Anthony Réveillac

Anthony Réveillac
Paris Dauphine University | UPD · Center for Research in Decision Mathematics

About

42
Publications
2,606
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
574
Citations
Additional affiliations
September 2011 - August 2014
Paris Dauphine University
Position
  • PR Professional

Publications

Publications (42)
Preprint
In this paper we provide an expansion formula for Hawkes processes which involves the addition of jumps at deterministic times to the Hawkes process in the spirit of the well-known integration by parts formula (or more precisely the Mecke formula) for Poisson functional. Our approach allows us to provide an expansion of the premium of a class of cy...
Preprint
In this paper, following Nourdin-Peccati's methodology, we combine the Malliavin calculus and Stein's method to provide general bounds on the Wasserstein distance between functionals of a compound Hawkes process and a given Gaussian density. To achieve this, we rely on the Poisson embedding representation of an Hawkes process to provide a Malliavin...
Preprint
Full-text available
We investigate Weierstrass functions with roughness parameter $\gamma$ that are H\"older continuous with coefficient $H={\log\gamma}/{\log \frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where the graphs of the functions are identified as their global attractors. They possess stable ma...
Preprint
Full-text available
In this paper we provide an alternative framework to tackle the first-best Principal-Agent problem under CARA utilities. This framework leads to both a proof of existence and uniqueness of the solution to the Risk-Sharing problem under very general assumptions on the underlying contract space. Our analysis relies on an optimal decomposition of the...
Preprint
In this paper we provide an It{\^o}-Tanaka-Wentzell trick in a non semimartingale context. We apply this result to the study of a fractional SDE with irregular drift coefficient.
Article
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the stochastic nature of the inequality, the relation between the exponents of intgrability is modified. This modification can be understood as a regularization by noise phenomenon. As a direct application, we derive Strichartz estimates for the white noise dispe...
Article
Full-text available
In this paper we provide a valuation formula for different classes of actuarial and financial contracts which depend on a general loss process, by using the Malliavin calculus. In analogy with the celebrated Black-Scholes formula, we aim at expressing the expected cash flow in terms of a building block. The former is related to the loss process whi...
Article
Full-text available
In this paper, we study the existence of densities (with respect to the Lebesgue measure) for marginal laws of the solution (Y,Z) to a quadratic growth BSDE. Using the (by now) well-established connection between these equations and their associated semi-linear PDEs, together with the Nourdin-Viens formula, we provide estimates on these densities.
Article
In this paper we address an open question formulated in [17]. That is, we extend the It{\^o}-Tanaka trick, which links the time-average of a deterministic function f depending on a stochastic process X and F the solution of the Fokker-Planck equation associated to X, to random mappings f. To this end we provide new results on a class of adpated and...
Article
Full-text available
In this paper we study a utility maximization problem with random horizon and reduce it to the analysis of a specific BSDE, which we call BSDE with singular coefficients, when the support of the default time is assumed to be bounded. We prove existence and uniqueness of the solution for the equation under interest. Our results are illustrated by nu...
Article
In this paper, we provide a strong formulation of the stochastic G{\^a}teaux differentiability in order to study the sharpness of a new characterization, introduced in [6], of the Malliavin-Sobolev spaces. We also give a new internal structure of these spaces in the sense of sets inclusion.
Article
We prove functional central and non-central limit theorems for generalized variations of the anisotropic d-parameter fractional Brownian sheet (fBs) for any natural number d. Whether the central or the non-central limit theorem applies depends on the Hermite rank of the variation functional and on the smallest component of the Hurst parameter vecto...
Article
Full-text available
In this paper we provide new conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic BSDEs. Our results rely on the interpretation of the Malliavin derivative as a G\^ateaux derivative in the directions of the Cameron-Martin space. Incidentally, we provide a new formulation for the characterization of the Malliavin-Sob...
Article
Full-text available
In this paper, we study the existence of densities (with respect to the Lebesgue measure) for marginal laws of the solution $(Y,Z)$ to a quadratic growth BSDE. Using the (by now) well-established connection between these equations and their associated semi-linear PDEs, together with the Nourdin-Viens formula, we provide estimates on these densities...
Article
Full-text available
In this Note we study a class of BSDEs which admits a particular singularity in their driver. More precisely, we assume that the driver is not integrable and degenerates when approaching to the terminal time of the equation.
Article
The paper analyzes risk assessment for cash flows in continuous time using the notion of convex risk measures for processes. By combining a decomposition result for optional measures, and a dual representation of a convex risk measure for bounded \cd processes, we show that this framework provides a systematic approach to the both issues of model a...
Article
Full-text available
The problem of optimal investment with CRRA (constant, relative risk aversion) preferences, subject to dynamic risk constraints on trading strategies, is the main focus of this paper. Several works in the literature, which deal either with optimal trading under static risk constraints or with VaR-based dynamic risk constraints, are extended. The ma...
Article
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[\Psi(Y_{T})]\ge m$, for some (possibly random) non-decreasing map $\Psi$ and some threshold $m$. We name them BSDEs with weak te...
Article
In this paper we study BSDEs arising from a special class of backward stochastic partial differential equations (BSPDEs) that is intimately related to utility maximization problems with respect to arbitrary utility functions. After providing existence and uniqueness we discuss the numerical realizability. Then we study utility maximization problems...
