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Abstract—A plenitude of feature selection (FS) methods is available in the literature, most of them rising as a need to analyze data of
very high dimension, usually hundreds or thousands of variables. Such data sets are now available in various application areas like

combinatorial chemistry, text mining, multivariate imaging, or bioinformatics. As a general accepted rule, these methods are grouped in
filters, wrappers, and embedded methods. More recently, a new group of methods has been added in the general framework of FS:

ensemble techniques. The focus in this survey is on filter feature selection methods for informative feature discovery in gene
expression microarray (GEM) analysis, which is also known as differentially expressed genes (DEGs) discovery, gene prioritization, or

biomarker discovery. We present them in a unified framework, using standardized notations in order to reveal their technical details
and to highlight their common characteristics as well as their particularities.

Index Terms—Feature selection, information filters, gene ranking, biomarker discovery, gene prioritization, scoring functions,
statistical methods, gene expression data.

Ç

1 INTRODUCTION

GENE expression microarray (GEM) experiments aim to
obtain valuable biological information by collecting

biological data from samples (e.g., tissues, cell lines).
Recorded GEM data contain gene-wise information across
all samples under investigation. In a single experiment,
information about thousands of genes is measured and
recorded simultaneously. The samples under investigation
can be different from many perspectives (e.g., genotype,
phenotype, or other biological or clinical relevant annota-
tion). An important research topic in GEM data analysis is
the discovery of genes that are able to differentiate between
samples originating from different populations or in more
general terms, genes which are relevant for a particular
target annotation. These genes are called informative genes,
biomarkers or differentially expressed genes (DEGs). The
discovery of DEGs is valuable not only to physicians to
diagnose patients but also to pharmaceutical companies
aiming to identify genes which can be targeted by drugs. In
the last few years, a lot of effort has been put in the
development of methodologies for DEGs discovery. The

problem is still challenging and new algorithms emerge as
alternatives to the existing ones. The literature of FS for
DEGs discovery is abundant. Despite the wide range of
approaches proposed to solve this problem, many algo-
rithms share common elements merely differing on details
from each other. Our intention is to bring into light an
important family of methods (the filters) that are sometimes
unfairly discarded to the benefit of more complicated FS
techniques. We aim to provide a big picture over filter
techniques for DEGs discovery in a unified technical
framework in order to outline their common points as well
as their particularities.

The roadmap of this survey is as follows: in Section 2, the
FS problem is described and filter methods are presented in
the framework of FS. Section 3 provides the big picture of
filter methods in an extended taxonomy inspired from [1].
Two big groups of filters are revealed here: ranking and
space search methods. They will be further described in
details as follows: Section 4 generally describes the ranking
strategy for FS focusing on two main points: the scoring
functions used to assign relevance indices to genes and the
problem of statistical significance of the estimated scores,
while Section 5 is dedicated to the space search strategy. In
Section 6, we focus on the evaluation of FS results and we
present several evaluation strategies, while in Section 7 we
provide the reader with some comments and recommenda-
tions which could help in choosing the appropriate
methods or for comparison purposes. The last section is
dedicated to authors’ concluding remarks.

2 PROBLEM STATEMENT

The problem can be stated as follows: let us consider a
GEM study where biological data from a population of
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samples are collected. The output of the study is recorded
as a matrix (called gene expression data matrix) Xm!n ¼
fxi;jg containing the expression of m features/genes across
n samples, where xi;j is the expression level of gene i in
sample j and m # n. Here we emphasize on the fact that
gene expression data matrix X is obtained through a
complex process where in the first instance raw, probe-level
data are collected. Consequently, gene expression data are
derived through a series of preprocessing steps including
background correction, log-transformation, normalization,
and summarization and further analysis is performed on
the preprocessed data. However, a discussion upon these
preprocessing methods is beyond the scope of this paper.

Besides gene expression data, metainformation (typically
clinical or biological annotations) is also collected during
microarray experiments. These annotations usually contain
information about the patients but also information about
tissue genotype or phenotype, type or time of treatment, etc.
Hence, they map either to categorical or to continuous
variables. Typical applications on GEM data are disease
prediction, disease discovery [2], or reconstruction of gene
regulatory networks from gene expression data [3]. Solutions to
these problems demand for machine learning techniques
such as supervised classification, clustering, and regression.
The direct application of thesemethods on high-dimensional
data is usually inefficient [4]. Therefore, it is desirable to
select a small subset of features/genes that is discriminative
among the subgroups of samples denoted by a target
annotation. As mentioned in the introduction, these genes
are called informative genes or differentially expressed genes.

As a generic definition, FS consists in identifying the set
of features/genes whose expression levels are indicative of
a particular target feature (clinical/biological annotation).
In mathematical terms, this problem can be stated as
follows: let Xm!n ¼ fxi;jg be a matrix containing m genes
and n samples originating from different groups denoted by
a target annotation (e.g., different phenotypes), Xm!n ¼
½Xm!n1

1 Xm!n2
2 . . .X

m!np
p % where each matrix Xm!ni

i contains
samples from the same group and n1 þ n2 þ . . .np ¼ n.
Selecting the most informative genes consists in identifying
the subset of genes across the entire population of samples
Sk!n 2 Xm!n, k ' m which is the most discriminative for
the outlined classes. This definition is only valid for
classification problems where the groups are clearly
identified beforehand (e.g., disease prediction).

