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Abstract

This paper presents a novel dataset for traffic accidents anal-
ysis. Our goal is to resolve the lack of public data for re-
search about automatic spatio-temporal annotations for traffic
safety in the roads. Our Car Accident Detection and Predic-
tion (CADP) dataset consists of 1,416 video segments col-
lected from YouTube, with 205 video segments having full
spatio-temporal annotations. To the best of our knowledge,
our dataset is largest in terms of number of traffic accidents,
compared to related datasets. Through the analysis of the pro-
posed dataset, we observed a significant degradation of ob-
ject detection in pedestrian category in our dataset, due to the
object sizes and complexity of the scenes. To this end, we
propose to integrate contextual information into conventional
Faster R-CNN using Context Mining (CM) and Augmented
Context Mining (ACM) to complement the accuracy for small
pedestrian detection. Our experiments indicate a consider-
able improvement in object detection accuracy: +8.51% for
CM and +6.20% for ACM. For person (pedestrian) cate-
gory, we observed significant improvements: +46.45% for
CM and +45.22% for ACM, compared to Faster R-CNN.
Finally, we demonstrate the performance of accident fore-
casting in our dataset using Faster R-CNN and an Accident
LSTM architecture. We achieved an average of 1.359 sec-
onds in terms of Time-To-Accident measure with an Av-
erage Precision of 47.36%. Our Webpage for the paper is
https://goo.gl/cqK2wE

Introduction
According to the National Safety Council, an estimated
40,200 people died on the nation’s road in 2016, making
motor vehicle crashes the second leading causes of unin-
tentional deaths in the United States (The National Safety
Council 2017). Vulnerable road users (jaywalkers), alcohol
impaired driving, speeding, seat belts, drowsy and fatigue
driving are major risk factors of injury fatalities on the road.
A majority of the deaths came from low and middle-income
countries where there are many risks for pedestrians, cyclists
and motor vehicles on the road. With the desire to improve
the road safety, many efforts have been made by research
communities to improve the technology to forecast and de-
tect traffic accidents. For instance, the European Research
Program PROMETHEUS (Williams 1992) and the ADVI-
SOR project (Naylor and Attwood 2003) have been estab-
lished to involve research institutes in both academic and in-
dustry to detect abnormalities and to reduce traffic fatalities,
as well as to enhance the road safety. Our work is devoted
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Figure 1: (a) Can you depict where the accidents happen
in the image plane?; (b) Can you identify and forecast the
sequences containing accidents? Best viewed in color.

toward this objective with neutral views of the accidents
from traffic cameras which are installed highly on a cor-
ner of the road. The advantage of third-person views is two-
fold: (i) Unlike the personal views, third-person views have
a fixed and wider view because they are mounted higher;
and (ii) Unlike the personal views, traffic camera views can
be used in the public for a vast amount of vehicles daily,
thus, the cost per vehicle per day is lower. While the former
enhances the views of traffic accidents, the latter enhances
the trade-offs between cost and safety: higher quality (HD
720p-1080p) and better featured cameras, such as Palt-Tilt-
Zoom HD cameras, can be used with low cost to monitor the
public crowds. Although the exploitation of traffic camera
views is promising, the number of datasets aimed at learning
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to detect and predict the accidents on those views is limited
due to several unaffordable factors: (i) traffic accidents are
rare events, thus, acquiring enough data by recording in a
road intersection is infeasible because one may have to wait
endlessly for the an accident to happen; and (ii) the access
to traffic camera data is legally difficult to obtain in practice.
To this end, we propose an effective data collection process
to exploit the edge-case data: YouTube videos of traffic ac-
cidents have been uploaded by users over the world. We ex-
ploited the search engine of YouTube, and added our anno-
tations processes using both internal annotators and outside
workers to build a novel dataset, the Car Accident Detection
and Prediction (CADP) dataset for multiple purposes: tem-
poral segmentation, object detection, tracking, vehicle colli-
sion, accident detection and prediction. Our dataset contains
230 videos, each video containing at least one accident cap-
tured from fixed traffic camera views and 1,416 segments of
traffic accidents. Moreover, we selected 205 segments with
HD quality to annotate spatio-temporal data for object de-
tection, tracking and collision detection.
Target tasks The release of CADP dataset contains the fully
annotated 205 video segments using VATIC tool (Vondrick,
Patterson, and Ramanan 2013). It contains the bounding box
annotation for each frames of 6 object categories: “Person”,
“Car”, “Bus”, “Two-wheeler”, “Three-wheeler”, and “Oth-
ers”. It also contains the tracking annotations with attribute
information of timing that collisions between objects hap-
pen. Therefore, we consider three tasks: object detection,
accident detection and forecasting1.
Contributions Our contributions are as follows:

