About
13
Publications
5,435
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,637
Citations
Current institution
Additional affiliations
September 2020 - present
Publications
Publications (13)
The rapid adoption of single-cell technologies has created an opportunity to build single-cell 'atlases' integrating diverse datasets across many laboratories. Such atlases can serve as a reference for analyzing and interpreting current and future data. However, it has become apparent that atlasing approaches differ, and the impact of these differe...
Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular niches. While multiple methods to analyze spatial variation within a sample have been published, statistical and computational approaches to compare cell spatial organization across samples or conditions are mostly lacking. We...
Tissue makeup relies fundamentally on the cellular microenvironment. Spatial single-cell genomics allows probing the underlying cellular interactions in an unbiased, scalable fashion. To learn a unified cell representation that accounts for local dependencies in the cellular microenvironment, we propose Nicheformer, a transformer-based foundation m...
Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular niches. While multiple methods to analyze spatial variation within a sample have been published, statistical and computational approaches to compare cell spatial organization across samples or conditions are mostly lacking. We...
Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathi...
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of...
Models of intercellular communication in tissues are based on molecular profiles of dissociated cells, are limited to receptor–ligand signaling and ignore spatial proximity in situ. We present node-centric expression modeling, a method based on graph neural networks that estimates the effects of niche composition on gene expression in an unbiased m...
Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale. Flexible tools are required to store, integrate and visualize the large diversity of spatial omics data. Here, we present Squidpy, a Python framework that brings together tools from omics and image analysis to enable scalable desc...
Tissue niches are sources of cellular variation and key to understanding both single-cell and tissue phenotypes. The interaction of a cell with its niche can be described through cell communication events. These events cannot be directly observed in molecular profiling assays of single cells and have to be inferred. However, computational models of...
Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale. Here, we present Squidpy, a Python framework that brings together tools from omics and image analysis to enable scalable description of spatial molecular data, such as transcriptome or multivariate proteins. Squidpy provides both...