Different strategies have been proposed over the last
years for feature/gene selection: filter, wrapper, embedded
[1], and more recently ensemble techniques [5].

Filter techniques assess the discriminative power of
features based only on intrinsic properties of the data. As a
general rule, these methods estimate a relevance score and a
threshold scheme is used to select the best-scoring features/
genes. Filter techniques are not necessarily used to build
predictors. As stated in [6], DEGs may also be good
candidates for genes which can be targeted by drugs. This
group of techniques is independent of any classification
scheme but under particular conditions they could give the
optimal set of features for a given classifier. Saeys et al. [1] also
stress on the practical advantages of these methods stating
that “even when the subset of features is not optimal, they may be
preferable due to their computational and statistical scalability.”

Wrapper techniques select the most discriminant subset
of features by minimizing the prediction error of a
particular classifier. These methods are dependent on the
classifier being used and they are mainly criticized because
of their huge computational demands. More than that, there
is no guarantee that the solution provided will be optimal if
another classifier is used for prediction.

Embedded techniques represent a different class of
methods in the sense that they still allow interactions with
the learning algorithm but the computational time is
smaller than wrapper methods.

Ensemble techniques represent a relatively new class of
methods for FS. They have been proposed to cope with the
instability issues observed in many techniques for FS when
small perturbations in the training set occur. These methods
are based on different subsampling strategies. A particular
FS method is run on a number of subsamples and the
obtained features/genes are merged into a more stable
subset [7].

So farwe briefly described the topic of FS but the rest of the
paper is entirely dedicated to filter methods for DEGs
discovery in GEM analysis. Here we stress on the advantage
of filters over wrappers or embeddedmethods which is their
independence of classifiers. This particular characteristic of
filters avoids all influence of classifier’s bias in the FS process.

3 FILTER METHODS FOR FS: A PROPOSED

TAXONOMY

Building a taxonomy is not a trivial task and moreover, a
taxonomy is not unique. Based on the literature reviewed
for this paper we propose a taxonomy of filter FS methods
for informative genes discovery. As a general observation,
two different filter strategies can be identified while
surveying the literature. According to the first strategy,
one selects features/genes which are top ranked according
to some relevance indices estimated with a predefined
scoring function. According to the second strategy, features
are selected by optimizing a particular cost function which
is often defined as a tradeoff between the maximum
informativeness and minimum redundancy inside the
selected subgroup of features/genes. In the following, we
will refer to methods built upon the first strategy as ranking
methods while those built upon the second strategy will be
referred to as space search methods.

Our proposed taxonomy (Fig. 1) has many common
points with the one presented in [1]. The main difference
consists in the fact that on the top level we grouped the
filter methods in ranking and space search methods,
according to the strategy used to select features. On the
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Fig. 1. Proposed taxonomy for filter FS methods.



level below, ranking methods are grouped in univariate and
bivariate while the space search methods are all multi-
variate. Subsequently, depending on the parametric as-
sumption used, the univariate methods are split into
parametric and nonparametric while bivariate methods can
be greedy or all-pairmethods depending on the strategy used
for ranking. The next two sections are dedicated to a
synthetic description of the two main classes of filters:
ranking and space search methods.

As the biggest part of the reviewed literature for this
paper focuses mainly on DEGs discovery for disease
prediction, the methods designed for classification pro-
blems will have a bigger weight compared with those
designed for regression, mainly applied to infer networks
from gene expression data [8]. We’ll briefly point out the
distinction between these methods in Section 7.

4 FILTER METHODS—A RANKING APPROACH

Most filter methods consider the problem of FS as a ranking
problem. The solution is provided by selecting the top
scoring features/genes while the rest are discarded. Gen-
erally these methods follow a typical scenario described
below and pictured in Fig. 2.

1. Use a scoring function SðxÞ to quantify the difference
in expression between different groups of samples
and rank features/genes in decreasing order of the
estimated scores. It is supposed that a high score is
indicative for a DEG.

2. Estimate the statistical significance (e.g., p-value,
confidence intervals) of the estimated scores.

3. Select the top ranked features/genes which are statisti-
cally significant as the most informative features/
genes (alternatively one could be interested in
selecting the top ranked features/genes only as
opposed to the top ranked significant ones).

4. Validate the selected subset of genes (see Section 5).

In the above-mentioned generic algorithm one can identify
two aspects specific to this type of methods which play an
important role in identifying informative features/genes:
first, the choice of a scoring function to compute the
relevance indices (or scores) and second, the assignment of
statistical significance to computed scores. They will receive
further consideration in order to be able to reveal the main
differences between different methods and therefore help-
ing to categorize them.

As an additional remark, the reader should note that
ranked lists of features/genes can also be obtained via
wrapper/embedded methods not only for filters, e.g., SVM
Recursive Feature Elimination (SVMRFE) [9] or Greedy
Least Square Regression [10].

Here we also outline the fact that any combination of a
scoring function and a statistical significance test designed
to quantify the relevance of a feature/gene for a target
annotation can be transformed into a ranking method for
FS. Since all steps in the generic algorithm described above
are independent one from another, the users do have a lot of
freedom in the way they wish to perform the selection.