• We introduce a new spatio-temporally annotated dataset,
the CADP dataset, for accident forecasting using traffic
camera views. Our dataset provides a novel view for traf-
fic accident learning, and we hope to contribute to the en-
hancement of re search on driving education as well as
road safety.
• We apply state-of-the-art object detection models such

as Faster R-CNN and accident forecasting models to our
dataset and show their results.
• We exploit the contextual information around the object

bounding box and test the impact of Context Mining and
Augmented Context Mining within Faster R-CNN to im-
prove the detection of small objects such as person and
improve the Faster R-CNN baseline scores.

The remainder of this paper is organized as follows. In
the next section we describe the related work in the field
of car accident forecasting and advancement in recent tasks
such as object detection, pedestrian detection. The Car Ac-
cident Dataset section describes our data collection pipeline
and annotation strategy and provides basic dataset statis-
tics for the released dataset. Finally, we describe our techni-
cal framework for object detection and accident forecasting,
with a set of extensive experiments.

1Although tracking is possible with our dataset, it is not a sim-
ple task, and we will leave it for future exploration. Furthermore,
1211 unlabeled video segments are also available for future anno-
tation efforts as well as for unsupervised, semi-supervised learning
purposes.

Related Work
Dataset for Car Modelling and Accidents With the devel-
opment of the concepts of smart cities and autonomous driv-
ing, there are recent works concerning traffic safety mon-
itoring using computer vision techniques. (Datondji et al.
2016) provides information about relevant datasets for traffic
monitoring at road intersections: the MIT dataset for traffic
camera events (a 19-min video), NGSIM dataset for road
traffic modeling, CBSR dataset for single views at complex
intersections, CVRR dataset which simulated videos gen-
erated for traffic modeling, QMUL dataset that contains a
one-hour recording at a busy intersection and KIT dataset
which consists of videos with fog, rain and snow to model
traffic car behaviour near intersections. (He and Zeng 2017)
performs experimentation using Faster R-CNN (Ren et al.
2015) to show the detection performance on the INRIA
dataset. For the traffic accident videos, a recent UCF-Crimes
dataset (Sultani, Chen, and Shah 2018) has 13 real-world
anomalies such as Abuse, Accidents, Shooting and is fo-
cused on understanding of violent scenes in video. Dash-
cam Accident Dataset (DAD) (Chan et al. 2016) uses Dash-
board Camera captured videos to perform accident forecast-
ing with 2.4 hours of video data. We believe that both Dash-
board camera views and Traffic camera views could provide
critical information for predicting accidents. However, traf-
fic cameras give an overview of the complete road and thus
will be able to track more vehicles as compared to dashboard
camera views.
Object Detection In recent years, there have been many
works on the object detection task (Girshick et al. 2014;
Girshick 2015; Ren et al. 2015; He et al. 2017; Liu et
al. 2016) which utilize the strength of deep learning (Le-
Cun, Bengio, and Hinton 2015) in common benchmarks
such as PASCAL VOC (Everingham et al. ) and Microsoft
COCO (Lin et al. 2014). R-CNN (Girshick et al. 2014) uses
a region proposal algorithm as a pre-processing step prior
to CNN architecture feature extraction. These proposals are
generated using Edge Boxes (Zitnick and Dollár 2014) or
Selective Search (Uijlings et al. 2013) and are independent
of CNN. SPP-Net (He et al. 2015) were proposed to im-
prove the R-CNN speed by sharing computation. Fast R-
CNN (Girshick 2015) reduces the run time exposing the re-
gion proposal computation as bottleneck whereas Faster R-
CNN implements region proposal mechanism using CNN
and thus integrating region proposal as part of the CNN
training and prediction (Ren et al. 2015). Mask R-CNN (He
et al. 2017), Single-Shot Detector (SSD) (Liu et al. 2016)
and FPN (Lin et al. 2017) combine multiple feature maps
with different resolutions to handle multiple object sizes.
Pedestrian Detection predicts information about the pedes-
trian position based on the detection in current frame. (Dol-
lar et al. 2012) provides a comprehensive overview and ar-
guments to replace continuous detection by pedestrian track-
ing and thus achieve real-time performance for pedestrian
detection. (Benenson et al. 2014) shows adding extra fea-
tures, flow information and context information are comple-
mentary additions resulting in significant gains over other
strong detectors. (Wang et al. 2018) uses body-part seman-
tic and contextual information. (Li et al. 2017) proposes a
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Figure 2: Data collection and annotation for traffic CCTV videos.

