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Abstract
Emotional responses can be induced by external sensory stimuli. For severely disabled
nonverbal individuals who have no means of communication, the decoding of emotion may
offer insight into an individual’s state of mind and his/her response to events taking place in
the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for
bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal
cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal
cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78
music excerpts with different emotional content and a control acoustic stimuli consisting of the
Brown noise. The participants rated their emotional state after listening to each excerpt along
the dimensions of valence (positive versus negative) and arousal (intense versus neutral).
These ratings were used to label the NIRS trial data. Using a linear discriminant
analysis-based classifier and a two-dimensional time-domain feature set, trials with positive
and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%.
Trials with audible Brown noise representing a neutral response were differentiated from high
arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature
set. In nine out of the ten participants, response to the neutral Brown noise was differentiated
from high arousal trials with accuracies exceeding chance level, and positive versus negative
emotional differentiation accuracies exceeded the chance level in seven out of the ten
participants. These results illustrate that NIRS recordings of the prefrontal cortex during
presentation of music with emotional content can be automatically decoded in terms of both
valence and arousal encouraging future investigation of NIRS-based emotion detection in
individuals with severe disabilities.

1. Introduction

Emotions are patterns of experience, perception, action and
communication that can be animated in response to physical

5 Author to whom any correspondence should be addressed.

and social encounters (Keltner and Gross 1999). Some theories
suggest that emotions can be manifested as a result of human
interactions with the surrounding environment (Frijda and
Mesquita 1994, Lazarus 1991, Campos et al 1989), which
result in physiological changes (Oatley et al 2006) such
as the modulation of central and peripheral nervous system
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activity (Blood and Zatorre 2001, Herrmann et al 2003,
Baumgartner et al 2006, Collet et al 1997, Sinha et al
1992, Krumhansl 1997). These changes may facilitate the
identification of emotional state in non-verbal individuals
with severe disabilities who may have no other means of
expression. Of particular appeal is the detection of affective
responses through brain activity monitoring, as there is no
requirement for voluntary motor control. Indeed, computer-
based detection of emotional responses may enhance ‘implicit’
communication about the user in human–computer interaction
systems (Cowie et al 2001). Affective computing has long
been touted for its potential for more realistic and user-
accommodating interactions (Picard 2000). An emotionally
aware system stands to benefit non-verbal individuals with
severe disabilities by estimating their emotional state in the
absence of more direct means of interaction (e.g. speech and
gestures). In turn, knowledge of the patient’s affective state
may help to mitigate care-giver stress and facilitate treatment
decisions in a timely fashion (Happ 2000).

Various brain circuits including parts of the limbic
system and amygdala are responsible for perception of
emotional stimuli (Panksepp and Bernatzky 2002, Siegel
and Edinger 1981, LeDoux 2001). In addition, the frontal
region of the human brain is involved in regulating emotional
response to sensory input (Rolls 2000, Davidson 2004, 1992).
For example, severity of the depressive symptomatology
in patients following stroke lesions was reported to be
significantly correlated with proximity of the lesion to the
frontal pole (Robinson et al 1984). Moreover, left and
right frontal activations were also found in response to
watching video clips inducing positive and negative emotional
responses, respectively (Wheeler et al 1993). Activations in
the orbito-frontal and ventral prefrontal cortex in response to
highly pleasurable self-selected music excerpts have also been
reported (Blood and Zatorre 2001).

Among various brain measurement modalities such as
electroencephalography (Niedermeyer and Da Silva 2005),
positron emission tomography (Ter-Pogossian et al 1980),
magnetoencephalography (Hämäläinen et al 1993) and
magnetic resonance imaging (Bushong 1988), near infra-
red spectroscopy (NIRS) is particularly well suited to long-
term bedside monitoring of prefrontal cortex activity. NIRS
involves the optical measurement of changes in oxygenated
(HBO2) and deoxygenated hemoglobin (HHb) concentrations
in regional cerebral blood flow (Jobsis 1977, Villringer et al
1993). Being an optical modality, NIRS measurements are not
susceptible to electrogenic artifacts such as electrooculograms
and electromyograms.