4.1 Scoring Functions—Assigning Relevance
Indices to Features

Scoring functions represent the core of ranking methods
and they are used to assign a relevance index to each
feature/gene. The relevance index actually quantifies the
difference in expression (or the informativeness) of a
particular feature/gene across the population of samples,
relative to a particular target annotation. Various scoring
functions are reviewed and categorized here. They cover a
wide range of the literature proposed for DEGs or
biomarkers discovery. The scoring functions are enumer-
ated and categorized according to their syntactic simila-
rities. A similar approach presenting a very comprehensive
survey on distance measures between probability density
functions has been employed in [11].

Several groups of scoring functions for gene ranking
have been identified. In the first group, we gathered scoring
functions which estimate an average rank of genes across all
samples. Scoring functions from the second group quantify
the divergence (or the distance) between the distribution of
samples corresponding to different classes associated to a
target annotation per feature/gene as a function fðx1; x2Þ.
The third group contains information theory-based scoring
functions while the fourth group measures the degree of
association between genes and a target annotation as a
function fðx; cÞ where x and c described in Table 1. The last
group gathers a list of miscellaneous scoring functions
which cannot be included in the previous four.

The big majority of scoring functions presented here are
usually defined to rank single genes but some of them can
be easily adapted for pairs or groups of genes. In this
section, the notations in Table 1 will be used.
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Fig. 2. Illustration of filter ranking methods. Main steps of univariate ranking methods for filter FS. A case study for GEM analysis.



4.1.1 Ranking Samples Across Features

This group is represented by two scoring functions: rank-
sum and rank-product, see Table 2. Supposing x1 and x2 are
the expression levels of a certain gene in class c1 and class
c2, respectively, the rank-sum method first combines all the
samples in x1 and x2 and sorts them in ascending order.
Then the ranks are assigned to samples based on that
ordering. If k samples have the same value of rank i, then
each of them has an average rank given by iþ k*1

2 . If n1 and
n2 denote the numbers of samples in the smaller and larger
group, respectively, then the rank-sum score is computed
by summing up the ranks corresponding to samples in c1,
Table 2 first line. For a GEM data set, the rank-product
method consists in ordering the genes across all samples in
the value ascending order and then for each gene the rank-
product score is obtained by taking the geometrical average
of the ranks of that gene in all samples.

4.1.2 Measuring the Divergence between the
Distributions of Groups of Samples

Another direction toward the identification of informative
features/genes is to quantify the difference between the
distributions of groups of samples associated to a target
annotation. These scoring functions can be generically
described as a function fðx1; x2Þ with x1; x2 in Table 1. For
this purpose, some simple measures rely only on low-order
statistics, in particular the first and second moment (mean
and variance) of the distribution of expression levels in
different groups. This is the simplest way to compare the
distributions of two populations and implicitly imposes

some more or less realistic assumptions on the distributions
of samples in each population (e.g., normal distributed
samples). Despite this obvious drawback they are still the
most popular scoring functions used to create filters for FS
in GEM analysis due to their simplicity. These scoring
functions can be grouped in two families: fold-change family
(Table 3) and t-test family (Table 4). A different strategy in
comparing the distributions of different populations is to
rely on different estimates of the probability density
function (pdf) or the cumulative density function (cdf) of
populations but these methods are more expensive compu-
tationally. The different families of scoring functions
mentioned here will be further presented in this section.

Fold-change family. Relative indices are assigned to
features/genes based only on mean estimates of the
expression levels across different groups of samples per
gene. According to [14] two forms are encountered for the
fold-change scoring functions: fold-change ratio and fold-
change difference (Table 3). However, the fold-change
difference is less known and usually researchers who
mention fold-change in this context actually refer to fold-
change ratio. In practice, many packages for GEM analysis
typically provide the log2 of the ratio between the means
of group 1 and group 2. The numbers will be either
positive or negative preserving the directionality of the
expression change.

t-test family. Several forms derived from the ordinary
two-sample t-test are used to measure the difference in
expression of genes, see Table 4. In the same family, we
include the Z-score or the signal to noise ratio (SNR) defined
as the ratio between the fold-change difference and the
standardized square error of a particular gene. These
scoring functions make use of both the first and second
moments to assign relevance indices to genes.

Bayesian scoring functions. In several studies, the
authors have defined scoring functions for informative
features discovery in a Bayesian framework. The main
motivation behind this is the difficulty in obtaining accurate
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Rank Score Family

TABLE 3
Fold-Change Family

TABLE 4
t-Test Family

TABLE 1
Notations



estimates of the standard deviation of individual genes

based on few measurements only. In order to cope with the

weak empirical estimation of variance across a single

feature/gene, several authors proposed more robust esti-

mations of the variance by adding genes with similar

expression values. A list of these scoring functions is

presented in Table 5.
PDF-based scoring functions. Scoring functions in this

category rely on different estimates of the pdfs of populations,
from simple histograms to more complex estimators such as
the Parzen window estimator [26]. Only few scoring
functions based on this idea are used to discover informative
features/genes. Here we identified Kolmogorov-Smirnov
(K-S) tests [27], Kullback-Leibler divergence [28], or Bhatta-
charyya distance [29] (Table 6), but the mathematical
literature abounds in measures quantifying the distance
between pdfs revealing new possibilities to look for informa-
tive features/genes. We invite the reader to consult [11] for a
very comprehensive survey on this topic. Note that the use of
these scoring functions for DEGs discovery is limited by the
low number of samples in GEMexperimentswhich results in
unreliable estimates of the pdf.

