temporally overlapping generated

tracks are not assigned to the same ground truth track.

With this association in hand, we use a few metrics from

the tracking performance evaluation literature [1, 6, 10] to

measure our performance.

The first metric we use is the object detection rate, which

is

ODR =
# correct detections

# frames in track
. (23)

Note that this is independent of the track association above.

This metric measures how well we can determine that there

is an object at a given location at a given time. A related

metric is the track completeness factor,

TCF =

∑
i

∑
Tj∈A(Gi)

|O(Tj , Gi)|∑
i|Gi|

. (24)

This measures how well we detect a given object after the

association. (That is, with some concept of object identity.)

Note that, in both cases, we do not compute the metrics per

track and average, since that would bias the overall metric

toward short tracks. Finally, the two most important metrics

for measuring how well we maintain identity are the track

fragmentation

TF =

∑
i|A(Gi)|

|{Gi|A(Gi) �= ∅}|
, (25)

and its normalized version,

NTF =

∑
i|Gi| · |A(Gi)|∑
i|A(Gi) �=∅|Gi|

. (26)

ODR TCF TF NTF

No Interp

Unlinked 0.702 0.696 3.066 3.543

Kine 0.702 0.611 1.230 1.269

Kine & App 0.702 0.618 1.255 1.299

KAMS unlinked 0.706 0.697 3.098 3.590

KAMS Kine & App 0.706 0.624 1.174 1.221

Interp

Unlinked 0.702 0.696 3.066 3.543

Kine 0.810 0.692 1.209 1.246

Kine & App 0.805 0.700 1.242 1.285

KAMS unlinked 0.706 0.697 3.098 3.590

KAMS Kine & App 0.820 0.726 1.168 1.217
Table 1. Overall measures of performance. See the text for a de-

scription of the metrics. Track linking improves the fragmentation

score (TF) significantly (implying better identity maintenance).

The normalization increases the weight for longer tracks, to

account for the fact that it is more difficult (and important)

to maintain the identity of long tracks than short ones. A

fragmentation score of n means that we have identified the

object with n labels (tracks). A fragmentation of 1 is the

ideal.

Table 1 shows results for various flavors of the algorithm.

In the table, the “no interp” results simply link the tracks

into a single long track with gaps in the middle, while the

“interp” results interpolates across the gaps. “Unlinked”

scores the basic tracking result. “Kine” and “Kine & App”

shows the results when only kinematics and both kinemat-

ics and appearance, respectively, are used to link the tracks.

“KAMS” are the tracks resulting from the merge and split

(MS) processing using the hypothesis generated using kine-

matic and appearance (KA) linking. These tracks can be left

as is (“KAMS unlinked”) or linked again using kinematics

and appearance (“KAMS Kine & App”).

Without interpolation or merge and split processing, the

ODR is constant, because the tracks, and therefore the de-

tected positions, do not change. Both interpolation and

merge and split processing add new detections (the former

by filling the gaps between tracks, the latter by creating new

tracks), and thus increase the ODR.

The key advantage of the track linking is the drop in the

track fragmentation. The fragmentation drops from 3.1 per

track without linking to only 1.2 per track when linking with

merge and split processing. This shows that we are able

to link the fragmented tracks back together to recover the

object identity.

The track completion factor for the unlinked case is the

best possible score given the generated tracks, because it

essentially corresponds to linking with ground truth. When

we link, we are trading off the completion factor against the

fragmentation. The results show that the linking more than

halves the fragmentation score without a great loss in the
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t=35

t=50

t=88

t=122

t=93

Figure 1. These illustrate the merge and split processing. The images on top (red border) show linking without merge processing, and the

images underneath (blue border) show linking after merge processing. The black and white arrows point to the same black and white cars

over time. The solid lines show the linking results, with the dots indicating start and end points. After merge processing, the merged track

(illustrated in t=50) is split into two objects, allowing the previously terminated white car track (top, green) to continue all the way through

(bottom, cyan). Thus, the identity is maintained through the merge condition and through the long occlusion under the bridges (shown at

t=88). See the text for more detail.

completeness factor. In fact, when we interpolate across the

gaps, there is no loss in the completion factor for the gain

in fragmentation. The conclusion is that we manage to ef-

fectively maintain the identity of the objects. The merge

and split processing manages to further reduce the frag-

mentation because some of the merged tracks are success-

fully split into multiple objects, enabling linking through

the merge.

The latter point is illustrated in Figure 1. Initially, the

black and white cars are tracked separately (t=35). At some

point, those tracks stop, and a merged track is initiated as

the white car passes the black car (t=50). Soon after that,

the cars pass under the bridges, and new, separate tracks

are initiated when they reappear (t=88,93). Without the

merge processing (top, red border), the one-to-one condi-

tion forces one of the initial tracks (t=35) to be dropped at

the merge (t=50); in this case, the white car track is dropped.

The single merged track is then linked to one of the subse-

quent black or white car tracks (t=88). Here, it happened to

link to the white car, causing an identity switch. However,

with the merge processing (bottom, blue border), the two

initial tracks (t=35) are hypothesized to merge (t=50). The

hypothesis is validated, and the merged track is split into

two tracks. This allows the normal one-to-one linking to

correctly maintain the identity of both the black and white

cars.

6. Conclusions

Handling splits and merges during tracking is a signif-

icant, ongoing challenge. By casting the problem within

the track linking framework, we demonstrate how it can be

managed efficiently without exploding the hypothesis space

while maintaining a reasonable approximation to the global,

multi-object solution. Our current focus is to explore in

more detail the interactions of the kinematic and appearance

costs, especially in the merge and split cases.
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Figure 2. Examples from the sequence.
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Figure 3. These two images illustrate the tracks before and after linking. It is somewhat difficult to see the difference simply because there

is so much traffic, but the linked version (on the right) has a smoother color distribution resulting from the long, linked tracks.
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