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Abstract

Anthropogenic activities have resulted in an increase in the level of fluoride (F), a natural
pollutant in water, causing great threat to the aquatic organisms including fishes. Earlier we
reported that sodium fluoride (NaF) exposure alters histological ultrastructure in zebrafish
(Danio rerio) liver evidenced by hyperplasia, cytoplasmic degeneration, heteropycnosis etc. In
this study, zebrafish were exposed to 7.5, 15 and 30 mg NaF l�1 for 30 days as well as to 15 mg
NaF l�1 for 90 days. In NaF treated fish, generation of reactive oxygen species (ROS), depletion
of glutathione (GSH) and increase in malondialdehyde (MDA) content along with enhanced
activities of oxyradical-scavenging enzymes like catalase (CAT) and superoxide dismutase (SOD)
were recorded. Activity of GSH-metabolizing enzyme, glutathione-S-transferase (GST) was also
enhanced. The mRNA levels of genes for xenobiotic metabolizing enzymes (XMEs) like
cytochrome P450 1A (Cyp1A), NADPH Q Oxidase 1 (Nqo1) and Heme Oxygenase 1 (Ho-1)
increased along with nuclear factor (erythroid-derived 2)-like 2 (Nrf2) whereas Kelch-like ECH-
associated protein 1 (Keap1) decreased in the treated groups in comparison to their controls.
The increase in Nrf2 protein levels in NaF treated fish confirmed its key regulatory role in
F-induced oxidative stress. Chromatin condensation and nuclear fragmentations were
evidenced in NaF-treated groups indicating possible induction of apoptosis. The modulation
of these toxicological parameters at genetic and biochemical levels may be used as an early
warning for the environmental risk assessment of F� toxicity to aquatic organisms including
fishes.

Keywords

Oxidative stress, reactive oxygen species,
sodium fluoride, xenobiotic metabolizing
enzymes, zebrafish liver

History

Received 7 January 2015
Revised 2 February 2015
Accepted 27 February 2015
Published online 23 March 2015

Introduction

Fluorine (F�), an important member of the halogen family, is

strongly electronegative and highly reactive (Gillespie et al.,

1989; Greenwood & Earnshaw, 1984). F� is one of the most

abundant elements in the earth’s crust and is a natural

pollutant in the aquatic ecosystem. The level of F� in surface

water depends on its geographical location and proximity to

the source of emission. It may also be due to weathering of

fluoride (F)-containing ores. Apart from this, various

anthropogenic activities and industrial processes including

manufacture of steel, production of primary aluminums,

copper and nickel, processing of phosphate ore, enameling,

production and use of phosphate fertilizers, glass, bricks,

ceramics adhesives, F-containing pesticides, fluoridated

dental preparations and controlled fluoridation of drinking

water supplies lead to substantial increase in water F� level in

the last few decades (WHO 1999, 2006). Accumulating

evidences of skeletal fluorosis in human in different parts of

the world and subsequent reports on its harmful effects in

various soft tissues in mammals have marked F� pollution as

a major threat to the modern world (Suma Latha et al., 1999).

Although adverse effects of F in mammalian system(s) both

in vivo and in vitro are reported (Chattopadhyay et al., 2011;

Machalinska et al., 2002; Machalinski et al., 2003; Podder

et al., 2010a,b), few studies have been made on the underlying

mechanisms of its action in fish (Cao et al., 2014), an

important component of aquatic ecosystem.

Fish can take up F� directly from water (Nell & Livanos,

1988; Neuhold & Sigler, 1960). F� level as low as 0.5 mg l�1

of water may be toxic to fish, particularly for those living in

soft waters (Camargo, 2003). In unpolluted freshwater, the

concentration of F� ranges from 0.01 to 0.3 mg l�1 while in

sea water this value increases up to 1.5 mg l�1 (Camargo,

2003; Datta et al., 2000; World Health Organization [WHO],

2002; Weinstein & Davison, 2004). US Geological Survey

reported that F-level of Walker and Pyramids Lakes in

Nevada were 13 mg l�1 whereas the same from Madison and
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Fire hole rivers in Yellowstone National park ranged between

12 and 14 mg l�1. In Japan, F� concentration in well water

was reported to be 1.5–5.5 ppm (Kobayashi, 1951) and in

New Zealand, natural thermal water contained 1–12 mg l�1 of

F� (Mahon, 1964; Sigler & Neuhold, 1972). Fluoride

level may be as high as 25–50 mg l�1 in some hot springs

(Neuhold & Sigler, 1960) whereas its concentration in the

industrial waste water was estimated as high as 96.8 mg l�1

(Ding et al., 1998).

