Propelling efficiency of front-crawl swimming

HUUB M. TOUSSAINT, ANITA BEELEN, ANNE RODENBURG, ANTHONY J. SARGEANT, GERT de GROOT, A. PETER HOLLANDER, AND GERRIT JAN van INGEN SCHENAU Department of Exercise Physiology and Health, Faculty of Human Movement Sciences, Vrije Universiteit and Universiteit van Amsterdam, 1105 AZ Amsterdam, The Netherlands

Abstract

Toussaint, Huub M., Anita Beelen, Anne Rodenburg, Anthony J. Sargeant, Gert de Groot, A. Peter Hollander, and Gerrit Jan van Ingen Schenau. Propelling efficiency of front-crawl swimming. J. Appl. Physiol. 65(6): 2506-2512, 1988. - In this study the propelling efficiency (e_{p}) of front-crawl swimming, by use of the arms only, was calculated in four subjects. This is the ratio of the power used to overcome drag $\left(\mathrm{P}_{\mathrm{d}}\right)$ to the total mechanical power (P_{o}) produced including power wasted in changing the kinetic energy of masses of water (P_{k}). By the use of an extended version of the system to measure active drag (MAD system), P_{d} was measured directly. Simultaneous measurement of O_{2} uptake ($\dot{\mathrm{V}}_{2}$) enabled the establishment of the relationship between the rate of the energy expenditure $\left(\mathrm{Pv}_{\mathrm{O}_{2}}\right)$ and P_{0} (since when swimming on the MAD system $\mathrm{P}_{\mathrm{o}}=\mathrm{P}_{\mathrm{d}}$). These individual relationships describing the mechanical efficiency ($8-12 \%$) were then used to estimate P_{o} in free swimming from measurements of $\dot{\mathrm{V}} \mathrm{O}_{2}$. Because P_{d} was directly measured at each velocity studied by use of the MAD system, e_{p} could be calculated according to the equation $e_{p}=P_{d} /\left(P_{d}+P_{k}\right)=P_{d} / P_{0}$. For the four top class swimmers studied, e_{p} was found to range from 46 to 77%. Total efficiency, defined as the product of mechanical and propelling efficiency, ranged from 5 to 8%.

power; drag; kinetic energy; oxygen uptake; human

THERE ARE remarkably few systematic studies on the energetics of swimming. In most of these the mechanical power (P_{o}) that the swimmer has to deliver has been considered simply as the product of body drag and swimming velocity ($10,12,14,15$). However, this approach neglects the fact that some of the P_{0} generated by the swimmer is necessarily expended in giving water a kinetic energy change, since the propelling thrust is made against masses of water that acquire a backward momentum. Clearly the apportionment of P_{o} into the power used to overcome drag $\left(\mathrm{P}_{\mathrm{d}}\right)$ and the power expended in giving water a kinetic energy change (P_{k}) will be an important determinant of the swimmer's performance.
P_{d} at a swimming velocity (v) and drag force $\left(F_{d}\right)$ is given by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{d}}=\mathrm{F}_{\mathrm{d}} \cdot v \tag{1}
\end{equation*}
$$

The second component, P_{k}, is given by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{k}}=1 / 2 \mathrm{~m}(\Delta \mathrm{u})^{2} \mathrm{f} \tag{2}
\end{equation*}
$$

where m is the mass of the pushed away water, Δu is its velocity change, and f is the stroke frequency (19).
If the whole body is taken as free body diagram,
external power is defined as the sum of products of the external forces and the velocity of their point of application. Thus the power balance during swimming can be described by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{d}}-\mathrm{P}_{\mathrm{k}}=\mathrm{dE} / \mathrm{d} t \tag{3}
\end{equation*}
$$

where P_{o} is the total mechanical power delivered by the swimmer (minus internal losses of mechanical power, e.g., rotational energy of segments) and $\mathrm{dE} / \mathrm{d} t$ is the change in kinetic energy of the swimmer. Since the intracyclic velocity oscillations in front-crawl swimming are negligible (10), changes in the kinetic energy of the swimmer can be considered to be 0 (i.e., $\mathrm{dE} / \mathrm{d} t=0$) and therefore

$$
\begin{equation*}
P_{o}=P_{d}+P_{k} \tag{4}
\end{equation*}
$$

The ratio of P_{d} to P_{0} has been defined as the propelling efficiency $\left(\mathrm{e}_{\mathrm{p}}\right)(1,16,19,23)$, which is given by

$$
\begin{equation*}
e_{p}=P_{d} /\left(P_{d}+P_{k}\right)=P_{d} / P_{o} \tag{5}
\end{equation*}
$$

From these considerations it will be apparent that swimming performance will depend not only on a high P_{o} but will also depend on a high e_{p}. It is important to remember that e_{p} is a measure of the way the P_{o} generated by the swimmer is apportioned between P_{d} and P_{k}. It does not include any element of the efficiency of energy conversion to P_{0} within the body. This is a separate issue usually expressed as (apparent) mechanical efficiency $\left(e_{m}\right)$, which is calculated as the ratio of the energy equivalence of O_{2} uptake (V_{2}) to the P_{o} delivered.

