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Abstract
There is consistent epidemiological evidence linking low 
birth weight, preterm birth and adverse fetal growth 
to an elevated risk of the metabolic syndrome (obesity, 
raised blood pressure, raised serum triglycerides, lo
wered serum high-density lipoprotein cholesterol and 
impaired glucose tolerance or insulin resistance) and 
related disorders. This “fetal or developmental ori
gins/programming of disease” concept is now well 
accepted but the “programming” mechanisms remain 
poorly understood. We reviewed the major evidence, 
implications and limitations of current hypotheses in 
interpreting developmental programming and discuss 
future research directions. Major current hypotheses 
to interpret developmental programming include: (1) 

thrifty phenotype; (2) postnatal accelerated or catch-
up growth; (3) glucocorticoid effects; (4) epigenetic 
changes; (5) oxidative stress; (6) prenatal hypoxia; 
(7) placental dysfunction; and (8) reduced stem cell 
number. Some hypothetical mechanisms (2, 4 and 8) 
could be driven by other upstream “driver” mechanisms. 
There is a lack of animal studies addressing multiple 
mechanisms simultaneously and a lack of strong evi
dence linking clinical outcomes to biomarkers of the 
proposed programming mechanisms in humans. There 
are needs for (1) experimental studies addressing 
multiple hypothetical mechanisms simultaneously; 
and (2) prospective pregnancy cohort studies linking 
biomarkers of the proposed mechanisms to clinical 
outcomes or surrogate biomarker endpoints. A better 
understanding of the programming mechanisms is a 
prerequisite for developing early life interventions to 
arrest the increasing epidemic of the metabolic syn
drome, type 2 diabetes and other related disorders.  
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INTRODUCTION
The metabolic syndrome is commonly defined as a 
combination of  at least three of  the following five con­
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ditions: obesity, elevated blood pressure, elevated serum 
triglycerides, low serum high-density lipoprotein (HDL) 
cholesterol and impaired glucose tolerance or insulin 
resistance[1]. The clustering of  these risk factors predis­
poses an individual to non-insulin-dependent (type 2) 
diabetes, cardiovascular morbidity and mortality. There 
is general consensus regarding the five components of  
the syndrome but definitions differ regarding cutoffs 
and mandatory criteria. Recently, central obesity [waist 
circumference > 102 cm in males or > 88 cm in females 
or body mass index (BMI) > 30] was proposed as a man­
datory component by the International Diabetes Fed­
eration[2]. 

Epidemiological and experimental evidence suggest 
an association between an adverse prenatal environment 
and the risk of  developing the metabolic syndrome 
and related disorders. This “fetal origins of  disease” 
hypothesis was first proposed by Barker and Hales’ group 
to explain the associations between low birth weight (LBW 
< 2500 grams) and increased risk of  impaired glucose 
tolerance and cardiovascular disease in retrospective 
cohort studies[3-5]. Subsequent epidemiological studies in 
different populations largely confirmed this “fetal origins” 
phenomenon[3-8]. In recent years, the term “fetal origins/
programming” has been replaced by “developmental ori­
gins/programming” to accommodate the increasingly ac­
cepted concept that “programming” may continue in the 
early postnatal period. 

A number of  hypotheses have been proposed to 
interpret developmental programming[9-14] but none 
have received unanimous recognition. It is now worth 
reflecting on what is known about the mechanisms of  
developmental programming after decades of  research. 
We critically reviewed the key evidence, implications 
and limitations of  current hypotheses to interpret deve­
lopmental programming of  the metabolic syndrome and 
discuss the directions for future research. The evidence 
acquisition was based on a literature review based on a 
PubMed search of  publications between January 1970 and 
February 2010.

MAJOR HYPOTHESES
We use the term “major hypotheses” to refer to those 
supported by substantial epidemiological and experimental 
evidence. Two competing major hypotheses have been 
proposed: “thrifty phenotype” and “postnatal accelerated 
growth”. 

