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PROJECT SUMMARY: Scientific research is heavily driven by interest in discovering, assessing, and 

modelling cause-and-effect relationships as guides for action. Much of the research in discovering relationships 

between information is based on methods which focus on maximising the predictive accuracy of a target factor 

of interest from a set of other related factors. However, the best predictors of the target factor are often not its 

causes and hence, the motto "association does not imply causation". Although the distinction between 

association and causation is nowadays better understood, what has changed over the past few decades is mostly 

the way by which the results are stated rather than the way they are generated.  

Bayesian Networks (BNs) offer a framework for modelling relationships between information under 

causal or influential assumptions, which makes them suitable for modelling real-world situations where we seek 

to simulate the impact of various interventions. BNs are also widely recognised as the most appropriate method 

to model uncertainty in situations where data are limited but where human domain experts have a good 

understanding of the underlying causal mechanisms and/or real-world facts. Despite these benefits, a BN model 

alone is incapable of determining the optimal decision path for a given problem. To achieve this, a BN needs to 

be extended to a Bayesian Decision Network (BDN), also known as an Influence Diagram (ID). In brief, BDNs 

are BNs augmented with additional functionality and knowledge-based assumptions to support the 

representation of decisions and associated utilities that a decision maker would like to minimise or maximise 

[1]. As a result, BDNs are suitable for modelling real-world situations where we seek to discover the optimal 

decision path to maximise utilities of interest and minimise undesirable risk. 

Because BNs come from statistical and computing sciences, and whereas BDNs come mainly from 

decision theory introduced in economics, research works between these two fields only occasionally extend 

from one field to another. As a result, it is fair to say that the landscape of these approaches has matured rather 

incoherently between these two fields of research. It is possible to develop a new generation of algorithms and 

methods to improve the way we 'construct' BDNs.  

The overall goal of the project is to develop an open-source software that will enable end-users, who 

may be domain experts and not statisticians, mathematicians, or computer scientists, to quickly and efficiently 

generate BDNs for optimal real-world decision-making. The proposed system will allow users to incorporate 

their prior knowledge for information fusion with data, along with relevant decision support requirements for 

intervention and risk management, but will avoid the levels of manual construction currently required when 

building BDNs. The system will be evaluated with diverse real-world decision problems including, but not 

limited to, sports, medicine, forensics, the UK housing market, and the UK financial market.  

mailto:a.constantinou@qmul.ac.uk
http://www.constantinou.info/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/S001646/1
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BACKGROUND 

 

Model 𝐴 below illustrates the associations between three hypothetical factors, as typically 

discovered by statistical regression or classical machine learning techniques that ignore 

assumptions of causation or the direction of influence. Model 𝐴 tells us that each factor is 

predictive of each other. On the other hand, model 𝐵 is a directed acyclic graph and captures 

the same features under causal or influential assumptions. Unlike association, causal 

assumptions make claims about the effect of interventions. Specifically, unlike model 𝐴, 

model 𝐵 tells us that an intervention on Yellow teeth will have no effect on Smoking nor on 

Lung cancer, whereas an intervention on Smoking will have an effect on both Yellow teeth 

and Lung cancer. So, in model 𝐴, the association between Yellow teeth and Lung cancer 

comes via the common cause Smoking, which can be discovered and eliminated in models of 

type 𝐵. 

Model A  Model B  

 

Much of the research on discovering relationships between information is based on methods 

which focus on maximising the predictive accuracy of a target variable of interest 𝑋 from a 

set of observed predictors 𝑌. However, the best predictors of 𝑋 are often not the causes of 𝑋, 

hence the motto “association does not imply causation”. Although the distinction between 

association and causation is nowadays better understood, what has changed over the last few 

decades is mostly the way the results are stated rather than the way they are generated. 

Although scientific research is heavily driven by interest in discovering, assessing, and 

modelling cause-and-effect relationships as guides for action and decision-making, most 

scientific conclusions continue to be based on results derived from outputs of models similar 

to A and hence, often fail to accurately answer the important questions of intervention which 

require models similar to B.  