NIRS has been used previously to detect emotional
responses in the prefrontal cortex. Recent findings with
emotionally laden visual stimuli have confirmed the presence
of prefrontal cortex activations detectable by NIRS (Herrmann
et al 2003, Yang et al 2007, Hoshi et al 2011). Likewise,
in the context of automatic emotion detection, Tai and Chau
(2009) were able to differentiate between prefrontal responses
to affective pictures and baseline activity on a single-trial basis
with an average of 75% accuracy. However, the perception of
visual stimuli may require gaze fixation and the control of the

eye muscles responsible for keeping the eyes open. Therefore,
individuals with severe disabilities who possess little or no
voluntary muscle control, possibly concomitant with vision
impairment, may not be able to observe visual stimuli.
However, evidence suggests that aural stimuli, the perception
of which requires no voluntary muscle control, can also elicit
a pre-frontal response (Blood and Zatorre 2001, Blood et al
1999, Boso et al 2006). Previous findings indicate that when
used as a BCI control task, active music imagery (mental
singing) can be differentiated from the rest state and mental
math with accuracies significantly above chance (Power et al
2010, Falk et al 2011, Guirgis et al 2010). However, NIRS-
based automatic detection of passive prefrontal responses to
affective aural stimuli remains unexplored to date.

In this study, we examined the feasibility of automatically
detecting emotional responses to aural stimuli by near-infrared
spectroscopic interrogation of the prefrontal cortex. Music in
particular is recognized for its ability to induce an emotional
response in a wide array of individuals (Meyer 1956). The
emotional content of music is known to be perceived across
cultures (Fritz et al 2009) and distinguished by children as
young as 6 years of age (Dalla Bella et al 2001). In fact,
music has been frequently used as an emotional auditory
stimulus (Koelsch 2005, Kreutz et al 2008, Hopyan et al 2006,
Spackman et al 2005, Gerrards-Hesse et al 1994). In this paper,
music excerpts were thus used for inducing affective brain
activity.

2. Methods

2.1. Participants

We recruited ten able-bodied volunteers (five females,
five males, age: 25 ± 2.7 years). The participants reported
to have normal hearing, and normal or corrected-to-normal
vision. The recruitment criteria excluded individuals with
reported cardiovascular diseases, metabolic disorders, history
of brain injury, respiratory conditions, drug and alcohol-related
and psychiatric conditions. Participants were instructed to
refrain from caffeine and alcohol consumption 5 h prior to
the study. Volunteers had an average of 5.5 years of past music
training. Ethics approval was obtained from the Bloorview
Research Institute research ethics board and all participants
provided informed written consent.

2.2. Stimuli

The stimuli were composed of 78 researcher-selected and
6 participant-selected musical pieces. All music segments
were 45 s in duration. The excerpts included lyrical and non-
lyrical pieces. The lyrics were in different languages (English,
French, Italian and Spanish) to reduce potential effects of
brain activation due to mental singing. The 78 standard music
pieces were chosen by two researchers from different genres
of music (classical, rock, jazz and pop). Specifically, candidate
pieces were assessed in terms of their valence characteristics
as suggested by the tone, rhythm and lyrics (where applicable).
Note that the researcher assessments were used solely to ensure
an approximately uniform representation of music between
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Figure 1. The layout of light sources (circles) and detectors (Xs).
The vertical line denotes the anatomical midline. The annotated
shaded areas correspond to recording locations.

valences (positive versus negative). The actual data analysis
described in section 2.5 relied solely on participant ratings
of valence and arousal. For the participant-selected pieces,
participants chose a priori three pieces of music that personally
induced intense positive emotions (joy or excitement) and three
that induced intense negative emotions (sadness). The control
acoustic stimulus was Brown noise (BN). User feedback in our
pilot studies indicated that this type of noise was subjectively
more pleasant than white noise at the same sound pressure
level (Vossa and Clarke 1978).

2.3. Measurements

An Imagent Functional Brain Imaging System from ISS Inc.
(Champaign, IL) was used for NIRS measurements. A custom-
made rubber polymer (3M 9900 series) headgear held three
light detectors and ten light sources in place over the forehead,
as depicted in figure 1. At each ‘X’ location in figure 1, two
light sources, one at 830 nm and the other at 690 nm, were
co-located. This layout had been previously used for prefrontal
cortex monitoring in Power et al (2010) and provided readings
at the nine shaded locations in figure 1. With data from two
wavelengths, this configuration yielded 18 different channels
of light intensity readings. The midpoint of the headgear was
aligned to anatomical midline (as estimated by the position of
the participant’s nose), while the lower edge of the headgear
sat just above the eyebrows. Light sources were modulated
at 110 MHz and the detector amplifiers were modulated at
110.05 MHz which led to a cross-correlation frequency of
5 kHz. The data were sampled at 31.25 Hz. During a complete
cycle of all ten sources, each source illuminated the surface
for 1.6 ms during which eight acquisitions were made. A fast
Fourier transform (FFT) was applied to the average of the eight
waveforms to obtain an estimate of ac and dc intensities as well
as the phase delay (Power et al 2010). The dc light intensities
were used to determine HHb and HBO2 concentrations.