Thrifty phenotype
Rationale: Hales and Barker proposed the thrifty pheno­
type hypothesis (Figure 1)[11,12]. The hypothesis suggests 
that fetal and early postnatal malnutrition may induce poor 
development of  pancreatic β-cell mass. Malnutrition may 
have a selective impact on the growth of  different organs 
with protection of  the most vital (e.g. the brain). Because 
altered growth during critical periods permanently changes 
the structure and functional capacity of  pancreatic β-cell 
mass, such changes may “program” the metabolic system 

which increases the fetus’ chance of  survival in poor nu­
tritional environments but results in difficulty in coping 
with nutritional abundance later in life. The development 
of  the metabolic syndrome following malnutrition in early 
life may depend on the superimposition of  other postna­
tal risk factors, notably physical inactivity and obesity. 

Epidemiological evidence: Barker and colleagues ob­
served in 1986 that the geographical distribution of  heart 
disease in the United Kingdom was closely related to a 
person’s place of  birth[15], suggesting that early life events 
could cause permanent changes in physiology predis­
posing to chronic heart disease. LBW has been strongly 
linked with impaired glucose tolerance and type 2 diabetes 
in adulthood[3-5,16-18]. Reduced fetal growth was related to 
increased plasma concentrations of  32-33 split proinsu­
lin, a sign of  beta-cell dysfunction[19-21], and was linked to 
high blood pressure[22,23]. Children small in birth size may 
predispose to metabolic abnormalities upon exposure to 
postnatal environmental risk factors such as low physical 
activity and/or high-energy intake[24]. Prenatal exposure 
to famine during the Dutch Hunger Winter of  1944-1945 
was associated with impaired glucose tolerance and insulin 
secretion in adulthood[25,26]. The Pune Maternal Nutrition 
Study correlated prenatal specific micronutrient (vitamin 
B12) deficiency with increased insulin resistance in child­
hood[27]. Changes resulting from fetal and early postnatal 
malnutrition include: (1) metabolic adaptations in hepatic 
enzymes[28], lipoprotein profiles[29] and clotting factors[30]; (2) 
anatomical adaptations that affect end-organ glucose up­
take[31] and renal solute metabolism[32]; and (3) endocrine 
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Figure 1  The thrifty phenotype hypothesis (reproduced with permission, 
Hales and Barker[12]).



adaptations that affect the hypothalamic-pituitary-adrenal 
(HPA) axis[33], insulin signaling[34] and leptin levels[35]. These 
changes could collectively lead to the metabolic syndrome 
and related disorders[36]. 

Experimental evidence: In animal models, fetal mal­
nutrition has been associated with marked structural and 
physiological alterations[37-39]. Gestational calorie restric­
tion and protein deprivation in rats led to hypertension 
in adult offspring[40-42] and to altered glucose metabolism 
in sheep[43,44]. Malnutrition-associated changes in fetal 
leptin levels may alter the programming of  appetite and 
eating behaviors leading to an increased risk of  cardio­
vascular and metabolic diseases[45-48]. The pattern of  
dietary response of  inbred mouse strains was similar to 
that expected under the thrifty phenotype hypothesis[49]. 
Permanent reductions in pancreatic cells and insulin 
secretion have been observed in protein-malnourished 
fetuses[50]. 

Implications and limitations: The thrifty phenotype is 
the most widely accepted hypothesis to interpret devel­
opmental programming. The hypothesis emphasizes the 
etiological role of  poor fetal and early postnatal nutrition 
and implicitly advocates promoting fetal and infant nu­
trition and growth[51]. It may well explain the increasing 
prevalence of  obesity and type 2 diabetes in India and 
South Asian countries where malnutrition was previously 
common but has become less so in recent decades[52]. 
However, in virtually all human studies, maternal and 
fetal nutritional status, as determined either directly by 
specific nutrient biomarkers or indirectly by weight gain 
during pregnancy, were not available for linkage to clini­
cal outcomes. The hypothesis does not match the trends 
of  increasing birth weights and declining LBW rates in 
many countries in recent decades[53-55], raising concerns as 
to whether poor fetal nutrition or “thrifty phenotype” is 
a major driver of  developmental programming. Further­
more, poor fetal growth is a mere proxy for various peri­
natal insults. It is plausible that adverse insults may drive 
both poor fetal growth and developmental programming. 