Haar-like cascade classifier design for fast pedestrian detec-
tion. (Zhang et al. 2016) reviews Region Proposal Network
in Faster R-CNN to work better as a standalone classifier
whereas downstream classifier degrades the result. (Kong et
al. 2018) proposes an extension to Faster R-CNN using con-
textual information with multi-level features to detect pedes-
trians in cluttered background obtaining embedding pooling
information from a larger area around original area of inter-
est.
Accident Detection and Forecasting In recent years, there
have been a few works focusing on the use of cameras for
accident forecasting. For example, (Chan et al. 2016) uses
Dashboard Cameras for accident forecasting. We believe
that there is a strong requirement for those datasets to im-
prove the reaction time of autonomous vehicles such as self-
driving cars, and help the road surveillance.

Car Accidents Dataset
Data collection
The major challenge in collecting data for traffic accidents is
two-fold: (i) Abnormality: because the accidents are rare, al-
though there are live-streams from traffic cameras mounted
on the corner of road intersections, this is infeasible to wait
for an accident to happen; and (ii) Access: access to traf-
fic camera data is often limited. Due to this challenge, the
data of traffic accidents from fixed third-person views is of-
ten not available for public uses. To this end, in this work,
we attempted to exploit an edge case, the traffic accidents
captured from traffic camera views available on video shar-
ing websites such as YouTube. The whole pipeline for data
collection and annotation can be seen in Figure 2.
Keyword search To collect the data for traffic accidents,
we exploited the search engine and resources available in
YouTube. We used keywords like ”car accidents traffic cam-
era” to search for relevant videos. This step returned 582
YouTube videos.
Refinement However, the collected videos from these
queries contain many irrelevant items. To collect only rel-
evant items, we employ three annotators to manually watch
and report items as follows. All annotators are instructed to
know that our objective is to collect only videos which con-
tain at least one accident scene which is captured from a
traffic CCTV footage. The annotators then watched all col-
lected videos one by one, and answered a survey about the
videos. Besides basic questions to identify whether the an-
notators want to download the videos based on explained
objectives, there are three follow-up questions to filter noisy

responses. The first question asks the annotators to justify
their concrete reasons for downloading the videos. The sec-
ond and third questions ask annotators about side aspects
of the videos to discover inconsistency in their responses.
Videos with inconsistent responses will be removed.

Annotations

After the refinement step, there are 230 videos that were
found to be strongly relevant to our objectives. However, for
each video, there is only a portion relevant to traffic CCTV
footage. Therefore, we employed a two-stage annotation
process to get these relevant segments: first we asked human
annotators to extract the starting and ending time-stamps for
CCTV traffic camera segments from each videos, then we
collected the segments and perform the spatio-temporal an-
notation using the VATIC tool (Vondrick, Patterson, and Ra-
manan 2013) (see Figure 2).
Stage 1: Temporal segmentation Most of the YouTube
videos have a duration of several minutes but contain only
several seconds with accidents from traffic CCTV footage.
Using the BeaverDam tool2, human annotators reported the
starting and ending timestamps of each relevant segment.
Based on the reported results, we extracted the frames of
relevant segments using OpenCV3.
Stage 2: Dense Spatio-Temporal annotation After Stage
1, we have 1416 video segments of positive events. The to-
tal duration is 5.24 hours with an average number of frames
of 366 frames per video (see Table 1). About 80% of videos
have a length from 100 to 600 frames. From short videos
(less than 600 frames), we choose 240 videos with HD qual-
ity to do dense spatio-temporal annotation. This stage in-
volved four human annotators and has been done in about
two months. From the 240 selected videos, the annotators
identified 35 videos which are duplicated with one of the
other videos. They are the videos with identical contents or
cropped (resized) versions of another video. Finally, we have
205 videos with full annotations. The categories of objects
are “Person”, “Car” (including minivans), “Bus”, “Two-
wheeler” (including cyclists, motorbikes), “Three-wheeler”
and “Others” (objects which are not classified in other cate-
gories). About temporal annotations, human annotators were
asked to mark when a collision between vehicles/pedestrians
on the road happens, and when it ends.

