Annunziata Mauro

Annunziata Mauro
Università degli Studi di Teramo | UNITE · Faculty of Bioscience and Technology for Food, Agriculture and Environment

Biologist, Academic Professor

About

62
Publications
9,293
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,158
Citations
Introduction
Annunziata Mauro,PhD Assistant Professor in Veterinary Anatomy of Domestic Animals currently works at Unit of Basic and Applied Biosciences in the Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo. Annunziata does research in Reproduction, Developmental Biology, Cell Biology and Cancer Research. Their current project is 'Transplanted Epithelial Amniotic stem cells immunomodulatory properties during Tissue Regeneration'.

Publications

Publications (62)
Article
Full-text available
Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mim...
Article
Full-text available
Tendon disorders represent a very common pathology in today’s population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understand...
Article
Full-text available
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineerin...
Article
Full-text available
The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by...
Article
Full-text available
Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (haPLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing i...
Article
Full-text available
The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting wi...
Article
Full-text available
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key facto...
Article
Full-text available
Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardize...
Article
Full-text available
Background: The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellul...
Article
Full-text available
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity,...
Article
Full-text available
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this st...
Article
Full-text available
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA)...
Article
Full-text available
Epithelial-mesenchymal transition (EMT) is a complex biological program between physiology and pathology. Here, amniotic epithelial cells (AEC) were used as in vitro model of transiently inducible EMT in order to evaluate the transcriptional insights underlying this process. Therefore, RNA-seq was used to identify the differentially expressed genes...
Article
Full-text available
Background. The design of tendon biomimetic electrospun fleece with Amniotic Epithelial Stem Cells (AECs) that have shown a high tenogenic attitude may represent an alternative strategy to overcome the unsatisfactory results of conventional treatments in tendon regeneration. Methods. In this study, we evaluated AEC-engineered electrospun poly(lacti...
Article
Full-text available
Amniotic epithelial cells (AECs), an emerging source of extrafoetal stem cells, have recently attracted attention for their great regenerative potential. Since AEC amplifications are accompanied by the loss of their native epithelial phenotype and by the progressive reduction of relevant biological properties, the issue to be addressed is the devel...
Article
Full-text available
The relationship between varicocele and fertility has always been a matter of debate because of the absence of predictive clinical indicators or molecular markers able to define the severity of this disease. Even though accumulated evidence demonstrated that the endocannabinoid system (ECS) plays a central role in male reproductive biology, particu...
Article
Full-text available
The field of regenerative medicine is moving toward clinical practice in veterinary science. In this context, placenta-derived stem cells isolated from domestic animals have covered a dual role, acting both as therapies for patients and as a valuable cell source for translational models. The biological properties of placenta-derived cells, comparab...
Article
Cell-based therapy hold great promise for tendon disorders, a widespread debilitating musculoskeletal condition. Even if the cell line remains to be defined, preliminary evidences have proven that amniotic-derived cells possess in vitro and in vivo a great tenogenic potential. The present study investigated the efficacy of transplanted human amniot...
Article
Studies on the role of multipotent mesenchymal stromal cells (MSC) on tumor growth have reported both a tumor promoting and a suppressive effect. The aim of the present study was to determine the effect of MSC isolated from Wharton’s jelly of umbilical cord (WJMSC) on lung cancer stem cells (LCSC) derived from human lung tumors: two adenocarcinomas...
Article
Full-text available
Recently, we have demonstrated that ovine amniotic epithelial cells (oAECs) allotransplanted into experimentally induced tendon lesions are able to stimulate tissue regeneration also by reducing leukocyte infiltration. Amongst leukocytes, macrophages (Mφ) M1 and M2 phenotype cells are known to mediate inflammatory and repairing processes, respectiv...
Article
Full-text available
Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other s...
Article
Full-text available
Stem cells isolated from amniotic epithelium (AECs) have shown great potential in cell-based regenerative therapies. Because of their fetal origin, these cells exhibit elevated proliferation rates and plasticity, as well as, immune tolerance and anti-inflammatory properties. These inherent attitudes make AECs well-suited for both allogenic and xeno...
Article
Full-text available
The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4)...
Article
Amniotic fluid has attracted increasing attention in recent years as a possible source of stem cells. Amniotic stem cells have high differentiation ability and low immunogenicity, and are thus an ideal candidate for stem cell-based regenerative therapy. To assess their potential applicability, preclinical studies have been initiated. In this contex...
Article
Background aims: Ovine amniotic fluid mesenchymal stromal cells (oAFMSCs) are an emerging alternative source of stem cells to develop pre-clinical cell replacement protocols. For tissue engineering purposes, oAFMSCs can be used either immediately after isolation or after in vitro expansion. However, detailed studies are still required to investiga...
Article
Full-text available
Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. In the present research, the bone regenerative property of an emerging source of prog...
Chapter
Tendons are constantly exposed to mechanical loads, particularly to injuries in sportsmen, workers, and elderly people. Spontaneous healing, slow and incomplete, often results in scar formation. An effective treatment that is able to stimulate complete tendon healing remains to be developed. The introduction of stem cells that are able to different...
Chapter
This preclinical study was performed to evaluate the regenerative capacities of vitro-expanded amniotic fluid stem cells (AFSCs) allotransplanted within experimentally induced lesions in ovine calcaneal tendons. Explanted samples were evaluated for tendon architecture, collagen composition, AFSC retrieval, cell proliferation, blood vessel organizat...
Article
Full-text available
The oocyte, to become a fully mature gamete, has to acquire a correct pattern of DNA methylation on its genome; this epigenetic event represents the major point of the molecular mechanisms that occur during postnatal oogenesis. It is known that an intimate link exists between DNA methylation and histone posttranslational modifications, such as trim...
Article
In vitro expanded and frosted ovine amniotic epithelial cells (oAECs) were evaluated for their phenotype, stemness and attitude to differentiate into tenocytes. Fifteen horses with acute tendon lesions were treated with one intralesional injection of oAECs. Tendon recovery under controlled training was monitored. In vitro expanded oAECs showed a co...
Article
Full-text available
Amniotic fluid has drawn increasing attention in the recent past as a cost-effective and accessible source of fetal stem cells. Amniotic fluid-derived mesenchymal stem cells (AFMSCs) that display high proliferation rate, large spectrum of differentiation potential and immunosuppressive features are considered optimal candidates for allogeneic repai...
Article
Full-text available
Amniotic epithelial cells (AECs) are ideal seed cells for tissue regeneration, but no research has yet been reported on their tendon regeneration potential. This study investigated the efficiency of AECs allotransplantation for tendon healing, as well as the mechanism involved. To this aim ovine AECs, characterized by specific surface and stemness...
Article
Full-text available
Background: Amniotic epithelial cells (AEC) have potential applications in cell-based therapy. Thus far their ability to differentiate into tenocytes has not been investigated although a cell source providing a large supply of tenocytes remains a priority target of regenerative medicine in order to respond to the poor self-repair capability of adu...
Article
Full-text available
The serine/threonine protein kinase Akt is involved in many cellular processes including cell growth, survival, proliferation and metabolism. Akt activity is modulated downstream of phosphatidylinositol-3-kinase (PI3K) in response to different extracellular stimuli. In the mammalian ovary, Akt collaborates with other kinases in the regulation of co...
Article
We set out to characterize stemness properties and osteogenic potential of sheep AEC (amniotic epithelial cells). AEC were isolated from 3-month-old fetuses and expanded in vitro for 12 passages. The morphology, surface markers, stemness markers and osteogenic differentiation were inspected after 1, 6 and 12 passages of expansion, with an average d...
Article
Full-text available
The signalling cascades involved in many biological processes require the coordination of different subcellular districts. It is the case of the pathways involved in spermatozoa acquisition of fertilizing ability (the so called "capacitation"). In the present work the coordination of subcellular signalling, during the boar sperm capacitation, was s...
Article
Full-text available
Stem cell (SC) regenerative therapy represents an emerging strategy for the treatment of human diseases. Since amniotic fluid-derived cells have been recently proposed as a promising source of human SCs, the present research aimed to amplify in vitro and characterize ovine amniotic fluid-derived SCs collected from the membranes (AMSCs) or fluid (AF...
Article
Full-text available
An experimental protocol was designed to study the survival and behaviour of an allograft of amniotic epithelial cells (AECs) in an ovine model. The study was conducted on three healthy adult sheep. A core lesion was created in both calcaneal tendons under ultrasound (US) guidance by injecting 400 UI of Type 1A collagenase diluted in 0.6 ml saline....
Article
Full-text available
The research has been designed to investigate whether acrosome-reacted spermatozoa can fuse with somatic cells and to check whether this event may involve the molecular machinery implicated in the sperm-egg fusion. Boar spermatozoa were capacitated in vitro and then treated with A23187 to induce acrosome reaction and activate their fusogenic potent...
Article
Full-text available
This research analyses how somatic and vascular compartments change during preantral follicle growth. To address this aim, theca-granulosa (somatic) proliferation indexes (PIs), proportion of proliferating endothelial cells (PE), vascular area (VA) and vascular endothelial growth factor A (VEGFA) expression were simultaneously recorded on single he...
Article
Full-text available
The ovine foetus is an ideal model for preclinical medical studies of cell therapies. It allows us to follow the behaviour of repairing cells inserted into a favourable physiological microenvironment in an animal species more closely related to humans than the rat or rabbit. In addition, the preimmune foetus is able to support cell engraftment by e...
Article
Full-text available
In this study, sheep oocyte-cumulus cell complexes (OCC) derived from medium (M) antral follicles (M-OCC) were in vitro matured alone or in coculture with OCC derived from small (S) antral follicles (S-OCC) to investigate the contribution of cumulus cells (CC) and oocytes to the process of oocyte meiotic maturation and cumulus expansion (CE). Exper...
Article
Full-text available
Russo, V., Martelli, M., Mauro, A., Di Giacinto, O., Nardinocchi, D. and Berardinelli, P., 2007. Nuclear remodelling in growing oocytes of sheep. Veterinary Research Communications, 31(Suppl. 1), 201–204