“Postnatal accelerated growth” or “catch-up growth” 
hypothesis
Rationale: The “postnatal accelerated growth” hypothesis 
was proposed by Drs. Singhal and Lucas to explain the 
association between faster early postnatal growth and 
surrogate endpoints in childhood and adolescence indi­
cative of  metabolic and cardiovascular risks based on 
follow-ups of  preterm infants in two early neonatal fee­
ding/nutritional intervention trials[13,14]. Increased infant 
growth rate by a nutrient enriched diet, even for only 
a few weeks postnatally, was associated with long-term 
adverse metabolic effects[6-8,56]. Fasting concentrations 
of  32-33 split proinsulin (a marker of  insulin resistance) 
in adolescents born preterm were significantly elevated 
among those who had received a nutrient-enriched diet in 
early postnatal life vs. placebo[7]. The authors concluded 
that early postnatal accelerated growth rather than pre­

maturity per se may be the culprit in programming insulin 
resistance and related disorders[14].

Cianfarani proposed a similar “catch-up growth” 
hypothesis[9]. At birth, infants with intrauterine growth 
retardation (IUGR) have low concentrations of  insulin, 
insulin-like growth factor-1 (IGF-1) and insulin-like 
growth factor binding protein (IGFBP)-3; and high con­
centrations of  growth hormone, IGFBP-1 and IGFBP-2. 
Normalization of  these hormones occurs during the 
first trimester of  postnatal life[57,58]. During this early pos­
tnatal catch-up growth period when suddenly exposed 
to increased concentrations of  insulin and IGF-1, tissues 
chronically depleted of  these two hormones during 
fetal life may counteract the hike by developing insulin 
resistance as a metabolic defense against developing hy­
poglycemia[9]. Therefore, IUGR infants who show early 
and complete growth recovery could be at higher risk for 
the occurrence of  the metabolic syndrome in adulthood. 

Dr. Gluckman proposed another similar hypothesis, 
the “predictive adaptive response”[10]. Based on the “pre­
dicted” postnatal environment, the fetus would make 
adaptations in utero or in the early postnatal period[10]. 
IUGR fetuses would thus predict a poor postnatal nutri­
tional environment. When mismatch occurred between 
predicted and actual, disease would manifest[10,59].

Epidemiologic evidence: Early childhood growth acce­
leration has been associated with later insulin resistance[60], 
obesity[61] and cardiovascular disease[8]. In low birth weight 
infants, early growth acceleration has been associated with 
metabolic disturbances including dyslipidemia and elevated 
concentrations of  insulin and IGF-1[9,62,63]. IUGR infants 
often experience compensatory accelerated growth after a 
period of  poor fetal nutrition followed by the removal of  
such nutritional deficiency postnatally[64]. The most rapid 
growth occurs in early infancy[65] in the first few weeks 
after birth[66,67]. Factors promoting neonatal growth such 
as enhanced neonatal nutrition could permanently affect 
or program long-term health[68]. Such accelerated growth 
may have adverse consequences later in life[64], increase 
the propensity to cardiovascular disease[69] and its risk 
factors such as insulin resistance[70], obesity[65] and higher 
blood pressure[71]. Patients with impaired glucose tolerance 
or diabetes typically had a low BMI in infancy, an early 
adiposity rebound in childhood and an accelerated in­
crease in BMI until adulthood[72].   