2https://github.com/antingshen/BeaverDam
3https://opencv.org/



Dataset Statistics
Statistics of our dataset can be found in Table 1 and Figure 2.
Some key characteristics of our dataset are as follows:

• Object size: As shown in Figure 2(c), a major portion of
the CADP dataset is occupied by small objects. Accurate
detection of small objects has been a challenge in surveil-
lance videos for a long time. The CADP dataset provides
additional samples for these objects from traffic CCTV
footage.
• Video length: The average length of the videos in the

CADP dataset is 366 frames per video, which is 3.66x
longer than the dataset from (Chan et al. 2016). The UCF-
Crimes (Sultani, Chen, and Shah 2018) also has a cate-
gory for road incidents with long videos, but only tempo-
ral annotations are provided. The CADP dataset provides
a set of videos with full spatio-temporal annotations.
• Number of positive videos (1416 videos) in our dataset

for only traffic accidents is much larger than that in UCF-
Crimes (151 videos of road accidents) and DAD (about
600 videos). Note that, in CADP, there are videos with
more than one accident. Our dataset is devoted to traffic
accidents (positive events), and we did not collect videos
of negative events. Negative events can be found easily in
other datasets such as DETRAC (Lyu et al. 2017).
• Time to first accident is the duration from time 0 in the

video to the onset of the first accident. In the fully an-
notated subset of 205 videos in CADP dataset, this mea-
sure is 3.69 seconds in average. Compared to DAD (Chan
et al. 2016) (4.50 seconds), CADP has a shorter time-to-
first-accident. This characteristic can affect the design of
experimentation for accident forecasting.
• Real-world data: CADP contains videos collected from

YouTube which are captured under various camera types
and qualities, weather conditions (see Figure 1) and
edited/resampled videos.

Improved Faster R-CNN and Accident
Forecasting

Improved Faster R-CNN for Object Detection
Faster R-CNN (Ren et al. 2015) is a deep learning archi-
tecture for object detection in still images. It has been suc-
cessfully applied to object detection in well-known bench-
marks such as PASCAL VOC 2007/2012 (Everingham et al.
) and Microsoft COCO (Lin et al. 2014), and recently in
pedestrian detection domain (Zhang et al. 2016; Ren, Zhu,
and Xiao 2018). Like its preceders (Girshick et al. 2014;
Girshick 2015), it extracts deep features of each proposal
regions using a deep learning backbone such as ResNet-50.
However, Faster R-CNN is an end-to-end architecture, be-
cause the proposal generation step is done using an internal
proposal generation mechanism, the Region Proposal Net-
work (RPN), which reduces the need for dependence on ex-
ternal proposal algorithm such as Selective Search or Edge
Boxes, with a sliding window fashion. An important design-
ing aspect of Faster R-CNN is its two-stage design: after
features are extracted for proposals, they are classified and

regressed to match the anchor boxes. Learning in Faster R-
CNN is done with objectives for bounding box regression
and classification as follows: Lreg =

∑
i smoothL1(ti −

vi) ,Lcls =
∑

i− log pu, where u and v are the true class
and target bounding box for a groundtruth anchor, p and t are
the predicted probability of class u and predicted bounding
box. The smoothL1 loss function is defined as in (Girshick
2015).
Implementation details We rescale the image to 600 pixels
size to smallest size of the image as well as use 3 sizes for
the anchor boxes 1282, 2562, and 5122 pixels. Further, the
aspect ratios of the anchor boxes is fixed at 1:1, 2:1 and 1:2
pixels as in Faster R-CNN paper (Girshick 2015).
Training procedure The multi-task objective for learning
Faster R-CNNs is L = Lcls + λLreg . For negative min-
ing, we use the standard approach: after the predicted boxes
are filtered using non-maximum suppression (NMS) at the
overlap threshold 0.7, the RoIs which have confidences in
the range [0.1,0.5) are considered as “hard negative”, and
the RoIs which have confidence larger than 0.5 are consid-
ered as “positive”. Finally, assuming that we need 32 can-
didates to contribute to the final loss, we randomly select
positive RoIs first to fill at least 16 positions, then we ran-
domly select from the negative RoIs to fill all 32 positions.
Only these candidates contribute to the final loss. For data
augmentation, we use horizontal and vertical flips.