2.4. Procedures

Each participant attended four sessions, which occurred on
separate days, no more than four weeks apart. In each session,
participants completed three blocks with optional breaks
between blocks. Each block consisted of 12 consecutive trials:
four trials with positively valenced songs (one of which was a
participant-selected song), four trials with negatively valence
songs (one of which was a participant-selected song) and
four BN trials. Within a block, the music and BN trials were

Figure 2. Trial sequence.

pseudo-randomized, such that two BN trials never occurred
consecutively while positively and negatively valenced songs
appeared in no apparent order. The same pseudo-random
sequence of trials was employed for all participants.

Figure 2 depicts a trial sequence. In each trial, the
participant listened to 10 s of BN, followed by a 45 s auditory
stimulus (music or BN), and finally 5 s of BN. The sound
level was faded in and out at the beginning and end of the
trial, respectively, to reduce the risk of eliciting a startle. At
the end of each trial, the participant rated the intensity and
valence of their emotional experience using a nine-level self-
assessment Manikin (Morris 1995). The beginning and end
of each trial was marked by an audible tone. The participants
were instructed to close their eyes when they heard the initial
tone, and to open their eyes upon hearing the second tone.

2.5. Data analysis

• Pre-processing procedure. Low-frequency artifacts such
as respiration, heart rate and the Mayer wave were filtered
using a type II third order Chebychev low pass filter
with a cut-off frequency of 0.1 Hz (normalized stop-
band edge frequency of 0.032 and stop-band ripple of
50 dB down from the peak pass-band value) (Power et al
2011). The 830 nm and 630 nm light intensities at each
of the nine recording sites were used to calculate HBO2

and HHb concentrations via the modified Beer–Lambert
law (Cope 1991, Duncan et al 1995), which resulted in
18 channels of concentration data.

To reduce the effects of initial device calibration, the
concentration time series were normalized within each
experimental block against the mean in the same block.

• Features. Two genres of features were considered:
laterality features and single-channel features. All features
were extracted from HBO2 and HHb concentrations.
Table 1 summarizes the features used. Single-channel
features were calculated at each of the nine interrogation
locations and consisted of the mean, slope and coefficient
of variation of the concentration signals during the 45 s
aural stimuli period, as well as the change in the average
concentration from the preceding baseline period to the
task period. The slope was determined by fitting a line
using linear regression to all data points in the 45 s
trial window and calculating the corresponding slope.
The coefficient of variation was determined by finding
the ratio of the variance to the mean over the course
of the trial. Such features have previously characterized
task-based activation in the prefrontal cortex (Power et al
2011, Tai and Chau 2009, Naito et al 2007). In total, there
were 4 features/location × 9 locations × 2 chromophore
concentrations = 72 single-channel features.
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Table 1. Summary of features used in the analysis.

Feature type Features

Laterality features Lateral slope ratio (LSR) = right
concentration slope/left concentration slope
Lateral absolute mean difference
(� LM) = |left concentration mean − right concentration mean|

Single channel-based features Stimuli period mean (M)
Stimuli period slope (S)
Coefficient of variation (CV)
Mean difference between signal and noise
(�M) = stimuli period mean − preceding noise period mean

The two laterality features quantified differences
in activity between the left and the right sides, and
thus were calculated for each of the four pairs of
interrogation locations symmetrical about the midline (i.e.
1L-1R, 2L-2R, 3L-3R and 4L-4R in figure 1). Laterality
features included the ratio of the concentration signal
slopes, and the difference in the average signal values,
between corresponding left and right channels. The
inclusion of these features was motivated by physiological
findings that confirm lateralized activations in response
to emotional stimuli (Wheeler et al 1993, Davidson
1992, Altenmüller et al 2002). In total, there were
2 features/channel pair × 4 channel pairs × 2
chromophore concentrations = 16 laterality features.