Experimental evidence: In rats, accelerated early pos­
tnatal growth impaired glucose tolerance and shortened 
the lifespan[73]. Small neonatal rats temporarily overfed 
during the brief  suckling period had permanent ele­
vations in plasma insulin and cholesterol levels in adul­
thood[74]. Postnatal accelerated growth can adversely 
affect glucose tolerance in rats[75]. Even in rats without 
IUGR, overfeeding during the brief  suckling period per­
manently increased later plasma insulin and cholesterol 
concentrations[76,77] with the propensity to obesity, high 
blood pressure and diabetes[53,77].
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Implications and limitations: An important implica­
tion of  the “postnatal accelerated growth” or “catch-
up growth” hypothesis is that it questions the current 
practice of  promoting postnatal catch-up growth of  small 
babies[14]. Enhancing infant growth rate by a nutrient-
enriched diet may actually do more harm than good in the 
long run. However, this hypothesis has been well tested 
only in preterm infants in Dr. Lucas’s studies. It remains 
unclear whether the findings hold for catch-up growth in 
IUGR infants born at term. The increasing birth weights 
in most countries in recent decades[54,78-80] indicate that 
there are unlikely substantial increases in the incidence 
of  postnatal catch-up growth. Consequently, it appears 
difficult to explain the substantial rise in the incidence of  
the metabolic syndrome. Also, the hypothesis does not 
match the epidemiological evidence of  an elevated risk 
of  the metabolic syndrome among macrosomic infants 
who often show catch-down rather than catch-up growth 
during the early postnatal period. 

MINOR HYPOTHESES
We use the term “minor hypotheses” to refer to those 
supported by insufficient research data, especially in hu­
mans. 

Glucocorticoids programming
A product of  the activation of  the HPA axis, glucocor­
ticoids have potent effects on tissue development es­
pecially the maturation of  organs such as the lung[81]. One 
outcome of  fetal malnutrition is the exposure of  the fetus 
to excess glucocorticoids which may restrict fetal growth 
and program the cardiovascular, endocrine and metabolic 
systems[82]. Normally, fetal glucocorticoid levels are much 
lower than maternal levels due to the placental barrier[83,84] 
- the placental enzyme 11β-hydroxysteroid dehydrogenase 
type 2 (11β-HSD2) catalyzes glucocorticoids (cortisol and 
corticosterone) into inert forms (cortisone, 11-dehydro
corticosterone)[80,85]. However, synthetic glucocorticoids 
(betamethasone, dexamethasone) commonly administered 
to pregnant women at risk of  preterm delivery to reduce 
neonatal pulmonary, renal and cerebral morbidities[86], are 
poor substrates of  11β-HSD2. Prenatal glucocorticoid 
overexposure through external sources or inhibition of   
placental 11β-HSD-2 may induce fetal HPA axis dys­
function - a potential link between adverse fetal environ­
ment and insulin resistance and hypertension in adul­
thood[87]. 

There is strong evidence of  glucocorticoid program­
ming in animal models. Many studies have reported 
decreased birth weights and abnormal levels of  plasma 
HPA-axis hormones in rats prenatally exposed to syn­
thetic glucocorticoids or inhibition of  11β-HSD2 with 
increased blood pressures and glucose intolerance in 
adulthood[87-89]. Hypertension in rats whose mothers were 
fed a low-protein diet during pregnancy was prevent­
able by chemical blockade of  maternal glucocorticoid 
synthesis[90], suggesting that the link between maternal 

protein deprivation and adult-onset hypertension may be 
mediated by maternal glucocorticoids. However, there is 
weak and inconsistent evidence regarding antenatal expo­
sure to synthetic glucocorticoids and components of  the 
metabolic syndrome in humans. Studies have reported no 
change, slight increase or decrease in blood pressure[91-94]. 
A Cochrane meta-analysis showed no differences in adult 
blood pressure[95]. In contrast, a recent follow-up study of  
534 adults whose mothers had participated in a random­
ized controlled trial reported increased insulin resistance 
associated with antenatal betamethasone treatment[93]. 
LBW adults had much higher urinary glucocorticoid[96] 
and plasma cortisol concentrations[97] and showed greater 
responsiveness to adrenocorticotropic hormone[98,99]. Pre­
natal glucocorticoids may be the link between LBW and 
increased risk of  glucose intolerance and hypertension[87]. 
Elevated blood pressure after antenatal exposure to gluco­
corticoids may result from altered renal renin-angiotensin 
system development[100] or from epigenetic changes affect­
ing the expression of  specific transcription factors, espe­
cially the glucocorticoid receptor[87]. 