Recently, a mathematical model for human front-crawl swimming was developed by de Groot and van Ingen Schenau (6). By assuming lift and drag propulsive forces acting on the hand and forearm, they predicted an e_{p} of 56% at optimum position. This compares with an experimentally determined value of 80% for fish (23), which at the highest swimming velocities studied agrees with the predictions of the mathematical model of Lighthill (13). The difference in values for e_{p} between fish and human swimming was explained by the larger propelling surfaces of the body (in particular the fins), relative to the total body surface. However, no experimental data on human e_{p} were available.

In the present investigation we were able to measure P_{o} and P_{d} by using a technique developed in our laboratory ($7,18,21,22$). Thus we are able to report for the first time experimental determinations of e_{p} in swimming humans.
table 1. Individual data for age, height, weight, and personal best time on 100-m free style

Subj	Age, yr	Ht, m	Wt, kg	100-m Time, s
$P H$	21	1.83	71	54.5
$G K$	21	1.83	67	53
$K V$	26	1.96	90	52.5
$F W$	21	1.83	80	55

METHODS

Subjects. Four male swimmers competing at international and national levels were studied (mean height 1.86 m , weight 77 kg , age 22.3 yr ; see Table 1). Mean personal best time of the subjects in $100-\mathrm{m}$ front crawl was 53.8 s . Throughout the experiments the water temperature was $26.9^{\circ} \mathrm{C}$.

Apparatus. P_{d} was measured by means of an extended version of the system to measure active drag (MAD system) (7). Simultaneous measurement of P_{d} and $\dot{\mathrm{Vo}}_{2}$ necessitates the opportunity to swim continuously over the system. Therefore two lanes of push-off pads were mounted alongside each other to make continuous swimming possible. A general view of the system is given in Figs. 1 and 2.

The MAD system allowed the swimmer to push off from fixed pads at each stroke. Hence, no power was expended in giving water a kinetic energy change as in normal free swimming, and so $\mathrm{P}_{\mathrm{o}}=\mathrm{P}_{\mathrm{d}}$. The push-off pads were mounted 1.35 m apart on two $23-\mathrm{m}$ horizontal rods 0.8 m below the water surface. At one end of the swimming pool, one rod was connected to a force transducer. The force signal was low-pass filtered ($15-\mathrm{Hz}$ cutoff frequency), on-line digitized ($100-\mathrm{Hz}$ sampling fre-
quency), processed, and stored on disk by means of a microcomputer. In all the experiments described in this study, the swimmers used their arms only; their legs were supported and fixed together by a small buoy. Therefore, the average propulsive force applied by the arms equaled the average $\mathrm{F}_{\mathrm{d}}(7,22)$.
The result from the thrusts made from the 16 pads is shown in the force record (Fig. 2). The first and last push-off are neglected to eliminate the influence of the push-off from the wall (first pad) and the deceleration of the swimmer at the end of the lane (last pad). The remaining force signal is time integrated, yielding the average F_{d}. The mean velocity was computed from the time (dashed line, Fig. 2) needed to cover the distance between the second and last pad (18.9 m , Fig. 2). P_{d} was calculated from the product of the mean F_{d} and the mean velocity according to Eq. 1 .
The resonance frequency of the earlier system (7) was improved from 8 to 20 Hz (Fig. 3) by the application of aluminum vertical and horizontal rods of higher stiffness. These improvements increased the reproducibility of the F_{d} measurements at the mean of the velocity range from 4.1 to 0.92 N (1%) (see Fig. 4).

Drag force. The reproducibility of the F_{d} measurements was examined by repeated measurements of drag on one subject on 7 different days. On each day the subject was asked to swim 10 lanes at different but constant velocities (range $0.9-1.9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$). On each occasion, mean F_{d} and mean swimming velocity (v) were measured. These $v / \mathrm{F}_{\mathrm{d}}$ data were least-squares fitted to the function

$$
\begin{equation*}
\mathrm{F}_{\mathrm{d}}=A \cdot v^{n} \tag{6}
\end{equation*}
$$

FIG. 1. Schematic side view of system to measure active drag (MAD system) used in this study. Two segments of both measuring and dummy MAD are shown. Calibration device is shown on right and force transducer on left. For a more detailed description, see Refs. 8 and 22.