• Classification procedures. For each trial, 65 s of data
were extracted, including the 45 s stimulus period and
the preceding (10 s) and subsequent (5 s) BN periods.
The trials with BN were set aside, and the rest of the
data were partitioned according to arousal and valence
ratings. For the analysis of arousal, the 48 highest rated
trials (out of 96 trials with music) over all four sessions
were selected. For the valence component, the 24 highest
positively rated and 24 highest negatively rated trials
across all four sessions (out of 96 trials with music)
were selected. The high arousal (HA), positive valence
(PV), negative valence (NV) and BN trials were labeled
accordingly. Note that arousal and valence labeling were
performed independently (Nhan and Chau 2010, Russell
1980).

A classifier based on the linear discriminant analysis
(LDA) (Duda et al 2001) was used to solve two different
two-class classification problems (HA versus BN and PV
versus NV). Comparing the two valence categories (i.e.
PV and NV) individually with the BN was not feasible
due to the difference in sample sizes (nHV = nLV = 24,
nBN = 48). The classification accuracy was estimated
using the average of 50 independent iterations of tenfold
cross-validation. The classification accuracy was defined
as the ratio of the number of correctly classified samples
over the size of the testing data. Due to the differences
in prefrontal activation in different participants, feature
selection was performed to select a subset of the feature
set that best separated the two classes for each participant.
To measure separability, we used the Fisher score which
is (Duda et al 2001) defined as the ratio of the difference
between the mean of features extracted from each class
under investigation to the sum of variances of features

from each class on the training data. The Fisher score for
each feature was calculated and the top two features with
the highest score were selected for classification. Adjusted
classification accuracy was defined as the average of
classifier sensitivity and specificity in each iteration of
classifier evaluation shown in (1). Adjusted accuracy was
more suitable for unbalanced datasets where the number
of samples belonging to the two classes was different
(Zeng et al 2002, Manoharan et al 2008):

adjusted accuracy = 1

2

(
true positives

true positives + false negatives

+ true negatives

true negatives + false positives

)
(1)

3. Results

Figure 3 depicts normalized sample concentration recordings
from all recording locations for participant 3. Figures 3(a)
and (b) are recordings during a music excerpt rated as
highly arousing and strongly positive, whereas figures 3(c)
and (d) are normalized sample recordings from one of the
most arousing but most negatively rated trials. Recordings
during a sample BN trial are provided for comparison in both
cases. Some immediate patterns are evident. For both HBO2

plots, we notice a general increase in concentration (hyper-
oxygenation), illustrated in figures 3(a) and (c). The hyper-
oxygenation occurs at different points in time during exposure
to various auditory stimuli. In both positive- and negative-rated
trials depicted in figure 3, a decrease in the HHb concentration
following hyper-oxygenation is observed which is consistent
with previous findings of functional NIRS studies (Obrig et al
1996, Meek et al 1995). The valenced responses are visibly
distinct from the sample BN response (light gray traces).

The average classification accuracies for the valence
(PV versus NV) and arousal (HA versus BN) classification
problems are reported in tables 2 and 3, respectively, for each
participant. The best accuracy averaged over all participants
was obtained with two-dimensional feature sets for both
HA versus BN (71.93%), and PV versus NV (71.94%)
classification problems. Tables 2 and 3 also summarize the
different features selected by the feature selection algorithm
for each classification problem and each participant. As seen,
the optimal feature set was different for each participant.

The spatial distribution of features leading to the best
accuracies are marked in figure 4 for the HA versus BN and
PV versus NV classification problems. In these figures, the
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(a) (b)

(c) (d)

Figure 3. (a and c) Normalized HBO2 concentration signals at different recording locations while (b) and (d) are the corresponding
normalized HHb concentration signals. The dark lines represent normalized signals corresponding to highly valenced, HA stimuli while the
lighter gray line depicts normalized concentrations during BN presentation to the same participant. The same BN sample is illustrated for
both positively and negatively valenced examples. (a) HbO2 concentration for positively valenced stimulus. (b) HHb concentration for
positively valenced stimulus. (c) HBO2 concentration for negatively valenced stimulus. (d) HHb concentration for negatively valenced
stimulus.

Table 2. Classification accuracy in % for each participant when
classifying HA versus BN. Feature types corresponding to the
best-average accuracy are also presented for each participant (M =
stimulus period mean; �M = stimulus period mean − preceding
noise period mean; LSR = lateral slope ratio; �LM = lateral mean
difference; S = slope, CV = coefficient of variation.