However, there is a lack of  strong evidence of  gluco­
corticoid programming in humans. It remains unknown 
whether glucocorticoids drive both IUGR and the pro­
gramming of  metabolic syndrome components as obser­
ved in animal models.  

Epigenetic programming
Experimentally, transmission to the next generation of  
a “programmed” phenotype has been demonstrated for  
birth weight, metabolic dysfunction[101-103], blood pressure 
and vascular dysfunction[104]. Wild type mice born to 
hypertensive heterozygous nitric oxide synthase-3 kno- 
ckout mice displayed hypertension and vascular dysfunc­
tion[104]. Such transmission can be attributed to the fact 
that the programmed mother provided a deprived intrau­
terine environment, thus perpetuating the cycle of  fetal 
(mal) adaptations. An alternate possibility is that epigenetic 
modification of  the germline by stable DNA methylation 
or histone acetylation transmitted the prenatal experience 
of  one generation to future generations. 

Many candidate and confirmed players able to induce 
developmental programming can modify gene methy­
lation. For example, Rees showed hypermethylation in 
the fetal liver of  low protein fed dams[105]. Peroxisomal 
proliferator-activated receptor (PPAR) alpha and glu­
cocorticoid receptor genes were hypomethylated and their  
expression increased in the liver of  the offspring of  
protein-restricted rats[106]. Reactive oxygen species can 
modify methylation leading to changes in gene transcrip­
tion and expression[107]. However, there are relatively 
little data demonstrating epigenetic changes after ad­
verse perinatal conditions in genes closely implicated 
in cardiovascular and metabolic disorders. Bogdarina 
reported modifications in the methylation status of  the 
angiotensin Ⅱ AT1b receptor gene in the adrenal gland 
of  the offspring of  low-protein fed dams[108]. Neonatal 
overfeeding in rats led to permanent dysregulation of  the 
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central circuitry of  food intake inhibition with resistance 
to signals triggered by insulin and leptin[109-111]. Circulating 
leptin and insulin stimulate the expression of  the main 
anorexigenic neurohormone - proopiomelanocortin (P 
OMC) while inhibiting the orexigenic neuropeptide 
Y[112,113]. Plagemann recently demonstrated hypermethy­
lation of  the hypothalamic POMC gene promoter regi 
on in neonatal overfeeding animals within two specific 
protein-1 (Sp-1) binding sequences. This led to blunted 
POMC expression despite hyperleptinemia and hyperi­
nsulinemia and demonstrated that a nutritionally acquired 
alteration of  the methylation pattern could modify the set 
point of  a gene promoter critical for body weight regu­
lation[114]. 

The availability of  methyl donor micronutrients may 
affect epigenetic programming. Dietary protein res- 
triction in pregnancy induced and folic acid supple­
mentation prevented epigenetic modifications of  he- 
patic glucocorticoid receptor gene expression in rat offs­
pring[106]. Folate supplementation of  low-protein fed 
dams prevented elevation of  blood pressure in adult 
offspring[115]. Restricting the supply of  vitamin B12, folate 
and methionine even within normal physiological ranges 
during the periconceptional period was associated with 
widespread epigenetic alternations, insulin resistance 
and elevated blood pressure in sheep[116]. In contrast, ma­
ternal high folate status in pregnancy was associated with 
increased insulin resistance in children[27], indicating the 
need for caution in applying results from animal models to 
humans. Dietary methyl supplementation with folic acid 
and B12 may have unintended deleterious consequences 
on epigenetic regulation[117]. More human data are needed 
in this nascent research area.

It should be pointed out that epigenetic programming 
is a physiological process in normal fetal development; 
the epigenetic changes dictate cell differentiation. The 
question is, are some epigenetic changes “pathological” 
secondary to certain perinatal insults? There is a lack of  
human data linking perinatal “programming” insults to 
developmental epigenetic changes and later risk of  the 
metabolic syndrome and related disorders. Improved 
understanding of  epigenetic changes may be helpful in 
designing interventions to prevent or possibly reverse adv­
erse programming.