4.1.3 Information Theory-Based Scoring Functions

These scoring functions rely on different estimates of the
information contained both in the target feature c and in the
gene expression x. Table 7 presents a list of scoring
functions belonging to this group: information gain and
the mutual information.

4.1.4 Measuring the Dependency between Features and
Target Feature as a Function fðx; cÞ

Scoring functions in this group have the advantage that
they allow features/genes ranking when the target annota-
tion is a continuous variable (which is not the case of the
previous mentioned scoring functions). They measure the
dependency between the gene’s expression profile x and
the target feature c as a function fðx; cÞ. Pearson’s
correlation coefficient (PCCs), Table 8, is commonly used
for this purpose. Its absolute value equals 1 if x and c are
linearly correlated and equals 0 if they are uncorrelated.
Note that PCCs is only applied if c is a continuous variable.
When c is binary, PCCs comes down to the Z * score. A
similar measure used for this purpose is Kendall’s rank
correlation coefficient (KRCCs). A variant of this measure
adapted to a two-class problem is proposed in [33].

4.1.5 Other Scoring Functions

A list of scoring functions mentioned in the literature for
informative gene discovery which cannot be grouped in the
above-mentioned families is presented here. The list
presented in Table 9 includes: Area Under ROC Curve
(AUC), Area Between the Curve and the Rising diagonal
(ABCR), Between-Within class Sum of Squares (BWSS), and
Threshold Number of Missclassifications (TNoM). The
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reader is encouraged to consult the associated references in
Table 9 for further details about these scoring functions.

4.2 Estimating Statistical Significance for
Relevance Indices

Estimating the statistical significance for the relevance
indices assigned to each feature/gene has been long
addressed in the quest for DEGs. It is argued that statistical
significance tests quantify the probability that a particular
score or relevance index has been obtained by chance. It is
common practice that features/genes ranked high in the list
according to the relevance index, will be discarded if the
computed scores are not statistically significant. There are
different ways one can assign statistical significance to a
test.1 Despite many criticisms the most commonly used
statistical significance test is the p-value. Many researchers
advocate for alternative measures such as confidence
intervals, especially due to the fact that p-values only bring
evidence against a hypothesis (e.g., the null hypothesis of
no “correlation” between features/genes and target annota-
tion) and “confirm” a new hypothesis by rejecting the one
which has been tested without bringing any evidence in
supporting the new one [38]. Without entering into this
debate, it is important to notice that statistical significance
tests can be run either by exploring gene-wise information
across all samples, either by exploring the large number of
features in GEM experiments. Regardless the manner the
statistical significance tests are performed, a permutation
test is generally employed. It consists of running multiple
tests which are identical to the original except that the target
feature (or the class label) is permuted differently for each
test. An important concept for estimating the statistical
significance for DEGs discovery is the multiple hypothesis
testing which will be described at the end of this section.

4.2.1 Exploring Feature-Wise Information to Asses
Statistical Significance

This strategy assumes a large enough number of samples in
order to infer upon the statistical significance of computed

relevance indices of genes. The statistical significance is
estimated for each feature/gene individually based on its
intrinsic information.

p-values. In statistics, the p-value is the probability of
obtaining a test statistic (in our case a relevance index) at
least as extreme as the one that was actually observed. The
lower the p-value the more significant the result is (in the
sense of statistical significance). Typical cutoff thresholds
are set to 0.05 or 0.01 corresponding to a 5 or 1 percent
chance that the tested hypothesis is accepted by chance. p-
values can be estimated empirically by using a permutation
test. However, standard asymptotic methods also exist,
reducing substantially the computational time required by
permutation tests. These methods rely on the assumption
that the test statistic follows a particular distribution and
the sample size is sufficiently large. When the sample size is
not large enough, asymptotic results may not be valid, with
the asymptotic p-values differing substantially from the
exact p-values.

4.2.2 Exploiting the Power of Large Number of Features

An alternative strategy to overcome the drawback of the
small number of samples in GEM experiments is to take
advantage of the large number of features/genes [39]. In
order to illustrate this idea we will consider the following: a
GEM data set containing gene information about samples
originating from two populations c1 and c2, and a filter
algorithm to search for DEGs between c1 and c2. Let S ¼
S1; . . . ; Sm be the relevance indices for all genes, let p1 be the
probability that a gene is discriminating between c1 and c2
and p0 ¼ 1* p1. Let also f1ðSÞ be the pdf of S for
discriminating genes and f0ðSÞ the pdf of S for nondiscri-
minating genes. Then, we can write

fðSÞ ¼ p0f0ðSÞ þ p1f1ðSÞ; ð1Þ

where fðSÞ is the mixture of densities of discriminating/
nondiscriminating genes.