Zebrafish (Danio rerio), a fresh water teleost, is an

excellent model for the study of reproductive and develop-

mental biology (Bailey et al., 2013; Froehlicher et al., 2009)

as well as for toxicological and physiological studies

(Ali et al., 2011; Briggs et al., 2002; Craig et al., 2007;

Neumann & Galvez, 2002). Effect of F pollution is more

adverse in organisms dwelling in soft water compared to that

of hard water, since bioavailability of F decreases with

increase in hardness of water (Camargo, 2003). Therefore,

study of F-toxicity in zebrafish has important relevance in

assessing its impact on soft water ecosystem where fish is

an important component. Majority of the F-toxicity studies

in fishes incorporated parameters like histopathology and

biochemical analysis. This study incorporated the mRNA

expression patterns of XMEs genes related to phase I and

phase II detoxification system which might act prior to the

toxic effect at anatomy and biochemical level.

Cytochrome P450 (CYP) has been used as an important

biomarker for assessing environmental exposures of fishes to

halogenated compounds and members of CYP450 gene

families 1–4 are considered as important in xenobiotic

metabolism (Van der Oost et al., 2003; Whyte et al., 2000).

Among all the families and types, CYP1A enzyme activity

is regulated by different types of heavy metals as well as

organic compounds (Anwar-Mohamed et al., 2009;

Zhou et al., 2010). However, no report is available on its

expression after NaF exposure. CYP1A converts both

exogenous and endogenous compounds to polar and water

soluble compounds. CYP1A is mainly expressed in the liver,

although its localization in other tissues has also been

reported (Stegeman et al., 1989).

Beside phase I XMEs, phase II detoxification system is

associated with different enzymes known as Phase II xeno-

biotic metabolizing enzymes (Phase II XMEs). The Phase II

XMEs include Heme Oxygenase-1 (HO-1), NADPH quinine

oxidoreductase 1 (NQO1) and Glutathione-S-Transferase

(GST). Reports on the induction of phase II XMEs’ at

mRNA and protein levels with various toxicants exist but

their induction after F exposure particularly in fish model are

scanty. An inverse correlation between Cyp1A and Ho-1 was

reported in rats, though the causality of this relationship is

unclear (Abraham et al., 2000). NQO1 plays an important role

in cellular protection through its anti-oxidative properties

(Lim et al., 2008; Xiao et al., 2011). HO-1 enzyme, involved

in heme catabolism, is expressed by different inducers

including heavy metals and environmental pollutants. It is

reported that HO-1 is present at low levels in liver and other

soft tissues under normal conditions and is inducible by a

wide range of stimuli that cause oxidative stress (Abraham

et al., 2003). While the induction of Ho-1 has been

documented and is known to be primarily at the level of

gene transcription, the molecular mechanism(s) underlying

this response is poorly understood.

The transcription factor, known as nuclear factor (eryth-

roid-derived 2)-like 2 (Nrf2), has been recognized as the

master regulator of the cellular defense mechanism against

toxic insults. Nrf2, a member of the cap ‘‘n’’ collar basic

region-leucine zipper transcription factors, serves as the

major transcription factor in defense against a range of

toxicants. Under normal conditions, Nrf2 remains anchored

to actin bound Kelch-like ECH-associated protein 1 (Keap1)

or inhibitor of Nrf2 (INrf2), which negatively regulates Nrf2

through ubiquitination and proteasomal degradation in the

cytoplasm (Itoh et al., 1999; Jaiswal, 2004). However, in

response to ROS or oxidative/elecrophilic stimuli, Nrf2 is

released from Keap1, translocates to the nuclei and

transactivates the constitutive induction of detoxifying

enzymes along with oxidative stress proteins (such as

HO-1) through antioxidant responsive element (Itoh et al.,

2004; Liu et al., 2013; Ma et al., 2004).

Liver is the major target organ for any toxic substance

and plays an important role in the detoxification process.