FIG. 2. Top view of measurement system. Measurements (below) and dummy measurements of active drag are arranged so that continuous swimming is possible. Force record is the result of 16 thrusts from push-off pads. First and last thrusts are ignored. Remaining force signal is time integrated, yielding average force. Time necessary to cover the distance between the second and last pad (18.9 m) is measured from force curve $(---)$. Average velocity $=18.9 /$ (measured time).

FIG. 3. Response of the system to a quick release of a $5-\mathrm{kg} \mathrm{wt}$. Resonance frequency of the system appears to be $\pm 20 \mathrm{~Hz}$. (In this determination sampling frequency was increased to $1,000 \mathrm{~Hz}$).
where A and n are constants of proportionality (Fig. 4). The validity of the described method to measure drag was discussed by Vaart et al. (22).
Power and mechanical efficiency. Each subject performed several $400-\mathrm{m}$ swims at different velocities ranging from 1.0 to $1.29 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. This range was determined by the need to ensure that all exercise was within the range of aerobic performance and also that subjects were able to maintain a normal swimming technique even at the lowest velocity. The subject swam 400 m twice, once using the MAD system and once free at the same velocity.
During the measurements, subjects were aided in keeping a constant swimming velocity by a pacing device

FIG. 4. Results of 7 measurements (different symbols) of drag dependent on velocity in 1 subject. At mean velocity of $1.51 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ mean force was 82.26 N . Reproducibility of this force measured on 1 subject was $\pm 0.91 \mathrm{~N}$ (coefficient of variation $\pm 1 \%$).
consisting of underwater lights on the push-off pads that were programmed to flash consecutively along each lane at the required speed. The reproducibility of the actual swimming velocity was within 2.1%.

In both forms of swimming, $\dot{\mathrm{V}} \mathrm{O}_{2}$ was measured with a Douglas bag technique. The bags were mounted on a trolley, which was pushed along the side of the swimming pool. Respiratory tubing was suspended directly over the swimmer by means of a boom. The swimmer wore a specially designed respiratory valve, which fixed the inspiration and expiration tubes in line. In a previous investigation we demonstrated that the "streamlining" of this design was such that there was no measurable increase in drag (21). Four Douglas bag collections were made over the last 200 m (after at least $2 \min 15 \mathrm{~s}$) by which time a constant level of VO_{2} had been reached. V_{2} was calculated from O_{2} and CO_{2} concentration, measured with a Mijnhardt Oxylyser (UG64) and a Mijnhardt Capnolyser (UG55), respectively, and the volume of the expired air, which was measured with a dry gas meter. The resulting four values were averaged. The Vo_{2} was taken to reflect the rate of energy expenditure at the submaximal exercise levels studied.

The rate of energy expenditure (expressed as the power equivalence, $\mathrm{P}_{\mathrm{v}_{2}}$, in W) was estimated from the $\dot{\mathrm{V}}_{2}$ (l . min^{-1} STPD) by use of the formula

$$
\begin{equation*}
\dot{\mathrm{P}}_{\mathrm{O}_{2}}=1 / 60 \cdot 10^{3} \cdot[4 \cdot 2 \cdot(4.047+\mathrm{RER})] \cdot \dot{\mathrm{V}} \mathbf{o}_{2} \tag{7}
\end{equation*}
$$

where RER is the respiratory exchange ratio.
Some additional measurements of $\mathrm{P}_{\mathrm{V}_{2}}$ were made at higher velocities while the subjects swam along the pushoff pads to establish the $\mathrm{P}_{\mathrm{d}} / \mathrm{P}_{\mathrm{V}_{2}}$ relationship. The rate of energy expenditure measured during swimming on the MAD system ($\mathrm{P} \dot{\mathrm{V}}_{\mathrm{O}_{2 \text { MAD }}}$), reflected P_{o}, which was equal to P_{d}, since the push off was made against the fixed pads ($\mathrm{P}_{\mathrm{k}}=0$).

At each velocity, a mean value of P_{d} was calculated from the eight lengths swam over the measuring MAD system. The relation between $\mathrm{Pv}_{\mathrm{O}_{2 \text { MAD }}}$ and P_{o} could be calculated

$$
\begin{equation*}
\mathrm{P}_{\mathrm{o}}=a \cdot \mathrm{P}_{\mathrm{o}_{2}}-b \tag{8}
\end{equation*}
$$

where a and b are constants of the regression equation. This regression equation describes the mechanical efficiency (e_{m}), i.e., the conversion of metabolic energy to mechanical energy.

Propelling efficiency. The individual regressions describing the e_{m} were then used to calculate P_{0} during free swimming from the measured $\mathrm{P}_{\mathrm{O}_{2}}\left(\mathrm{P}_{\mathrm{O}_{2 \text { tree }}}, E q .7\right)$. In free swimming $P_{o}=P_{d}+P_{k}$. Since P_{d} was known for each subject and swimming speed from the measurements on the MAD system, the value of e_{p} could then be computed according to Eq. 5.
Measurements were made on separate days to prevent subjects becoming fatigued.