The usefulness of the model in (1) depends on the
estimation of the so called “null distribution” f0ðSÞ. In [40],
Efron et al. proposed a method to estimate f0ðSÞ based on a
permutation test. What one is interested in, is the prob-
ability that a gene is differentiating between c1 and c2,
which is p1. According to [40] there are two strategies to
obtain p1: a bayesian and a frequentist approach. They will
be mentioned briefly in the following.

A bayesian framework for estimating statistical sig-
nificance. In [40], Bayes rule is applied to (1) to estimate the
aposteriori probability p1ðSiÞ that a gene with score Si is
differentially expressed, resulting in

p1ðSiÞ ¼ 1* p0
f0ðSiÞ
fðSiÞ

: ð2Þ

This approach can be summarized in four steps:

1. Estimate the relevance indices (scores) Si.
2. Estimate null relevance indices (null scores) si using

a permutation test.
3. Estimate the ratio f0ðsÞ

fðSÞ based on the densities of Si

and si.
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TABLE 9
Other Scoring Functions for Gene Ranking

1. Here a test consists in verifying whether a feature/gene is informative
for a target annotation and it is quantified by a relevance index.



4. Estimate the lower bound for p1 according to

p1 + 1*min
S

fðSÞ
f0ðSÞ

: ð3Þ

A frequentist framework. This approach relies on direct
estimates of f0 and f and it can be summarized as follows:

1. Estimate the relevance indices (scores) Si.
2. Estimate null relevance indices (null scores) si using

a permutation test.
3. Expected null relevance indices are computed

according to

!siðbÞ ¼
1

B

XB

b¼1

siðbÞ; ð4Þ

where B is the total number of permutations.
4. Plot points ð!si; SiÞ.
5. For several threshold values t, estimate the number

of true and false positives (TP, respectively, FP).
6. (Optional) Estimate the false discovery rate (FDR)

for increasing values of t.

4.2.3 Multiple Hypothesis Testing Approach

The study of Dudoit et al. [41] was the first work describing
the multiple hypothesis testing for GEM experiments in a
statistical framework. In the context of DEGs discovery,
multiple hypothesis testing is seen as simultaneously testing
for each gene the null hypothesis of no association between the
expression level and the responses or target features [41].
According to them, any test can result in two type of
errors: false positive or Type I errors and false negative or
Type II errors. Multiple hypothesis testing procedures aim
to provide statistically significant results by controlling the
incidence rate of these errors. In other words, provide a way
of setting appropriate thresholds in declaring a result
statistically significant. The most popular methods for
multiple hypothesis testing focus on controlling Type I
error rate. This is done by imposing a certain threshold ! for
the Type I error rate and then applying a method to
produce a list of rejected hypothesis until the error rate is
less than or equal with the specified threshold. Well-known
methods for multiple hypothesis testing are as follows.

p-value with Bonferroni correction is an improved
version of the classical p-value and consists in increasing
the statistical threshold for declaring a gene significant by
dividing the desired significance with the number of
statistical tests performed [17].

False discovery rate (FDR) is a recent alternative for
significance testing and has been proposed as an extension
of the concept of p-values [42]. The FDR is defined as
FDR ¼ E½FG%, where F is the number of false positive genes
and G is the number of genes found as being significant. In
order to overcome the situations where FDR is not defined
(when G ¼ 0), Storey [43] proposed a modified version of
the FDR called positive false discovery rate (pFDR) defined
as pFDR ¼ E½FG jðG > 0Þ%.

A less accurate alternative to the FDR for significance
testing is the family-wise error rate (FWER) which is
defined as the probability of at least one truly insignificant
feature to be called significant.

q-value is an extension of FDR which has been proposed
to answer the need of assigning a statistical significance
score to each gene in the same way that the p-value does
[44]. The q-value is defined as being the minimum pFDR at
which a test may be called significant. The reader should be
aware that the q-value can be defined either in terms of the
original statistics or in terms of the p-values, see [43].

4.3 Ranking Methods for FS—Examples

In this section, we discuss and review ranking methods for
FS by extending the taxonomy presented in Fig. 1.

4.3.1 Univariate Methods

According to [1], univariate methods for FS can be either
parametric or nonparametric. Here, we provide a brief
description of both groups.

Parametric methods. These methods rely on some more
or less explicit assumption that the data are drawn from a
given probability distribution. The scoring functions used to
measure the difference in expression between groups of
samples for each gene provide meaningful results only if
this assumption holds. In particular, many researchers state
that the t-test can be used to identify DEGs only if the data
in each class are drawn from some normal distribution with
mean " and standard deviation #. Candidates for this class
of methods described are in Table 10.
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Nonparametric methods. These methods assume by
definition that the data are drawn from some unknown
distribution. The scoring functions used to quantify the
difference in expression between classes rely either on some
estimates of the pdfs or on averaged ranks of genes or
samples. Obviously, these methods have a higher general-
ization power but for most of them (especially those relying
on estimates of the pdfs), the computational cost is higher.