It is the chief site for xenobiotic metabolism. Pollutants and

xenobiotics affect liver function and subsequent microsomal

enzyme (Cytochrome P450) induction which in turn deter-

mine the degree of hepatotoxicity (Conney, 1967). Reports

also suggest that these lead to the depletion of glutathione

and ultimately induction of whole redox scavenging path-

ways (Gadgoli & Mishra, 1997). Similarly, fluoride is

reported to be hepatotoxic and induced histopathology and

stress protein synthesis in mouse (Chattopadhyay et al.,

2011) and zebrafish (Mukhopadhyay & Chattopadhyay,

2014). Therefore, we attempted to look into the generation

of ROS in liver induced by NaF, consequent hepatotoxicity

using biochemical parameters and the effect on mRNA

transcription of xenobiotic metabolizing enzymes (XMEs) as

well as mRNA and protein expressions of Nrf2 and Keap1

genes in female zebrafish. The rationale for using only

female zebrafish was to avoid any variation of expression

pattern of XMEs, since the expression of antioxidant genes;

housekeeping genes as well as antioxidant enzyme activities

differ in male and female zebrafish (McCurley & Callard,

2008; Shao et al., 2012).

The goal of this study was to examine the dose and time

dependent effects of F-exposure in zebrafish to elucidate the

physiological and transcriptional endpoints of chronic hep-

atotoxicity. In this study, we investigated the regulatory role

of Nrf2/Keap1on Nqo1 and Ho-1 and its subsequent effect on

Cyp1A at mRNA level after NaF exposure. Quantitative real

time PCR was employed to quantify the F-mediated induction

of these five genes. The dose and time dependent oxidative

stress was evaluated by determination of malondialdehyde

(MDA) and glutathione (GSH) content, analysis of the

activity of glutathione-S-transferase (GST), superoxide dis-

mutase (SOD) and catalase (CAT) along with the fluores-

cence microscopy study of hepatocytes. Western blots were

used to study the expression of Nrf2 along with its inhibitor,

Keap1. This study attempted to explore the effect of NaF on

zebrafish that would help to assess the expression of XMEs-

genes as an important biomarker in freshwater ecotoxicology

of F and its risk assessment.
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Materials and methods

Chemicals and reagents

Primary antibodies against Nrf2 and b-actin were purchased

from Pierce (Thermo, Waltham, MA). Keap1 antibody was

purchased from Abcam (Cambridge, MA). Mouse anti-rabbit

(Abcam) and Goat anti mouse (Sigma, St. Louis, MO) ALP

conjugated secondary antibody, BCIP/NBT, TRI reagent for

RNA isolation, Hoechst 33342 and 20,70-dichlorofluorescin

diacetate (DCF-DA) were procured from Sigma-Aldrich

Corporation (St. Louis, MO). Reverse transcriptase and all

chemicals for PCR mix were purchased from Fermentas

(Hanover, MD). Sodium Fluoride (NaF, molecular weight

41.99) was purchased from Sisco Research Laboratories

(SRL, Mumbai, India). All other reagents and chemicals used

were of highest grade purchased from reputed manufacturers.

Zebrafish and sodium fluoride (NaF) exposure

Adult female zebrafish (average weight of 0.7 ± 0.01 g and

length of 3.6 ± 0.05 cm) were procured from local supplier

and acclimatized to soft water in the laboratory condition for

2 weeks prior to the experiments. Fish were kept in aquaria

with uniform water temperature (26 ± 1 �C), pH (7.0–7.2) and

a photoperiod (14:10 h light:dark cycle) and fed daily with

commercial food. Fish (10 fish per group in triplicate sets)

were randomly selected for experiments and exposed to NaF

for 30 days with three concentrations (7.5, 15 and 30 mg L�1)

lying within the reported range of F� levels in different water

bodies across the world. Treatment with only 15 mg NaF L�1

was extended for 90 days, since it showed maximum

hepatotoxicity as evidenced in liver histopathology. Two

control groups were used for comparisons of 30 and 90 days

treatment. Only female fish were used to avoid any gender

based variation in the activity of antioxidant enzymes as well

in gene expressions (McCurley & Callard, 2008; Shao et al.,

2012). Water in aquaria was replaced daily for maintaining

uniform quality. Rules of the ‘‘Institutional Animal Ethics

Committee’’ of Visva-Bharati University were strictly fol-

lowed during the entire period and steps were taken to protect

the welfare of experimental animals. Liver samples of each set

(10 fish) were pooled and data of three such sets were used for

statistical analysis (n¼ 3).

ROS level in fish hepatocyte

Reactive oxygen species (ROS) levels in the fish hepatocyte

were determined by the oxidation of 20,70-dichlorofluorescin

diacetate (DCF-DA) according to the procedure described by

Contreras et al. (2005). Samples of pooled tissues (0.1–1 g

wet wt) were incubated in 100 ml of 10 mM DCF-DA in

methanol for 30 min in a water bath at 37 �C. After incubation,

fluorescence of DCF was determined in spectrofluorometer

(SpectraMax, Molecular Devices, Sunnyvale, MA) at an

excitation wavelength of 488 nm and emission wavelength of

525 nm. Fluorescence values were obtained using a standard

curve prepared with 0–500 nM DCF.