A Bayesian Network (BN), which is a type of a probabilistic graphical model [2], 

introduced by Pearl [3, 4], is a directed acyclic graph that offers a framework for modelling 

relationships between information under causal or influential assumptions. BNs are also 

widely recognised as the most appropriate method to model uncertainty in situations where 

the model could benefit from fusing data with knowledge; i.e., in cases where human domain 

experts have a good understanding of the underlying causal mechanisms and/or real-world 

facts of a problem where data fail to capture. As a result, BNs are suitable for modelling real-

world scenarios for which we seek to simulate the impact of various interventions, available 

to the decision makers, for maximising outcomes of interest or managing risk. Consequently, 

BNs are capable of representing models similar to B above, where the nodes represent 

uncertain variables and the arcs represent the direction of influence. In general, there are three 

ways to construct BNs: 

 

1. Knowledge-Based: the structure of the model and the conditional probability tables 

(CPTs) for each variable are determined from knowledge. 

 

2. Data-driven: the structure and the CPTs are automatically discovered (i.e. learnt) from 

available data. 
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3. Information fusion: This involves any combination of data and knowledge and hence, 

combines the two above approaches. For example, a domain expert may specify the 

structure of the model, while the CPTs are learnt from data. 

 

Further, there are primarily three different types of algorithms that can be used to learn the 

structure (i.e., the network; the directed graph) of a BN model [1, 5]. These are: 

 

1. Constraint-based: These algorithms aim to establish links between variables under the 

assumption that the arcs represent causal relationships. They perform causal 

independence checks between variables in sets of triples; a process inherited from the 

Inductive Causation (IC) algorithm [6]. The Peter and Clark (PC) and some variants of 

the Greedy Equivalent Search (GES; also mentioned below) algorithms have had major 

impact in this area of research due to their simplicity and learning strategies [7, 8]. 

These algorithms are data-driven, but many allow the option to incorporate knowledge 

into the process of structure learning; e.g., variable 𝐵 occurs after 𝐴 and hence 𝐵 cannot 

influence 𝐴. 

 

2. Score-based: These algorithms search for different structures and score them based on 

one or more scoring functions, in terms of how well the fitting distributions agree with 

the empirical distributions. A large number of algorithms fall within this area of 

research [9, 10]. Examples include the K2 algorithm [11], Sparse Candidate Algorithm 

[12], the Optimal Reinsertion algorithm [13], and GES [14]. These algorithms tend to be 

data-driven, but some of them also allow knowledge to be incorporated into the process 

of structure learning, as above. 

 

3. Hybrid algorithms: These simply combine the two above types of structure learning 

[9]. Examples include the max-min hill-climbing (MMHC) algorithms [15] and L1-

Regularisation paths [16]. 

 

While each approach has its strengths and weaknesses, it is widely acknowledged that 

accurate structure learning of BN models is very difficult [5, 9, 10, 17, 18]. In general, these 

algorithms demonstrate promising performance when tested with simulated/synthetic data, 

which represent ‘fake’ data generated from simulation based on predetermined models that 

are assumed to represent the ground truth [17]. When simulated data is provided as input to 

these algorithms, in an effort to reverse engineer the ground truth model, the results are 

promising. However, simulation-based performance does not extend to real-world 

performance [5, 9, 17, 19-22]. This is because data observations recorded from events in the 

real world do not to adhere to causal representation in the same way simulated data do, which 

are based on well-defined causal models.  

A BN model provides an effective graphical representation of a problem, and can be 

used for multiple types of complex inference. Despite these benefits, a BN model alone is 

incapable of determining the optimal decision pathways of the problem. For example, we 

may want to determine the optimal treatment, or combination of treatments, to control 

symptoms or cure a disease, while at the same time taking care to minimise unwanted side-

effects. To achieve this, a BN needs to be extended to a Bayesian Decision Network (BDN), 

also known as an Influence Diagram (ID). A BDN is a generalisation of a BN in which not 

only probabilistic inference, but also decision and utility questions can be modelled and 

solved. So, a BDN can be seen as a BN augmented with additional types of nodes and arcs.  
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Specifically, whereas in a BN all nodes are considered uncertain ‘chance nodes’, in 

a BDN if a node corresponds to a decision to be made we distinguish it as a decision node 

(drawn as rectangle). We also introduce utility nodes (drawn as diamonds) which are 

targeted for maximising or minimising a particular outcome of interest, and information arcs 

(drawn as dashed arcs) entering decision nodes, indicating that the decision is determined by 

information retrieved from parent nodes. In contrast to normal BN arcs (i.e., conditional 

arcs), information arcs only pass information forward. Specifying a BDN inevitably requires 

some level of knowledge since we need to specify the decision options available to the 

decision maker, and the utilities we seek to minimise or maximise [1]. In fact, there are 

certain structural rules we need to follow when transforming a BN into a BDN [23-25], such 

as ensuring that only informational arcs enter a decision node. 