In [1], univariate nonparametric filter techniques are split
in two groups: pure model-free methods and methods
based on random permutation associated to parametric
tests. Pure model free methods use nonparametric scoring
functions to assign a relevance index to each gene and then
the statistical relevance of that index is estimated in terms of
either p-value, FDR or q-value. Methods based on random
permutations associated with a parametric test take
advantage on the large number of genes/features in order
to find genes/features which present significant changes in
expression. In a first instance, they make use of a parametric
scoring function to assign a relevance index to each gene
and then employ a nonparametric statistical significance
test to check for DEGs. The nonparametric significance test
consists in comparing the distribution of relevance indices
of genes estimated in the previous step and the null
distribution of the test statistic (or relevance index). The null
distribution of the test statistic is usually estimated using a
permutation test. Table 11 lists the most well-known
methods from this class.

4.3.2 Bivariate Ranking Methods

Ranking pairs of genes according to their discrimination
power between two or more conditions can be performed
either using a “greedy strategy” or “all pair strategy.”

Greedy strategies. Methods in this group first rank all
genes by individual ranking (using one of the criteria
employed by univariate ranking methods); subsequently
the highest scoring gene gi is paired with the gene gj that
gives the highest gene pair score. After the first pair has
been selected, the next highest ranked gene remaining gs is
paired with the gene gr that maximizes the pair score, and
so on. In [51], a greedy gene pair ranking method has been
proposed where initially the t-test was employed to first
rank genes individually while the pair score measures how
well the pair in combination distinguishes between two
populations. Concretely, the gene pair score is the t-test of

the projected coordinates of each experiment on the
diagonal linear discriminant (DLD) axis, using only these
two genes. For further details we invite the reader to
consult [51].

All pairs strategies. Unlike greedy pairs methods, all
pairs strategies examine all possible gene pairs by comput-
ing the pair score for all pairs. The pairs are then ranked by
pair score, and the gene ranking list is compiled by selecting
nonoverlapping pairs, and selecting highest scoring pairs
first. This method is computationally very expensive. A list
of bivariate gene ranking methods is presented in Table 12.

5 FILTER METHODS—SPACE SEARCH APPROACH

The second direction to create filters for FS is to adopt an
optimization strategy which will come up with the most
informative and least redundant subset of features among
the whole set. This strategy implies three main steps
described as follows:

1. Define a cost function to optimize.
2. Use an optimization algorithm to find the subgroup

of features which optimizes the cost function.
3. Validate the selected subset of genes.

Wrappers and embedded methods also make use of “space
search” strategies to select features, but as mentioned in
Section 2 they are built around a classifier. The main
difference between filter space search methods and wrap-
pers/embedded methods is that the cost function is
different: for filters the cost function is independent on
any output of the classifier while for wrappers/embedded
methods the cost function is in general the classifier’s
accuracy itself.
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Methods using space search strategies are not as
numerous as the ranking methods and they are less popular,
especially due to the optimization step which is often
computationally expensive. Following we will briefly refer
to Steps 1 and 2 in the generic algorithm mentioned above.

5.1 Objective Functions
As previously mentioned, these methods make use of an
objective functions defined as a tradeoff between the
maximum informativeness of the selected features/genes
and their number (or minimum redundancy). Table 13 lists
the objective functions we identified through the literature.
As the search space might be too large for an exhaustive
search, typically heuristic search algorithms are used for the
optimization [54], [55].

5.2 A List of Existing Space Search Filter Methods
These methods are far less numerous than the ranking
methods. They are all multivariate in the sense that, in
order to identify the optimum subset of features they take
into account not only the correlation between the features
and the target annotation but also feature-feature correla-
tion. This can result in better classification accuracy than
the ranking methods but on the other hand, from the
biomarkers discovery point of view, they are prone to filter
out informative genes which might be of potential interest
for biologists. Table 14 presents a list of optimization filter
methods for informative genes discovery as identified in
the literature.

6 ON THE EVALUATION OF FILTER METHODS

The evaluation of the selected subgroup of features also
called signature is a mandatory step common to all FS
methods. As we mentioned in the introduction, the
selection of features/genes in GEM analysis is mainly
performed for two reasons: class prediction/discovery and
biomarkers identification. If the goal is class prediction/

discovery, the evaluation is performed using some classifier
dependent performance indices which are described further
in this section. If the goal is the identification of informative
features which are potentially useful for further investiga-
tions (biomarkers discovery), then the classification perfor-
mances are ignored and the selected genes are evaluated
individually by estimating the statistical significance of
their relevance score. An important aspect on the evaluation
of FS methods is the robustness or the stability of the
signature defined as the variation in the FS results due to
small changes in the data set [57] or as the variation resulted
when different methods are used on the same data set. The
changes in the data set can be considered either at the
instance level (e.g., by removing or adding samples) or at
the feature level (e.g., by adding noise to features) [57].

6.1 Evaluating the Prediction Power of the
Signature

Class prediction is an important reason one is interested in
building and using FS in gene expression analysis. In this
context, the evaluation of FS methods is performed with
respect to the performances of classifiers when the input
data are described by the subset of selected features/genes.
If two filter methods are compared, the same classifier is (or
should be) used to estimate the accuracy or the prediction
power of those signatures. Different methods to evaluate
classifiers can be employed in this context: ROC analysis,
accuracy, precision-recall curves. Note that wrapper and
embedded methods guarantee accurate results only if the
classifier used for FS is also used to predict new samples
while filters can be used with a broader range of classifiers.