Protein content

The liver tissues were homogenized and centrifuged at

10 000� g, 20 min at 4 �C. After centrifugation, the clear

supernatants were pipetted out and kept in a fresh tube. These

were used as protein samples and their concentrations were

determined following the method of Lowry et al. (1951).

Bovine serum albumin (BSA) was used as the standard.

Measurement of GSH level

The level of GSH in liver was measured by the method of

Akerboom & Sies (1981). Briefly, freshly collected tissues

were homogenized and lysed by alternate freezing (10 min)

and thawing (10 min) three times at 0 and 28 �C and

centrifuged at 10 000 rpm for 5 min at 4 �C. The supernatant

was deproteinized using 100 ml ice-cold 10% 5-sulphosalicylic

acid with intermittent shaking and centrifuged at 10 000 rpm

at 4 �C for 15 min. The supernatant was immediately used for

GSH estimation. Fifty microliters of sample suspension was

added to a reaction mixture containing 1 ml buffer (0.1 M

EDTA phosphate buffer, pH 7.0); 50 ml NADPH (4 mg/ml);

20 ml DTNB (1.5 mg/ml); 20 ml GSH reductase (6 units/ml),

mixed thoroughly and the optical density was measured

continuously for 5 min at 412 nm in a UV–visible spectro-

photometer (Beckman Coulter) against a sample blank.

Thiobarbituric acid reactive substances level in liver
tissue

The level of lipid peroxidation as measured by the

thiobarbituric acid reactive substances (TBARS) was deter-

mined according to the method of Buege & Aust (1978).

Briefly, 1 ml of microsomal sample was mixed with 2 ml of

TBA–TCA–HCl mixture thoroughly and heated for 15 min in

a boiling water bath. After cooling, the flocculent precipitate

was removed by centrifugation at 1000� g for 10 min. The

absorbance of the supernatant was determined at 535 nm.

The MDA concentration of the sample was calculated using

an extinction coefficient of 1.56� 105/M/cm and expressed in

terms of nM MDA/mg protein.

Enzyme extraction and biochemical assays

For enzymatic activities, liver was homogenized in phosphate

buffer. Homogenates were centrifuged at 10 000� g for

20 min at 4 �C. The supernatant of each sample was employed

for biochemical measurements.

Catalase (CAT) activity was assayed following the pro-

cedure of Aebi (1984). The sample (20mL) was added to

980 mL of an assay buffer containing 50 mM Tris-HCl

(pH 8.0), 9 mM H2O2 and 0.25 mM EDTA to constitute the

assay volume of 1 mL. The decrease in DOD/min of that assay

mixture was recorded at 240 nm for 1 min. The results were

expressed as U/mg protein.

Glutathione-S-transferase (GST) activity was determined

in fish liver cytosolic fractions as described by Habig et al.

(1974) using 1-chloro-2,4-dinitrobenzene (CDNB) as sub-

strate in the presence of excess GSH (5 mM). The rate of

CDNB conjugation was estimated by direct spectrophotom-

etry at 340 nm for 3 min. The result was expressed as nM

GS-CDNB formed/min/mg protein.

Superoxide dismutase (SOD) activity was assayed follow-

ing the procedure of Ewing & Janero (1995) using nitroblue

tetrazolium (NBT). The specific activity was expressed in the
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units of SOD per mg of protein. One activity unit was defined

as the amount of enzyme required for the inhibition of initial

rate of NBT reduction by 50% and expressed as U/mg protein.

Real time reverse transcription-polymerase chain
reaction (Q-PCR)

Total RNA was isolated from frozen liver tissue using the

TRIzol reagent (Sigma-Aldrich, St. Louis, MO) according to

the manufacturer’s protocol. The concentration of total RNA

was quantified by absorbance at 260 nm using a BECKMAN

COULTER Spectrophotometer (DU 730). The purity of total

RNA was assessed by determining the A260/A280 ratio. Five

micrograms of total RNA was reverse-transcribed into cDNA

using the Revert Aid reverse transcriptase (Fermentas)

following manufacturers protocol. Quantitative real-time

PCR was performed on a BioRad CFX Manager qPCR

system. The 20 mL reaction mixture contained 10 mL of 2� iQ

SYBR Green Supermix (Bio-Rad, Hercules, CA), forward and

reverse primers (0.1 mM each), nuclease-free water, and 1 mL

of cDNA template. As a house-keeping gene, b-actin

transcript was used. The mRNA level was expressed as its

ratio to b-actin mRNA. PCR was performed in triplicate and

primer sequences used in this technique is shown in Table 1.