Oxidative stress programming
Because many known or suspected causes of  or conditions 
associated with adverse fetal growth or preterm birth have 
been associated with oxidative stress, it is plausible that 
oxidative stress may be the underlying common link to 
elevated risks of  the metabolic syndrome[118]. Oxidative 
stress programming may act directly through modulation 
of  gene expression (perhaps epigenetic) or indirectly via 
the effects of  certain oxidized molecules. Experimental 
investigations have well demonstrated the role of  redox 
balance in modulating gene expression[119,120]. There is 
considerable experimental evidence indicating that both 
the insulin function axis and blood pressure regulation 

could be sensitive targets to oxidative stress programming 
during the prenatal and early postnatal periods[121-126]. 
However, there remains a lack of  epidemiological data 
relating biomarkers of  perinatal oxidative stress to the 
metabolic syndrome. Validation of  the oxidative stress 
hypothesis would suggest new early interventions to stem 
the modern epidemic of  the metabolic syndrome.

Prenatal hypoxia programming 
There is some evidence linking prenatal hypoxia to in­
creased vulnerability to metabolic and cardiovascular 
diseases[127]. Chronic hypoxia is a common insult to the 
fetus and reduced uteroplacental blood flow can result 
in fetal IUGR independently of  malnutrition[128-130]. Chr­
onic prenatal hypoxia has been shown to increase the 
susceptibility of  the adult heart to ischemia-reperfusion 
injury[131]. Human studies at high altitude also suggest that 
prenatal hypoxia can result in LBW[132-134]. Chronic hypoxia 
has profoundly adverse effects on cardiac development 
and function in the fetus[129] and enhanced β1-adrenergic 
receptor signaling may induce cardiomyocyte apoptosis 
via a protein kinase A-dependent mechanism[132]. Animal 
studies show that chronic hypoxia could increase the 
heart-to-body weight ratio in the fetus, suggesting an 
asymmetric growth of  the heart[133]. Chronic hypoxia 
significantly increased the levels of  cytochrome C, a mito­
chondrial marker protein, in the fetal heart[134]. The incre­
ased cytochrome C levels are likely a metabolic adaptation 
in the myocardium during asymmetric enlargement of  
the heart in hypoxic fetuses. Animal experiments showed 
that mitochondrial biogenesis played an important role 
in the early stages of  cardiac hypertrophy[128]. Hypoxia 
could induce apoptosis in cultured neonatal rat cardio­
myocytes[135]. In response to chronic hypoxia during ges­
tation, many genes related to cell signaling and survival 
are down- or up-regulated in the fetal heart and other 
tissues[127]. No epidemiological data are available as to 
whether these effects are transient or permanent.

Placental dysfunction
It has been proposed that adult cardiovascular and me­
tabolic diseases originate via developmental plasticity and 
adaptations arising from failure of  the maternal-placental 
nutrient supply to match fetal requirements[136]. This 
hypothesis emphasizes the role of  the placenta in fetal 
programming. Maternal nutrition was associated with fetal 
development and programming of  human cardiovascular 
and metabolic disease[137]. Maternal body composition and 
nutrition intake may affect fetal development by direct 
effects on substrate availability to the fetus and indirect 
effects via changes in placental function and structure[136]. 
Fetal adaptations may result from alterations in placental 
growth and vascular resistance, altered nutrient and hor 
mone metabolism in the placenta and changes in nutrient 
transfer and partitioning between mother, placenta and 
fetus[138-140]. Fetal cardiovascular adaptations, alterations 
in fetal body composition and changes in fetal endo­
crinology and metabolism may have long-term effects 
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on postnatal health. However, no data are available on 
the epidemiological associations between pathological 
placental changes and the metabolic syndrome in the of­
fspring. The hypothesis implies that improving placental 
function may have lifelong health benefits.