Because BNs come from statistical and computing sciences (mainly from Artificial 

Intelligence and Expert Systems), and whereas it can be argued that BDNs evolved from 

decision theory introduced in economics (mostly known as Influence Diagrams) as an 

improvement over Decision Trees, research works between these two fields only occasionally 

extend from one field to another. As a result, it is fair to say that some of the limited attempts 

to learn BDNs [26, 27] make limited reference, and have little relevance to the BN structure 

learning methods discussed above. The landscape of these approaches has matured rather 

incoherently between these two fields of research. 

 

RESEARCH HYPOTHESIS 

 

It is possible to develop a new generation of algorithms to discover the structure of BDNs for 

both causal inference and optimal real-world decision-making, and it is possible to 

incorporate these into a system that enables end users (who may be domain experts and not 

statisticians, mathematicians, or computer scientists) to quickly develop relevant BDN 

models for improved decision support. The proposed system will allow users to incorporate 

their prior knowledge for information fusion with data, along with relevant decision support 

requirements for intervention and risk management, but will avoid the levels of manual 

construction currently required when building BDNs.  

 

METHODOLOGY AND OBJECTIVES: 

 

The overall goal of the project is to develop an open-source software that will allow users to 

generate BDNs for optimal real-world decision-making. The system will be evaluated with 

diverse real-world case studies. Specifically, the programme is organised around five work 

packages (WPs): 

 

1. WP1 – Structure learning for Bayesian Decision Networks: We will extend current 

algorithms that learn BNs so that they can be used to learn BDNs. The new hybrid BDN 

structure learning algorithm will be capable of modelling different types of information. 

For example, in addition to the standard BN chance nodes, the new algorithm will also 

account for decision and utility nodes discussed above (and possibly other types of 

nodes that can used in BDNs, not covered in this document, such as deterministic and 

function nodes). Similarly, the new algorithms will also account for different types of 

relationships (i.e., arcs) between the different types of nodes. For example, in addition to 

the standard BN conditional arcs, the new algorithm will also account for informational 

arcs discussed above (and possibly other types of arcs that can be used in BDNs, not 

covered in this document, such as functional arcs). 
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2. WP2 – Knowledge engineering and information fusion: We will work with existing 

[28, 29], and also introduce new, knowledge engineering and information fusion 

methods. The new methods will primarily focus on eliciting, incorporating, and fusing 

the decision support requirements, amongst other relevant knowledge, with data. For 

example, the new methods will enable end-users to quickly specify known 

interventions/actions or decisions available to the decision maker along with the 

targeted variables of interest and their desired state/s (e.g., maximising 

profit/minimising risk). The system will take the knowledge-based information and fuse 

it with data, along with other knowledge-based inputs that establish what can and cannot 

be ‘discovered’ (if known) for a particular decision scenario, and pass everything as 

different types of inputs to the hybrid BDN structure learning algorithm. 

 

3. WP3 – Data complexity and model evaluation: This is based on two subtasks. First, 

to ensure that the hybrid algorithms can handle various data complexity issues, such as 

missing data values that are not missing at random, and to take into consideration 

regularisers to manage model overfitting. The second subtask involves devising 

evaluation functions that assess the ‘quality’ of the generated model based on factors 

that go beyond predictive accuracy and model complexity, and towards the usefulness of 

the generated model in terms of decision support/making. 

 

4. WP4 – Case studies: The algorithms and methods will be evaluated by applying them 

to a number of different and diverse case studies. We will focus on (but not limited to) 

sports, medicine, forensics, the UK housing market, and the UK financial market. We 

have relevant available data from past academic and industrial works [30-44] that can be 

used in this project. Because the datasets from these studies come from our own 

previous works, this also enables us to compare how our previously published 

BNs/BDNs compare to the BDNs generated when based on the software that will be 

developed for this project. Each of the case studies also has potential to extend to 

answering other questions of interest in all of these areas of application.  

 

5. WP5 - System development driven by end-user requirements: We will implement 

the new algorithms and resulting methods into an open-source software with a Graphical 

User Interface (GUI) and a detailed user manual targeted for general users. Both 

academic and industry end-users will contribute to the specifications of the overall 

system. We will elicit end-user requirements through questionnaires and interviews. 