The gene-specific PCR primer sequences were either

designed or taken from published report (Liedtke et al.,

2008). The amplification protocol was as follows: 95 �C for

10 s followed by 40 cycles at 94 �C for 5 s, 59 �C for 15 s and

72 �C for 10 s. The relative expression ratio (R) was calculated

based on the following equation: R¼ 2�DDCt, where Ct

represents the cycle in which the fluorescence signal is sig-

nificantly different from background and DDCt is

(Ct,target�Ct,actin) treatment� (Ct,target�Ct,actin) control. R

is a ratio between the expressions in the treated sample

versus the expression in the control sample in comparison to

the b-actin gene (Pfaffl, 2001).

Western blot analyses

Protein (60 mg) from the lysates of control and treated cells

was resolved on 10% SDS-PAGE at a constant voltage (60 V)

for 2.5 h and then transferred onto a poly vinylidene fluoride

(PVDF) membrane using blot apparatus (Bio-Rad, Hercules,

CA). The membranes were first incubated with primary

antibodies at a dilution of 1:1000 overnight at 4 �C, followed

by 2 h incubation with corresponding ALP-linked goat anti-

rabbit (for Nrf2 and Keap1) or anti-mouse IgG secondary

antibodies (for b-actin) at 1:5000 (Sigma) dilutions with

continuous rocking. The immunoreactive bands were detected

using 5-bromo-4chloro-3-indolylphosphate/nitroblue tetrazo-

lium (BCIP/NBT). Densitometric quantification was done

using ImageJ (NIH, Bethesda, MD) software.

Hoechst 33342 staining

Freshly collected hepatocyte from fish was digested by two-

step collagenase (Sigma Aldrich) method as described by

Shimano et al. (2003) with some modifications. Collected

hepatocytes were washed with PBS, fixed with 3.7% para-

formaldehyde solution at room temperature and stained with

bisBenzimide H 33342 trihydrochloride (Hoechst 33342;

2 mg/ml) and visualized under fluorescence microscope

(Dewinter, Italy) within 30 min of adding the stain.

Statistical analysis

In each group, triplicate sets of pooled samples of ten fish

livers were used for biochemical analyses, RT-qPCR (DDCt

values) and Western blots. All results were analyzed for

significant differences (*p50.05; **p50.001) using a one-

way analysis of variance (ANOVA) followed by the Dunnett’s

test using SPSS Statistics 20.0 (SPSS Inc., Chicago, IL).

Densitometric analysis was carried out using ImageJ software

and expressed as arbitrary units. The data were presented as

means with standard errors of the mean (mean ± SE).

Results

Reactive oxygen species generation

The intracellular ROS generation was estimated using non-

fluorescent stain (DCF-DA) which converted into florescent

DCF due to oxidation by cellular oxidants. In our study, all

the treated groups showed elevated levels of ROS which

was significant at 15 mg NaF l�1 treatment for 30 days

(Figure 1a).

Effect of NaF on tissue GSH and MDA levels

Following NaF treatment, the GSH level of liver in all the

treatment groups decreased though not in a dose-dependent

manner. A significant decrease (2.1-fold, p50.001)

was noticed in 15 mg NaF l�1 for 30 days treatment group

(Figure 1b) and a moderate decrease was observed after

treatment with 15 mg NaF l�1 for 90 days. MDA level

increased in all the treatment groups, recording a significant

value (3.4- and 3.9-fold, p50.001) after treatment with

15 mg NaF l�1 for 30 and 90 days, respectively (Figure 1c).

Effect of NaF on enzyme activities

Figure 2(a) shows the activity of CAT in the control and

treatment groups. Significant increase was observed in all the

treatment groups (7.5, 15, 30 mg NaF l�1 for 30 days and

15 mg NaF l�1 for 90 days; 1.7-, 1.8-, 1.4- and 1.3-fold,

respectively). A significant increase in GST activity was also

observed after 30 days (15 and 30 mg NaF l�1) and 90 days

Table 1. Primer sets employed for quantitative Real Time PCR (50–30).

Target
gene Primer sequences

GenBank
Accession No.