Context Mining
Context Mining As noticed from Figure 3(c), our dataset
consists of objects which are small objects (<100 pixels)
in majority. Moreover, from preliminary results on CADP
using ResNet-50 backbone Faster R-CNN, we found that
there is a significant degradation of accuracy (mAP@0.5)
for ”Person” (pedestrian) category. We argue that, the rea-
son is because, when captured from CCTV traffic camera
footage, a person often looks smaller than other vehicle cat-
egories in our dataset. Therefore, the bounding boxes of the
pedestrians often contains fewer pixels than other objects. To
this end, we propose to mine the context information around
the small objects in CADP dataset, by extracting the con-
text information in the RoI pooling layer (Girshick 2015).
Given the region of interest of a small object x, a context
region c in common sense (Figure 3(a)) contains x. By ex-
tending the context regions, more information is involved
into the deep features. Let C = {ci}ni=1 be the pooled con-
textual features, we choose the best responses from them by
using Maxout networks (Goodfellow et al. 2013). By apply-
ing the dropout process to only linear parts of the signals,
the Maxout network is considered to have more generaliza-
tion ability than traditional Dropout approach. The Maxout
operator is applied to C ∩ {x} to obtain final pooled feature
f = Maxout(C ∩ {x}).
Augmented Context Mining The bounding box annota-
tions for small objects can be inaccurate due to human er-
rors (because the object size is too small and difficult for
humans to draw a tight bounding box, annotators often draw
a larger box or a box which truncates a part of the body).
Furthermore, by enlarging the boxes, due to occlusion, the
context may involve a different object into the box. Thus, to
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Figure 3: The statistics of the CADP dataset.

Table 1: Comparison between our dataset and related datasets. T: temporal annotation; S: spatial annotation (e. g. bounding
boxes or pixel-level annotations); A: traffic accidents; C: videos were captured from a CCTV footage. The “# positives” refer to
the number of videos which contain an accident. This statistics is computed from video-level labels (no accident/accident). Our
dataset is not the largest in terms of the number of hours, but is the largest in terms of number of accidents (positive events).

Dataset name # videos # positives Total duration Avg. # frames T S A C
UCF-Crimes (Sultani, Chen, and Shah 2018) 1900* 151 128 hours* 7247* 3 7 3 3
DAD (Chan et al. 2016) 1730 620 2.4 hours 100 3 3 3 7
Ours 1416 1416 5.2 hours 366 3 3 3 3
* These numbers from UCF-Crimes dataset are of 13 categories of crimes (not only for traffic accidents).

address these concerns, we also consider a different context
mining, the Augmented Context Mining (ACM) to fully ex-
ploit all possible patterns of context around the small per-
son boxes. Rather than gradually extending the small re-
gions to obtain the contexts, we narrow down and extend
the small boxes in both horizontal and vertical directions.
Given a step stride s and the number of horizontal and ver-
tical steps m,n ∈ {0,±1,±2, . . .}, an augmented context
a = xm,n is defined by extending (when m,n > 0) or nar-
rowing down (when m,n < 0) x. In the Results section, we
compare the performance of these two mining strategies.
Implementation details To control the effects of CM/ACM
on small objects, we introduce constraints based on the area
ratio of the bounding box and the image. Given a bounding
box with area B and image with area I , and a threshold α ∈
[0, 1]). The context mining will be applied to a region if and
only if B ≤ αS. We choose α = 0.01 in our experiments.