Agena Ltd (see below) will provide us with access to over 1,000 potential end-users 

from diverse areas of industry, who have strong interest in Bayesian modelling for 

decision analysis. We will also build and maintain a dedicated website for the project 

and the open-source software. 

 

The objectives and outputs of the project are summarised in the diagram presented in Figure 

1. 
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Figure 1. Diagram of project objectives, expected outputs and reports/papers. 
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INDUSTRIAL ENGAGEMENT 

 

This project will be carried out in collaboration with Agena Ltd (www.agenarisk.com); a UK-

based company, with strong QMUL links, that provides state-of-the-art risk analysis and 

decision support BN software to customers world-wide (e.g., GE Healthcare, Software 

Engineering Institute Carnegie Mellon, Australian Government, General Dynamics, and many 

more). Agena Ltd will provide us with full access to their AgenaRisk BN API engine and 

Desktop versions. The project will benefit from the AgenaRisk Bayesian inference engine, 

which is unique in enabling us to model variables under the assumption of many different types 

of continuous distributions, based on their breakthrough Dynamic Discretisation algorithm [45]. 

Agena Ltd will also benefit from this project since the development of the open-source software 

will be based on their public API programming engine, which should allow them to migrate any 

developments of interest into their commercial engine with relatively little effort. Agena Ltd 

has agreed to make the resulting BDN structure learning software open-source. Total in-kind 

contribution from Agena Ltd is set to £38,100 (for details please refer to resource summary 

from project partners or letter of support). The Business Development team at QMUL will also 

support this project by identifying further companies which may benefit from this research.  

 

NATIONAL IMPORTANCE 

 

The proposal falls within the priority area of New approaches to data science, and is a perfect 

fit for the Decision making under uncertainty initiative, which has been identified as an area of 

significant interest by multiple research councils in the UK. New approaches and tools that 

enable improved decision-making have become particularly important for policy makers, 

industrial organisations and academic research. This is because such tools are becoming 

increasingly useful for optimal decision making to maximise or minimise a particular outcome 

of interest, whether this involves the most cost-effective route, maximum impact, minimum 

risk, or an equilibrium between them. Policy makers and industrial organisations who invest in 

big-data solutions also tend to be particularly interested in these alternative advancements 

because they can provide them with potential to reduce at source much unnecessary data 

collection, and at the same time improve decision making performance. This proposal is timely 

in the sense that it combines three emerging technologies; data science, causal modelling, and 

decision making under uncertainty. 

 

ACADEMIC IMPACT 

 

This project is expected to extend the state-of-the-art in disciplines related to data science, 

causal modelling, decision making under uncertainty, and knowledge-based systems. 

Specifically, the project will contribute to a) Data science and Machine Learning, with new 

data-driven hybrid BDN structure learning algorithms, b) Information fusion, with new 

methods that will allow us to construct machine learnt models that can take into consideration 

knowledge-based information about what must, can and cannot be discovered for decision 

support purposes, c) Causal modelling, with extended techniques to establish whether a 

relationship between two factors can be assumed to be causal or some other type of decision-

modelling relationship, and d) Decision Science, with an improved way of constructing models 

for optimal decision making under uncertainty. Additionally, the project will contribute to the 

areas of sports, medicine, forensics, the UK housing market, and the UK financial market 

through the various case studies. As a result, it is realistic to expect that the project will have 

positive repercussions in a broad range of disciplines. 

http://www.agenarisk.com/
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The project will benefit, as well as complement, another two projects. First, the EPSRC 

PAMBAYESIAN project, which runs from June 2017 to May 2020 (www.pambayesian.org), 

which is a collaboration between researchers from the School of Electronic Engineering and 

Computer Science (same School with the PI) and the Barts and The London School of 

Medicine and Dentistry. PAMBAYESIAN is supported by numerous digital health firms and 

hence, offers potential for further industrial engagement for this project. We will also benefit 

from access to further medical data already cleared as part of the PAMBAYESIAN project, 

which focuses on medical decision support based on home-based and wearable real-time 

monitoring systems for chronic conditions. Second, the MRC UKRI Innovation project on 

population genomics and health data science, that will support four postdoctoral fellows on 

Health Data Research for three years, starting mid-2018. This project is collectively led by the 

medical (SMD), computing (EECS), biology (SBCS), and materials (SEMS) schools at QMUL. 

As a Co-Investigator on this project under the theme “Machine Learning and Artificial 

Intelligence”, I will assist with postdoctoral secondary/tertiary supervision within the School of 

EECS. 
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