Reduced stem cell number
After organogenesis, the ability of  cells to divide su­
bstantially for self-renewal and repair is limited although 
some stem cells remain in various tissues in postnatal 
life. The stem cell hypothesis suggests that IUGR is 
associated with a reduced number of  tissue stem cells, 
leading to an early exhaustion of  organ function when 
demands are increased greatly[141]. The time windows 
for stem cell proliferation may represent critical periods. 
Diabetes patients often have fewer β-cells prior to the 
onset of  disease or the pancreas failed to generate more 
β-cells in response to an increased demand for insulin[142]. 
In rats, fetal and neonatal nutritional deprivation caused 
permanent reductions in β-cell mass and functional ef­
ficiency, resulting in glucose intolerance in adulthood[143]. 
IUGR induced by bilateral uterine artery ligation in preg­
nant rats caused postnatal glucose intolerance and insulin 
resistance in offspring; the β-cells mass of  IUGR rats 
was reduced by one-third[144]. There is a lack of  data on 
stem cell number as it relates to metabolic syndrome pro­
gramming in humans.

OVER-NUTRITION PROGRAMMING? 
Although most research is focused on adverse progra­
mming associated with poor fetal growth, there is evi­
dence that maternal overnutrition or fetal overgrowth 
may result in an offspring phenotype susceptible to the 
metabolic syndrome[145]. Maternal high fat or cholesterol 
overfeeding during pregnancy and lactation in rodents 
resulted in a phenotype of  the offspring that closely 
resembled the human metabolic syndrome[145,146]. Ges­
tational diabetes is associated with glucose oversupply 
to the fetus and consequently fetal macrosomia and 
may have adverse metabolic programming effects[147]. 
The effects of  gestational diabetes seem independent 
of  genetic factors[148]. Experimental evidence indicates 
that overnutrition may program obesity and metabolic 
syndrome through epigenetic changes[114]. A meta-analysis 
showed a U-shaped relationship between birth weight 
and type 2 diabetes risk in humans[149]. The hypothesis is 
concordant with the increasing birth weights over recent 
decades and may partly explain the increasing prevalence 
of  the metabolic syndrome. It is unclear whether the 
effects of  fetal overgrowth programming could be largely 
explained by impaired maternal glucose tolerance in 
humans.  

CONCLUSION
The various hypotheses for interpreting developmental 
programming could be interrelated, indicating the need for 
research to address multiple mechanisms simultaneously. 

Some mechanisms could be driven by other “driver” 
mechanisms (Figure 2). Multiple overarching drivers may 
exist: malnutrition, glucocorticoids, oxidative stress, pre­
natal hypoxia and placental dysfunction. These drivers 
may act alone or in combinations to induce epigenetic 
changes or reduce stem cell number, leading to the thrifty 
phenotype often followed by catch-up growth and the 
propensity to metabolic syndrome. Thus, adverse pro­
gramming may occur in the absence of  poor fetal growth.  

The current prevailing theory is that fetal programming 
effects are magnified over the life course. However, the 
postnatal environment may either mask or magnify the 
true effects of  programming - the direction of  effect 
modifications is unknown. The strongest evidence sup­
porting the various hypothetical mechanisms comes 
from animal models. However, we cannot assume that 
findings from animal models are applicable to humans 
as human pregnancy physiology is much more complex. 
For example, preeclampsia (gestational hypertension 
with proteinuria) is a gestational complication unique 
to humans[150]. Even the commonly used operating 
definitions for retarded or excessive fetal growth in hu­
mans are largely arbitrary and need re-evaluations[151].  
There is a need for studies to address multiple mecha­
nisms simultaneously in animal models and a need for 
prospective pregnancy cohort data linking intrauterine 
environmental biomarkers of  the proposed programming 
mechanisms to clinical outcomes or surrogate biomarker 
endpoints in humans. A better understanding of  the 
programming mechanisms is a prerequisite for developing 
early life interventions to halt the worldwide increasing 
epidemic of  the metabolic syndrome, type 2 diabetes and 
other related disorders.  
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to interpret the mechanisms of developmental programming of the 
metabolic syndrome and related disorders.  
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