CYP1A* F: CCTGGGCGGTTGTCTATCTA
R: AGGTTCGCCCTGTCAGATAA

AB078927

Nrf2 F: TGGCCCTGAAGAATTTAACG
R: CCCGGTGAGAAGCTCTGTAG

NM_182889.1

Keap1 F: TGATGGACAAACCCAACTCA
R: CACTGGACAGGAAACCACCT

NM_182864.2

HO-1 F: GGAAGAGCTGGACAGAAACG
R: CGAAGAAGTGCTCCAAGTCC

NM_001127516.1

NQO1 F: CCATGCTTTCCTTCACCACT
R: CGCAGCACTCCATTCTGTAA

NM_001204272.1

b-Actin* F: AGGTCATCACCATTGGCAAT
R: GATGTCCACGTCGCACTTCAT

AF057040

*Sequences for CYP1A and b-actin were used from Liedtke et al. (2008).
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(15 mg NaF l�1) treatment (1.7-, 1.5- and 1.6-fold, respect-

ively) when compared to the control (Figure 2b). SOD

activity increased in all the treatment groups. The increase

was significant after treatment for 30 days but not after

90 days (Figure 2c).

Effect of NaF on gene expressions

Effect of NaF exposure on mRNA level of genes involved in

Nrf2/Keap1 pathway was determined by RT-qPCR (Figure 3).

Cyp1A mRNA expression pattern increased in a dose

dependent manner up to 30 mg NaF l�1 for 30 days treatment

group (1.4-, 16.0- and 23.5-fold) but decreased in the 90 days

treatment (15 mg NaF l�1) group (1.2-fold; Figure 3a). The

mRNA expressions after 15 and 30 mg NaF l�1 treatment for

30 days were significant (p50.001). This pattern was just

opposite in case of Ho-1 (Figure 3b) where the expression

after only15 mg NaF l�1 for 90 days was significant

(p50.001). Nqo1 expression increased (2-, 3.8-, 2.4- and

2.6-fold) in all the treatment groups (Figure 3c) and was

significant in the group treated with15 mg NaF l�1 for 90 days

(3.8-fold, p50.001).

The mRNA level of Nrf2 increased significantly only after

30 days treatment at the dose of 15 mg NaF l�1 (4.5-fold,

p50.001) whereas Keap1 significantly decreased (1.5-, 6.6-,

1.4- and 7.6-fold; p50.05) in all the treatment groups when

compared to the control (C) (Figure 3d and e).

Effect of NaF on Nrf2 and Keap1 protein levels

Elevated expressions of Nrf2 protein was found in all the

treatment groups compared to the control. Since the control

group of 30 and 90 days had no differences in expression

level, only one control group is represented in the Figure 4.

Group treated with 15 mg NaF l�1 for 30 days had higher Nrf2

expression level than the rests in contrast to a consistent

decrease in Keap1 level. This decrease was most prominent

after 15 mg NaF l�1 treatment for 90 days. Alterations at

protein level were not dose dependent.

Effect of NaF on chromatin condensation

Chromatin condensation was determined using Hoechst

33342 staining. Noticeable increase in the number of

condensed and fragmented nuclei were observed In NaF

(15 mg l�1 for 30 days) treatment group, where maximum

cytotoxicity was observed (Figure 5).

Discussion

Besides having high similarity (�75%) with human genome,

zebrafish is capable to tolerate soft water (Boisen et al., 2003;

Craig et al., 2007). Consequently, it is a preferred model for

in vivo screening of various toxic compounds and gene

function analysis for medicinal applications (Alestrom et al.,

2006; Hill et al., 2005). In India, zebrafish are found in the

Figure 1. (a) ROS level (b) GSH content and (c) MDA production in the liver of different groups of fish (n¼ 3) exposed to different doses of
NaF (mg l�1) for 30 and 90 days. Values are expressed as mean ± SEM. Value is statistically significant at (*p50.05; **p50.001). d¼ days.
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river Ganges flowing through the Indian subcontinent and

exposed to a wide variety of xenobiotics including F.

Available literature suggests that F-concentration above

0.2 mg l�1 is lethal to Salmon fish and also hinder its

migration (Foulkes & Anderson, 1994). The 96 h LC50 value

of NaF to fresh water fish Puntius was estimated as

126.12 mg l�1 (Narwaria & Saksena, 2012). Therefore,

the dose range used in this study fits well within the toxic

level of F.