HA versus BN% Features
Participants Gender (two features) chosen

1 M 90.21 ± 1.72 �M
2 F 76.91 ± 1.04 �M
3 F 78.67 ± 3.31 �M
4 F 67.57 ± 2.01 M, S
5 F 69.04 ± 1.91 �M, CV
6 M 58.12 ± 2.55 S
7 M 61.71 ± 2.43 S, �M
8 F 71.16 ± 1.08 S
9 M 70.17 ± 3.93 �M

10 M 75.72 ± 1.28 �M

Average 71.93 ± 9.09

magnitude of a rectangular area is directly proportional to the
frequency at which the feature in question was selected at a
specific recording site across all participants. The vertical line
represents the anatomical midline. The values are based on
the feature set dimensionality resulting in the highest average
classification accuracy.

Figure 5 illustrates how the adjusted classification
accuracy (i.e. average of classification sensitivity and
specificity) averaged across all participants changes as trials
with lower arousal ratings are compared to BN. Similarly,
figure 6 depicts how adjusted accuracy changes when different
ranges of positively and negatively rated trials are compared.
Comparisons ranged from the highest negative trials (top 12)

Table 3. Classification accuracy in % for each participant when
classifying PV versus NV. Feature types corresponding to the best
average accuracy are also presented for each participant (M =
stimulus period mean; �M = stimulus period mean − preceding
noise period mean; LSR = lateral slope ratio; �LM = lateral mean
difference; S = slope, CV = coefficient of variation.

PV versus NV% Features
Participants Gender (two features) chosen

1 M 75.20 ± 4.22 �M, M
2 F 77.73 ± 2.09 LSR, S
3 F 63.28 ± 4.30 LSR, M
4 F 67.76 ± 2.83 LSR, �M
5 F 77.57 ± 4.10 �M
6 M 63.04 ± 3.67 �M, M
7 M 62.00 ± 3.46 S,CV
8 F 86.91 ± 2.87 �M
9 M 76.99 ± 5.11 �M, M

10 M 68.96 ± 6.55 S,M

Average 71.94 ± 8.19

versus the highest positive trials (top 12) to all positively
rated trials classified against all negatively rated trials. In both
figures 5 and 6, the average adjusted accuracy across
participants exceeds the chance level.

4. Discussion

• Classification accuracy. The objective of this study was
to detect the brain response to emotionally laden music
by monitoring the prefrontal hemodynamics manifested
as changes in the HBO2 and HHb concentrations. Visual
inspection of the concentration waveforms in figure 3
supports the choice of discriminatory features (e.g. mean
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(a) (b)

(c) (d)

Figure 4. Location of features resulting in the best overall accuracy.
Each rectangle is located over a recording site. The size of the
rectangle is proportional to the number of features selected from the
corresponding location. The vertical line denotes the anatomical
midline (HA = high arousal; BN = Brown noise; PV = positive
valence; NV = negative valence). (a) HBO2, HA versus BN. (b)
HHb HA versus BN. (c) HBO2, PV versus NV. (d) HHb, PV versus
NV.
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Figure 5. Adjusted classification accuracy (averaged across
participants with the standard deviation bar shown) versus the
number of trials included for classification against BN trials, after
sorting all trials based on ratings of arousal in descending order (e.g.
accuracies reported for the 12 trials are the result of classifying the
12 highest-rated arousal trials against all trials with BN). The
dashed line marks the upper limit of the 95% confidence interval
around the chance level computed based on the appropriate number
of trials (Müller-Putz et al 2008).

and slope). Emotional arousal in response to music
was classified against the BN response with an average
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Figure 6. Adjusted classification accuracy (averaged across
participants with the standard deviation bar shown) versus the
number of trials included for classification, after sorting all trials
based on ratings of PV and NV in descending order (e.g. accuracies
reported for 12 trials are the result of classifying the 12 most
positively rated trials against the 12 most negatively rated trials).
The dashed line marks the upper limit of the 95% confidence
interval around the chance level computed based on the appropriate
number of trials (Müller-Putz et al 2008).

accuracy of 71.93% while emotional valence (i.e. positive
or negative) was differentiated with 71.94% accuracy.
These findings indicate that the emotional content of
music induces differential patterns of activity in the
prefrontal cortex, detectable algorithmically by NIRS.