Accident Forecasting
Our framework for Accident Forecasting can be found
in Figure 4(c). First, we extracted the features from the
last fc layer (2048D) in Faster R-CNN. The features are
then fed into the Dynamic-Spatial-Attention LSTM (DSA-
LSTM) (Chan et al. 2016) to output accident scores over
time. DSA-LSTM is built upon the famous Soft-Attention
LSTM (Xu et al. 2015). However, instead of applying spa-
tial attention to regular grid, DSA-LSTM distributes the at-
tentional weights to spatial objects detected by a state-of-
the-art detector (Ren et al. 2015). Furthermore, DSA-LSTM
applies to “sequences” of frames dynamically (when Soft-

Attention LSTM applies to a single frame for caption gener-
ation). The full-frame features are also exploited and expo-
nential loss is applied for training with positive sequences.
In our view, the exponential loss fits the nature of traffic ac-
cidents in CADP because accidents often happen suddenly
and the damages grow exponentially in a short time. The
exponential loss for positive events can be formulated as
follows: Lp ({a}) =

∑
t−e−max(0,y−t) log(at), where a

is the attended object, y is the time the accident happens,
and at is the accident probability of a at time t. For the
negative sequences (no accidents), we used cross-entropy
loss: Ln ({a}) =

∑
t− log(at).

Exhaustive negative mining Negative examples are often
critical for learning in various situations. However, CADP
does not provide explicit negatives. A potential source to
mine these examples is existing datasets such as the DE-
TRAC dataset (Lyu et al. 2017). In this work, we exhaus-
tively mine the negatives from positive sequences. Given an
accident happens at time t, we mine a positive segment with
length 100 frames from time t− 90 to time t+ 10. We ran-
domly mine a segment with length 100 frames which does
not overlap with the positive event. Because our videos are
longer than 100 frames in average, this mining scheme was
possible. However, many accidents happen between the first
100 frames and the Time-to-First-Accident in our test set is
only 3.69 seconds, therefore sampling from t − 90 may not
be possible. To exhaustively mine the negative segments, we
append the dummy frames before time 0 to have 90 frames.
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Results

Experimental setup

Cross-validation We sample a trainval set of 103 videos
for training of object detectors and accident forecasters. The
102 remaining videos have been used to test the forecasters.
Our choice was contingent on creating a robust model which
we wanted to test on enough samples and thus split with a
50:50 ratio (train and test set) where each set has similar set
statistics in terms of number of objects. For object detection,
from the frames of the 103 videos in trainval set, we sample
randomly three folds (train/test split) to compute the accu-
racy. After the cross-validation of object detectors in train-
val set, we select the best performers as the feature extractor
for training the accident forecaster (see Figure 4(c)).
Implementation details Our system is implemented using

the Tensorflow framework4. During testing, we improve per-
formance by detecting objects with different scales of im-
ages (multi-scale testing). For SSD, we use the implementa-
tion of (Liu et al. 2016). We fine-tune all object detectors in
the CADP trainval set until convergence. For accident fore-
casting, we follow the details described in the previous sec-
tion. The initial learning rate for Faster R-CNN was 10−5

and the Adam optimizer was used.
Evaluation measures For object detection, we use mean
Average Precision at IoU=0.5 (mAP@0.5) (Everingham
et al. ) to assess the accuracy of the detectors. For ac-
cident forecasting, we follow (Chan et al. 2016) and use
Time-to-Accident (ToA) and recall, precision and average
precision (AP). Given the number of true-positives (TP),
false-positives (FP) and false-negatives (FN), Precision =

TP
TP+FP , and Recall = TP

TP+FN . To compute the AP, we
sample various thresholds and compute ToA, recall and pre-
cision at each operating point. AP and mean ToA are com-
puted from these data.

Object Detection
Baselines: SSD vs. Faster R-CNN The comparison be-
tween SSD and Faster R-CNN can be found in Table 2. In-
terestingly, we observed a large gap between the mAP@0.5
of SSD and Faster R-CNN (approx. 19.69%). From the ob-
servation about the performance of these two detectors, we
choose Faster R-CNN as the baseline for further experimen-
tation. The performance of Faster R-CNN over three sam-
pled folds are reported in Table 3. We can observe stable
performances of this detector in CADP trainval set. How-
ever, we can also observe that the performances degrade and
become unstable in the “Person” category.
Context Mining We choose the third fold to perform ab-
lation study on hyper-parameter of Context Mining (CM)
and Augmented Context Mining (ACM). The results are

4https://www.tensorflow.org/



Table 2: Comparisons between state-of-the-art methods in our dataset. We choose SSD and Faster R-CNN because they are the
popular choices for object detection in surveillance video literature. Please see the text for details.