Article
In this paper we deal with the utility maximization problem with a general utility function. We derive a new approach in which we reduce the utility maximization problem with general utility to the study of a fully-coupled Forward-Backward Stochastic Differential Equation (FBSDE).
Article
We extend the work of Delong and Imkeller (2010)Â [6] and [7] concerning backward stochastic differential equations with time delayed generators (delay BSDEs). We give moment and a priori estimates in general Lp-spaces and provide sufficient conditions for the solution of a delay BSDE to exist in Lp. We introduce decoupled systems of SDEs and delay...
Article
In this paper we prove that every random variable of the form $F(M_T)$ with $F:\real^d \to\real$ a Borelian map and $M$ a $d$-dimensional continuous Markov martingale with respect to a Markov filtration $\mathcal{F}$ admits an exact integral representation with respect to $M$, that is, without any orthogonal component. This representation holds tru...
Book
This paper studies the problem of optimal investment with CRRA (constant, relative risk aversion) preferences, subject to dynamic risk constraints on trading strategies. The market model considered is continuous in time and incomplete; furthermore, financial assets are modeled by Itô processes. The dynamic risk constraints (time, state dependent) a...
Article
Full-text available
This paper studies the problem of optimal investment with CRRA (constant, relative risk aversion) preferences, subject to dynamic risk constraints on trading strategies. The market model considered is continuous in time and incomplete. the prices of financial assets are modeled by It\^o processes. The dynamic risk constraints, which are time and st...
Article
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{\alpha, \beta}$ with Hurst parameter $(\alpha, \beta) \in (0,1)^2$. When $0<\alpha \leq 1-\frac{1}{2q}$ or $0<\beta \leq 1-\frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $q\geq 2$,...
Article
Let $B$ be a fractional Brownian motion with Hurst parameter $H=1/6$. It is known that the symmetric Stratonovich-style Riemann sums for $\int g(B(s))\,dB(s)$ do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of c\`adl\`ag functions. Moreover, we show that the resulting stochastic inte...
Article
In this Note we consider a quadratic backward stochastic differential equation (BSDE) driven by a continuous martingale $M$ and whose generator is a deterministic function. We prove (in Theorem \ref{theorem:main}) that if $M$ is a strong homogeneous Markov process and if the BSDE has the form \eqref{BSDE} then the unique solution $(Y,Z,N)$ of the B...
Article
In this paper we consider a class of BSDEs with drivers of quadratic growth, on a stochastic basis generated by continuous local martingales. We first derive the Markov property of a forward-backward system (FBSDE) if the generating martingale is a strong Markov process. Then we establish the differentiability of a FBSDE with respect to the initial...
Article
We construct superefficient estimators of Stein type for the intensity parameter λ>0 of a Poisson process, using integration by parts and superharmonic functionals on the Poisson space.
Article
Full-text available
We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and superharmonic functionals on Gaussian space. Our results are illustrated by numerical simu...
Article
Full-text available
We construct an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise, using the local and occupation times of Gaussian processes. The method relies on the almost-sure minimization of a Stein Unbiased Risk Estimator (SURE) obtained through integration by parts on Gaussian space, and applied to shrinka...
Article
Full-text available
In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Lo\`eve expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity using Bayes estimators. We also construct superefficient estimators of Stein type for such drifts using...
Article
We combine Stein's method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by Peccati and Tudor (2005), Nualart and Ortiz-Latorre (2007), Peccati (2007) and Nourdin and Peccati (...
Article
In this article, we state and prove a central limit theorem for the finite-dimensional laws of the quadratic variations process of certain fractional Brownian sheets. The main tool of this article is a method developed by Nourdin and Nualart in [1818. Nourdin , I. , and Nualart , D. 2008 . Central limit theorems for multiple Skorohod integrals. P...
Article
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion $B$ with Hurst index $H=1/4$. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the R...
Article
In this paper we give a central limit theorem for the weighted quadratic variations process of a two-parameter Brownian motion. As an application, we ∑ [nt] j=1 |∆i,jY | 2 of a two-show that the discretized quadratic variations ∑ [ns] i=1 parameter diffusion Y = (Y(s,t))(s,t)∈[0,1] 2 observed on a regular grid Gn is an asymptotically normal estimat...
Article
In recent years infinite-dimensional stochastic analysis methods have been introduced in the field of estimation for Gaussian channels. The aim of this note is to study the application of similar methods to Poisson channels. In particular we show that the conditional mean estimator of a Poisson channel can be expressed as a discrete logarithmic Mal...
Article
In the framework of a nonparametric functional estimation for the drift of a Brownian motion Xt we construct Stein type estimators of the form Xt+DtlogF which are superefficient when F is a superharmonic functional on the Wiener space for the Malliavin derivative D. To cite this article: N. Privault, A. Réveillac, C. R. Acad. Sci. Paris, Ser. I 343...
Article
In this paper we consider a class of BSDE with drivers of quadratic growth, on a stochastic basis generated by continuous local martingales. We first derive the Markov property of a forward-backward system (FBSDE) if the generating martingale is a strong Markov process. Then we establish the dierentiability of a FBSDE with respect to the initial va...
Article
Dans cette thèse nous appliquons le calcul de Malliavin à l'estimation statistique de paramètres de certains processus stochastiques et à l'obtention de théorèmes de la limite centrale pour les variations quadratiques à poids de processus fractionnaires et/ou à deux paramètres ainsi qu'à l'approximation gaussienne de mesures de probabilités multidi...

Network

Cited By