Received Operating Characteristic (ROC) analysis. ROC
analysis is mainly used to measure and visualize the
performances of classifiers. ROC graphs are built by plotting
on the X axis the false positive rate (FPR), while the Y axis
stands for the true positive rate (TPR). The values of FPR (the
number of negatives incorrectly classified) and TPR (the
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number of positives correctly classified) represent the output
of a classifier and they are defined by FPR ¼ NNIC

TNN and
TPR ¼ NPCC

TNP , where NNIC denotes the number of nega-
tives incorrectly classified, NPCC the number of positives
correctly classified while TNN and TNP denote the total
number of negatives and positives, respectively.

The terms sensitivity and specificity are often associated
with the ROC curves (sensitivity ¼ TPR and specificity ¼
1* FPR). For more comprehensive texts on ROC analysis,
we invite the reader to consult [58].

Note that Precision-Recall Curves (PRC) can be used as an
alternative to ROC curves for problems with unbalanced
data between classes [59]. PRC space is built by plotting on
X axis the Recall which is the same as TPR, while Y axis
stands for Precision which measures the fraction of
samples classified as positive that are truly positive.

Prediction power or accuracy. In contrast to ROC
analysis, the prediction power or the accuracy is designed
to quantify the performances of classifiers in a number. The
classification accuracy is typically expressed in percentage
as accuracy ¼ TNCC

TNS ! 100, where TNCC stands for the total
number of correctly classified samples while TNS denotes
the total number of samples. Alternatively one can use the
error rate which is defined by Errð%Þ ¼ 1* accuracy.

If the samples are unbalanced between the different
classes, the prediction power or the accuracy of a classifier
is less informative. To overcome this drawback, balanced
accuracy defined as the mean value of sensitivity and
specificity should be used instead [60].

6.2 Classifier Independent Evaluation of the
Signature

It is well known that two different classifiers may report
different results for the same input data. In order to remove
as much as possible the classifier’s influence on the
evaluation process one solution is to evaluate the signature
with respect to several classifiers, but this strategy demands
extra computational effort. One way to avoid this incon-
venience is to use classifier independent measures. These
measures take into account only the intrinsic content of the
selected subset of features and the target feature.

Group correlation coefficient is a classifier independent
tool used for the evaluation of FS methods [61]. It is actually
a tradeoff between the overall goodness of fit (computed as
the average correlation between the subset of features/
genes and the class label) and its redundancy (defined as
the intracorrelation of the signature). The group correlation
coefficient is defined in Table 13.

6.3 Evaluating the Robustness of the Signature
A different evaluation strategy in the context of FS is
represented by the robustness or stability tests. We stress on
the fact that stability tests are never used as a single
evaluation measure and they should always be combined
with some predictive indices. Several studies conducted for
DEGs discovery show that many FS methods are highly
dependent on the training set of samples [62], [63] resulting
in lists of features which are unstable under variations in
the training population. In this context, evaluating the
robustness of the list becomes mandatory in declaring it as
being relevant with respect to a target feature.

According to [64], the variability of the list depends on
two aspects: first is the use of different scoring functions to
select features/genes while the second one is due to the use
of the same scoring function under slight variations in the
data set. Stability tests should be performed to check for
variability in the list originating from both sources.

As a common rule, stability tests compare two lists of a
fixed number of features/genes by quantifying the size of
the intersection between the two lists. A well-known
method is the percentage of overlapping genes (POG). Several
studies make use of the POG index to evaluate the
reproducibility of the results for FS methods [65], [66]. It
consists in comparing the lists of the top k most
discriminating genes found by different methods and
computing the percentage of genes found in all lists.
Another example is Correspondence At the Top (CAT) [67]
which is a visualization method that represents the
proportion of overlap of the top p features/genes versus
p. One pitfall of these two methods is the fact that the list of
features must be of equal size while in practice one might be
interested in comparing lists of different size. One method
able to cope with this drawback is the overlap score
described in [68].

As previously mentioned, stability tests are used for
testing the variability of lists of features/genes both while
using different scoring functions and while introducing
perturbations in the data set. Stability tests under perturba-
tions in the data set are generally performed via a subsam-
pling-based strategy. A number of k subsamples of different
size are drawn from the entire population of samples. FS is
then performed on each of the k subsamples and ameasure of
robustness (e.g., POG index) is computed. In [57], the overall
stability is defined in general terms as the average over all
pair-wise comparisons between different signatures

Rtot ¼
2
Pk

i¼1

Pk
j¼iþ1 Rðfi; fjÞ

kðk* 1Þ
; ð5Þ

where fi is the outcome of the FS method applied to
subsample i and Rðfi; fjÞ is a similarity measure between fi
and fj. For filter methods, this similarity measure could be
the Spearman rank correlation coefficient. For a more
detailed explanation on the stability tests for FS we invite
the reader to consult [64].

7 FINAL COMMENTS AND RECOMMENDATIONS

As we mentioned in the end of Section 3, most filter
methods presented in this survey are designed for
supervised classification problems. However, several meth-
ods (those making use of scoring functions able to deal with
continuous target annotations) can be used for regression
problems as well, see Table 15.