Method All Person Car Bus Two-wheeler Three-wheeler Others
SSD (Liu et al. 2016) 64.70 - - - - - -

Faster R-CNN (Ren et al. 2015) 84.39 52.26 89.39 97.27 77.56 98.88 91.00

Table 3: Cross-validation results for Faster R-CNN. We used mAP@0.5 (0.5 is IOU score) as the measure. Except the “Person”
category, Faster R-CNN performs stably across all categories of vehicles.

Fold All Person Car Bus Two-wheeler Three-wheeler Others
1 82.32 36.89 81.04 97.24 76.00 98.71 94.58
2 84.39 52.26 89.39 97.27 77.56 98.88 91.00
3 84.33 47.22 85.40 98.57 82.32 98.30 94.58

Mean 83.68 45.46 85.28 97.69 78.63 98.63 93.39

Table 4: Ablation study on different object detectors. s is
the step stride to extend or narrow down the width/height of
a context, nc is the number of contexts in Context Mining,
and m,n are the parameters of ACM.

Method Parameter s mAP@0.5
Faster R-CNN - - 84.33

Context Mining

nc = 2

2

70.52
nc = 4 81.00
nc = 8 90.49
nc = 16 92.83
nc = 2

4

77.43
nc = 4 89.04
nc = 8 92.59
nc = 16 92.84

Augmented CM m = n = 8 4 90.53

Table 5: Person detection results of the best methods.

Method mAP@0.5 Improvement
Faster R-CNN 47.22 -
Context Mining 93.67 +46.45
Augmented CM 92.44 +45.22

shown in Table 4. With appropriate hyper-parameters (nc =
16, s = 4 for CM), CM and ACM significantly outperform
the baseline (+8.51% for CM and +6.20% for ACM). For
pedestrian detection, results in Table 5 indicate significant
improvements of CM and ACM over Faster R-CNN. Be-
tween CM and ACM, CM outperforms ACM by about two
points in terms of mAP@0.5. It implies that mining by small
number of contexts and by extending the original regions
gradually can lead to a better performance.
Runtime analysis Increasing the number of contexts results
in an increase of th inference time: for Faster R-CNN, it
takes 0.56 seconds for inference of a single image, while
CM (nc = 16, s = 4) takes 1.04 seconds and ACM (m =
n = 8, s = 4) takes 5.81 seconds, with single GPU. Mining
in a large space of contexts requires time and resources.

Table 6: Performance comparison between different acci-
dent forecasters. ToA@0.8 is the ToA when Recall is 80.0%.
The results are obtained after training each models for 40
epochs like in (Chan et al. 2016).

Method AP mToA ToA@0.8
DSA (Chan et al. 2016) 47.36 1.359 1.798
ACM+DSA 47.09 1.457 2.104

Accident forecasting
The results for accident forecasting using DSA-
LSTM (Chan et al. 2016) can be found in Table 6.
For a dataset with average Time-to-First-Accident (ToA) is
3.84 seconds, DSA-LSTM with Faster R-CNN features can
issue warning prior to the accidents at 1.359 seconds with
highest AP is 47.36%. Moreover, when recall is 80%, the
ToA is 1.798 seconds. DSA-LSTM with ACM features can
issue warning prior to the accidents at 1.457 seconds with
AP is 47.09%. ToA@0.8 is 2.104 seconds.

Conclusion
We introduced the Car Accident Detection and Predic-
tion (CADP) Dataset from CCTV Traffic Camera videos.
A detailed account of the challenges faced in creation of
the dataset such as data collection, access to traffic cam-
era footage were tackled in the paper. We presented the re-
sults of state-of-the-art object detection and accident fore-
casting models on our dataset. We highlighted the strengths
and weaknesses of these baseline models, and outperformed
the initial results by adding context mining or augmented
context mining. We finally showed that augmented context
mining does not improve the score obtained with a gradual
context mining for object detection. We also demonstrate the
final model for accident forecasting that can predict acci-
dents about 2 seconds before they occur with 80% recall.
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