This study confirms that ROS generated by F, induce

oxidative stress in zebrafish liver. ROS scavenging enzymes

act to minimize the ROS induced damages. GSH is the major

antioxidant and primary internal redox regulator during

cellular oxidative stress. Any change in GSH level gives an

indication of internal redox misbalance. Our results showed

depletion of GSH level. On the other hand, elevation of MDA

production due to lipid peroxidation was observed in all the

treatment groups. Together, these data prove that generation

of ROS is the major causal factor in fluoride toxicity. Besides

this, ROS scavenging enzymes like CAT and SOD were also

modulated in the treatment groups. In the redox regulating

cascade, CAT is an important enzyme that catalyzes break-

down of hydrogen peroxide into oxygen and water. In this

study, CAT activity increased in all the treatment groups to

protect the organism from deleterious effect of H2O2. GST, a

phase II enzyme is involved in detoxification of both

endogenous substances and xenobiotics. It catalyzes GSH

dependent conjugation to maintain redox homeostasis in an

organism (Tang et al., 1998). It was observed that GST

activity increased at 15 and 30 mg l�1 NaF treatment. SOD,

the endogenous scavenger, catalyzes dismutation of super-

oxide anion to hydrogen peroxide (Husain & Somani, 1998).

Any alteration in the activity of the enzyme indicates internal

redox misbalance. The results showed an elevated pattern of

this enzyme. The depletion of GSH, elevation of MDA level,

CAT, GST and SOD activities, misbalance of internal redox

and generation of ROS is indicated during F-toxicity of fish.

The generated ROS level corroborates our earlier study of

DCFDA stained cells observed under fluorescence micro-

scope (Mukhopadhyay & Chattopadhyay, 2014).

In order to correlate the ROS production and hepatotox-

icity, the transcriptional effects of NaF on hepatic tissues were

investigated. Though increasing numbers of researchers have

focused on oxidative stress response in fish by targeting the

changes in activities of antioxidant enzymes, the molecular

basis of stress response is not yet fully understood. In general,

oxidative stress activates the transcription of a number of

antioxidant genes governed by key signaling pathways (Sen &

Packer, 1996; Shi & Zhou, 2010).

Earlier we reported about the modulation of a number of

antioxidant genes including Gst, Cat and Sod. It was observed

that the mRNA levels of Sod and Cat did not correlate with

their enzyme levels It was also observed that the mRNA

expressions of Cyp1a1, Gst, Hsp 70, Cat, Cu/ZnSod, MnSod

Figure 2. Activities of (a) CAT, (b) GST, (c) SOD in liver of female zebrafish (n¼ 3) exposed to NaF for 30 and 90 days. Asterisk (*) represents a
statistically significant difference when compared to the controls; */** at p50.05/0.001 levels. d¼ days.
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and Gpx increased after 15 mg NaF l�1 treatment for 30 days

whereas that of MnSod and Cat showed moderate increase.

The expression of Ucp2 decreased after 30 days which could

be due to over-production of ROS (Mukhopadhyay &

Chattopadhyay, 2014). Nrf2 is the key factor regulating the

cellular oxidative stress response in majority of the cases

(Kobayashi et al., 2004, 2009). Nrf2/Keap1 system is not only

present in mammals but also in fish depicting that its role in

cellular defense is conserved throughout the evolution of

animal kingdom (Maher & Yamamoto, 2010). In zebrafish, a

large number of antioxidant genes are identified which are

solely influenced by Nrf2 (Craig et al., 2007; Liu et al., 2008).

Therefore, in this study, we provide data for establishing the

involvement of Nrf2/Keap1 pathway by studying their

expression at mRNA and protein levels during fluoride

induced stress condition. Under normal condition, Nrf2 is

localized in the cytoplasm bound by Keap1 and Cullin 3

which can degrade Nrf2 by ubiqutination. In stressed

condition, Nrf2 dissociates from Keap1 and translocates to

the nuclei to activate several antioxidant genes (Jaiswal, 2004;

Srivastava et al., 2013). In this study, mRNA level of Nrf2

showed a clear elevation in all the treatment groups followed

by its protein level. Keap1 protein levels decreased in stressed

condition but not at the transcriptional level. There may be

several reasons for the absence of correlation. First, lack of

unified post-transcriptional mechanism involved in turning

mRNA to protein; second, proteins show different half lives at

different time points and internal condition in vivo and third,

sometimes protein as well as mRNAs give significant noise

and error during experimental condition that prevents to get a

clear cut conclusion between them (Baldi & Long, 2001;