From a practitioner point of view, the choice of a method
could be a very difficult task without a solid experience in
the field. Here, we provide some basic guidelines which
hopefully will help the practitioner in choosing the
appropriate method for his application. We focus on two
types of recommendations: one concerning the choice of the
scoring function and one for the choice of the statistical
significance test (this is only valid for ranking methods). In
the choice of the scoring function the following aspects
should be considered: its complexity, the minimum number
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of samples needed to obtain accurate results, the parametric
assumptions and the variable type of the target annotation
(binary, multivalued, continuous), see Table 15. In general,
the practitioner will choose the scoring function according
to the best tradeoff among these parameters as follows: it
would be preferred the simplest scoring function, with the
slightest parametric assumptions, according to the number
of samples available and to the variable type of the target
annotation. Concerning the statistical significance tests, the
practitioner should be aware that more accurate results in
terms of false discovery rates (features/genes declared
informative but which are actually not) are obtained using
more elaborate methods such as the multiple hypothesis
testing approach but this will increase the overall complex-
ity of the method. However, it is very often the case that
simpler statistical significance tests (e.g., p-values) will
provide comparable results. Nevertheless, for a trustful
inference from the results, the practitioner should compare
the outcome of several methods both in terms of prediction
power and stability as mentioned in Section 6. The most
frequently used methods for DEGs discovery seems to be
Significance Analysis of Microarrays (SAM), Analysis of
Variance (ANOVA), Empirical Bayes t-statistic, the Welch t-
statistic, Fold-Change or the Rank Product which are
commonly used in comparative studies [69].

Table 15 shows a brief comparison between scoring
functions used to identify informative features/genes from
GEM data in terms of complexity, minimum number of
samples required, variable type of the target annotation and
parametric assumptions. We assigned scores (stars from 1
to 3) to quantify the complexity of the different families of
scoring functions according to the number of parameters in
their formulation (one star denotes the simplest scoring
functions) as well as the minimum number of samples
required (one star denotes that the scoring function
provides trustful results only with few samples). As one
could be aware of, most of them are dedicated to binary (B)
annotations. Multivalued (M) or continuous (C) annotations
are also available in clinical annotations but these are more
difficult to handle. The way one can deal with multivalued
annotations is to generalize the methods designed for
binary annotations by using a one-against-all strategy.

Continuous annotations can be handled using PCCs or
similar scoring functions (for regression problems). Para-
metric scoring functions (e.g., t-tests, fold change, etc.)
provide meaningful results only if the parametric assump-
tions hold, while nonparametric scoring functions can be
used in a more general framework, for any distributions or
where the distribution of samples is unknown.

8 CONCLUSION

The paper aims to provide a comprehensible and as
complete as possible survey on filter methods for FS. The
literature surveyed covers exclusively the FS methodology
for DEGs discovery from GEM data. This paper does not
aim in any way to provide numerical evaluations of filter
methods in terms of which one is the best, but to gather as
much as possible domain knowledge about this particular
topic. This upcoming task is a natural continuation of this
work and comparative studies can easily be performed
based on this material.2

The literature dedicated to filter methods for informative
genes discovery is very vast and the differences between
existing methods are often very subtle which can be easily
seen from the multitude of related scoring functions used to
propose different techniques for individual feature/genes
ranking. This often renders the conceptual comparison of
methods not so obvious.

In the presentation of the surveyed literature, we have
been guided by a top-bottom strategy which is partially
illustrated in the taxonomy in Fig. 1. From the definition of
the problemwe first situated the filter methods in the context
of filter selection among the other groups of FS methods:
wrapper, embedded, and ensemble. Consequently, we
aimed to identify the most general characteristics proper to
filtermethods. Here, one hasmany choices butwe decided to
pursue our survey following twomain strategies adopted by
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TABLE 15
Summary of Scoring Functions for Filter FS: The Complexity is Proportional with the Number of Parameters in the Scoring Function;
for the Minimum Number of Samples Required, One Star Denotes That the Scoring Function Has Been Proposed to Cope with Few

Samples Data Sets; Class Label Feature May Be of Three Types: Binary (B), Multivalue (M) or Continuous (C)

Some scoring functions are valid under some parametric assumptions on the population of samples which restricts their use in the case where the
population of samples do not follows the assumptions.

2. Here we provide some additional information aiming to guide the
readers interested in comparative studies of these techniques. Many filter
methods for FS are available in Bioconductor R package and some also exist
in Bioinformatics Toolbox in Matlab. For testing purposes, curated GEM
data are available through the InSilicoDb R/Bioconductor package [70],
developed inside the InSilico project (http://insilico.ulb.ac.be).



researchers to develop filter methods for FS: ranking and
space search methods. Each one of these groups has been
further presented in a syntheticmanner by reviewing its own
specific aspects. For the ranking methods we reviewed and
categorized the scoring functions and we also presented the
methods for estimating statistical significance while for the
space search methods we presented the most used optimiza-
tion functions. We completed the top-bottom strategy by
resuming the different filter methods for FS, mentioning for
each one of them the scoring function/statistical significance
for ranking methods, respectively, objective function for
space search methods.

In order to have a complete picture on the topic we
mentioned the most common validation techniques which
equally apply to all FS methods and in the end we
formulated some guidelines aiming to help novel practi-
tioners in choosing the appropriate method for their
applications. We also provided a conceptual comparison
between scoring functions for filters in Table 15.
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