As reported in tables 2 and 3, classification accuracies
varied across participants, corroborating previous findings
of individual differences in emotional reactivity (Rothbart
and Derryberry 1981, Buss and Plomin 1975). As can be
seen in tables 2 and 3, accuracies above the chance level
were achieved for nine out of ten participants in the HA
versus BN classification problem (α = 0.05), while in the
PV versus NV scenario, accuracies for seven out of ten
participants exceeded chance (α = 0.05)6.

One of the concerns when investigating emotional
experience using the PFC activity is the possibility of
activation due to the emotion induction task requirements
as opposed to the emotions induced (Herrmann et al
2003). However, figure 5 illustrates how the average-
adjusted accuracy degrades as trials with increasingly
lower arousal rating are compared against BN. Therefore,
the difference in the task requirements (e.g. attentional
demands), when presenting music compared to BN
presentation, is unlikely to be responsible for classification
accuracy. Similarly, in figure 6, the average-adjusted
accuracies degrade as trials with increasingly lower PV
and NV ratings are classified against each other. This
decrease in the adjusted accuracies is expected due to
potential similarities between trials rated at the lower

6 Note that for a two-class problem, the 95% confidence intervals (α = 0.05)
for 48 and 24 trials per class are 50 ± 9.80 and 50 ± 13.59, respectively
(Müller-Putz et al 2008).
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positive and lower negative ends of valence (approaching
the neutral state).

According to figure 4, which depicts the recording
sites corresponding to features selected across all
participants, the spatial distribution of the features
resulting in the best overall accuracy was bilateral. This
finding is consistent with the bilateral physiological
substrates that are responsible for the perception of
valence in the prefrontal cortex (Davidson 1992).
Nonetheless, in three out of ten participants, unilateral
activation was most discriminatory as laterality features
were among those selected for solving the valence
classification problem (see table 3).

• Diversity in the music database. Previous studies have
reported regional brain activity modulation due to specific
characteristics of music such as rhythm, timbre and
major/minor chords (Kuck et al 2003, Samson 2003,
Pallesen et al 2005). In these studies, the investigators
varied selected music characteristics while carefully
controlling for others. Other studies, focusing on emotion
induction, have used diverse music databases (e.g. self-
selected music pieces) to ensure successful elicitation of
emotional reactions (Blood and Zatorre 2001, Schmidt
and Trainor 2001). In the current study, the second
approach was used.

The variability of arousal and valence ratings for
a given piece of music across participants (i.e. the
same music excerpt rated differently among participants)
suggests that the observed brain activity was indeed
attributable to emotional experiences. Moreover, the
variability in ratings among participants implies that the
classification algorithm was not likely biased toward
specific musical characteristics.

• Challenges. Due to the limited number of samples, only
two dimensions of emotion (valence and arousal) were
considered. Although these measures are informative,
they fail to capture more specific emotional labels. For
example, fear and sadness can both be rated as negatively
valenced and high in arousal. In order to differentiate more
specifically among emotional labels, other dimensions of
emotion such as occurrence (eruptive versus gradually
arising) and dominance (complete control versus no
control over the situation) need to be considered (Wundt
and Judd 1907).

Special care was devoted to standardize headgear
placement across all four sessions, which in turn
should have minimized instrumentation inconsistencies.
However, differences in the shape of the skull may
have led to variabilities in the brain regions monitored
in different participants. Therefore, the present results
preclude conclusions about the specific brain regions that
were activated.

The human response to emotional stimuli may be
affected by emotional sensitivity. In fact, Petrides and
Furnham (2003) have shown that individuals with high
trait emotional intelligence respond faster and show more
sensitivity in an emotion induction paradigm. Including a

measure of emotional sensitivity in addition to the self-
reported ratings might have helped to explain the inter-
subject variability in classification accuracies.

Previous studies of emotion have indicated gender
differences as an important factor in emotional response
(Marumo et al 2009, Yang et al 2007). However,
the limited number of participants did not allow
further investigations of gender-related differences in the
emotional response. Future studies with larger sample
sizes need to be devised to investigate the effects of gender
in emotion-induced prefrontal hemodynamic response.

5. Conclusion

This study exploited hemodynamic activity to automatically
decode prefrontal cortical responses to emotionally laden
music. Arousal and valence components of emotion were
automatically detected with accuracies higher than 70%
using multichannel near-infrared spectroscopy and linear
discriminant classifiers with two judiciously selected signal
features. These findings encourage future development of
automatic methods of emotion detection in individuals with
severe disabilities who have no expressive communication.
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