Szallasi, 1999). Reports are also available that the protein and

mRNA levels of Nrf2 and Keap1 would increase in response

to the oxidative stress induced by different chemicals

(Buommino et al., 2012; Ho et al., 2005; Shi & Zhou,

2010; Srivastava et al., 2013). However, the activated Nrf2

Figure 3. Real-time PCR analysis of hepatic mRNA expression levels of (a) Cyp1A, (b) Ho-1, (c) Nqo1, (d) Nrf2 and (e) Keap1 in female zebrafish of
different NaF treatment groups. Gene expression levels represent the relative mRNA expression compared to the control. Values are presented as the
mean ± SE of three different groups (n¼ 3) having 10 fish per group. Significance is indicated by */** for p50.05/0.001, respectively, compared to the
control. d¼ days.
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translocates to nuclei and in turn binds to ARE along with

small molecule Maf to form a heterodimer (Kensler et al.,

2007). ARE is present in the promoters of Nrf2 target genes

which encodes both antioxidant and phase II detoxification

enzymes. As the main target of Nrf2/Keap1/ARE pathway,

the transcription patterns of Nqo1 and Ho-1 as well as its

effect on Phase I detoxifying enzyme Cytochrome P450 1 A

(Cyp1A) have been investigated to understand the interrela-

tionship of both kinds of detoxification system. NQO1, a

cytosolic flavoprotein, is constitutively expressed in different

tissues and cell types (Aleksunes & Manautou, 2007; Zhu

et al., 2007). In addition to drug metabolism, it catalyzes

reduction and detoxification of highly reactive quinones that

can cause redox cycling and oxidative stress (Siegel et al.,

2004). Our data showed steady elevation of mRNA level of

Nqo1 in treated groups which corroborates previous reports

with a variety of inducers (El Gendy et al., 2012; Ishii et al.,

2002; Liu et al., 2011). Heme oxygenase-1 (HO-1) is an

enzyme that catalyzes the breakdown of heme into antioxidant

biliverdin, CO and iron. Our results showed that HO-1

initially remained at its basal level but elevated significantly

after prolonged treatment (90 days) with 15 mg l�1 NaF. This

pattern is just opposite in case of Cyp1A mRNA expression.

Published data also showed the inverse relation between HO-1

and CYP1A expression but the causality is not clear yet

(Abraham et al., 2000). This could be due to breakdown of

cellular heme pool by Ho-1 that ultimately leads to down-

regulation of Cyp1A at transcriptional level.

Fluoride has the tendency to bioaccumulate in the bone or

exoskeleton of fish (Julshamn et al., 2004). The aquatic

environment is the ultimate sink of different pollutants

including NaF and other F compounds. Therefore, it is

important to understand the likely impact and molecular

mechanism of F� toxicity in aquatic organisms including fish.

In this study, hepatotoxicity induced by chronic exposure of F

to female zebrafish was evaluated by estimation of ROS

generation, induction of oxidative stress along with hepato-

cyte damage, transcriptional effects and western blotting.

It was also elucidated that NaF can modulate the Nrf2/Keap1

signaling pathway. To the best of our knowledge, this is the

first report on the expression of Nrf2 and its regulation on

XME-genes related to phase I and phase II detoxification

Figure 4. Changes in the expression levels of proteins in adult zebrafish (n¼ 3) liver tissue of control and treated groups. (a) A dose-dependent
elevation of Nrf2 and Keap1 was evident in NaF-treated fish. Interestingly, the treatment caused a down regulation of Keap1 protein expression. b-actin
served as protein loading control (b) A densitometry analysis of the bands was provided to mark the changes in the protein expressions in reference with
that of control and asterisk (*) denotes the significant (*p50.05; **p50.001) level. Images are representative of three independent experiments.
d¼ days.

Figure 5. Fish hepatocytes showing con-
densed and fragmented nuclei (arrow) upon
Hoechst 33342 staining after 15 mg NaF l�1

exposure for 30 days (b) with comparison to
the control (a).
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processes of F in zebrafish in vivo. It should be also noted that

all the genes and enzymes, employed for this study, could be

used as sensitive and reliable biomarkers for environmental

risk assessment in F-polluted aquatic systems.

Conclusion

NaF induced ROS could modulate the transcription of genes

encoding both phase I and phase II XMEs as well as the

expression of Nrf2/Keap1genes in the liver of female

zebrafish. The understanding of Nrf2/Keap1 signaling

events in response to NaF may provide a future perspective

on cellular defenses against oxidative damages that may be

important in combating F induced toxicity in vivo. Our

findings provided, for the first time, the expression pattern of

XMEs genes related to Nrf2–Keap1 signaling pathway in the

zebrafish liver due to F toxicity at the dose range relevant

to aquatic environment. Therefore, the information of this

study will help to use these toxicology biomarkers for

assessing F-toxicity in fish and environmental risk

assessment.
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