RESULTS

Measurements were made during free swimming and on the MAD system in a range of matched speeds (1.08$1.29 \mathrm{~m} \cdot \mathrm{~s}^{-1}$), which required Vo_{2} 's that ranged from 1.84 to 4.11 and from 1.40 to $3.59 \mathrm{l} \cdot \mathrm{min}^{-1}$, respectively. Average values for the $\dot{V}_{O_{2}}$ for both MAD and free swimming dependent on velocity are presented in Table 2. The RER ranged from 0.71 to 0.95 . $\mathrm{Pv}_{\mathrm{O}_{2}}$ calculated from the VO_{2} data (according to Eq. 7) ranged from 626 to
table 2. Average O_{2} uptake in both swimming conditions dependent on velocity

Velocity, $\mathrm{m} \cdot \mathrm{s}^{-1}$	PH		GK		KV		FW	
	MAD	Free	MAD	Free	MAD	Free	MAD	Free
1.08					1.68	2.61		
1.13	1.90	2.48	1.59	1.93	1.88	3.04	1.97	2.98
1.18	2.36	3.07	1.65	2.06	1.80	2.94	2.00	3.37
1.23	2.33	3.26	1.80	2.32	1.85	3.24	2.13	3.50
1.29	2.80	3.33	1.90	2.72	2.15	3.55	2.30	3.78

Values expressed as $1 \cdot \min ^{-1}$ STPD. MAD, system to measure active drag.
$1,440 \mathrm{~W}$ and from 487 to $1,256 \mathrm{~W}$, respectively.
Figure 5 presents the raw (each point represents 1 Douglas bag) individual data on the four subjects studied for $\mathrm{P} \dot{\mathrm{V}}_{\mathrm{O}_{2}}$. This is given in relation to v^{3}, since power is the product of force times velocity and the F_{d} is dependent on v^{2} (18). In both swimming situations the $\mathrm{P}_{\mathrm{O}_{2}}$ data are highly correlated for each subject to v^{3}. At any given velocity, the $\mathrm{P}_{\mathrm{V}_{2}}$ when swimming free was consistently higher than that when swimming on the MAD system. This is as expected, since in free swimming additional energy is dissipated in giving water a kinetic energy change. The individual SD of the $\mathrm{Pv}_{\mathrm{O}_{2}}$ measurements was $<4.5 \%$.
In an extended series of experiments, additional data were collected to establish the relationship between $\mathrm{PV}_{\mathrm{O}_{2 \text { MAD }}}$ measured by means of the MAD system and P_{d} (equal to P_{o}). In Fig. 6 the individual regression equations are presented. Correlation coefficients ranged from 0.87 to 0.98 . By the use of these individual regression equations, the P_{o} when swimming free was calculated from the measured $\mathrm{P}_{\mathrm{V}_{2 \text { tree }}}$.

Knowing the P_{o}, swimming free and P_{d} as determined on the MAD system at the same velocity, we calculated e_{p} according to $E q .5$ for each velocity studied. Values for P_{d}, P_{o}, and e_{p} are presented in Table 3. Values for P_{d} varied from 36 to 67 W over the velocity range studied. In these top class swimmers, e_{p} values ranged from 46 to 77%. A surprisingly large difference in e_{p} between individuals was found.

discussion

Theoretical considerations indicated that the mechanical power delivered by a swimmer could be divided into two components: P_{d} and P_{k}. However, previous investigators have been unable to measure this latter component ($10,12,14,15$). To calculate e_{p}, it is necessary to have an accurate determination of P_{0} and P_{d} during swimming. This is now possible with the development of the MAD system described in this study. The validity of this method for the measurement of active drag has been examined and discussed recently by Vaart et al. (22). Although not finally resolved, we believe that the method is valid and represents the best method currently available.

The values for e_{p} of our top class swimmers ranged from 46 to 77%. For subjects $K V(58 \%)$ and $F W(49 \%)$, the values are in accordance with the predictions from the mathematical model of de Groot and van Ingen Schenau (6). For subjects $G K$ and PH, the values for e_{p}

FIG. 5. Rate of energy expenditure (measured as O_{2} uptake and converted to watts, $\mathrm{P}_{\mathrm{V}_{2}}$) in relation to cube of velocity measured in 4 subjects ($P H, G K, K V, F W$). Each point represents 1 Douglas bag. 0_{2}, Values measured while swimming on MAD system. - Values measured while swimming free. Difference between regression lines reflects power wasted in changing kinetic energy of water, i.e., driving water backward.
(68% and 73%, respectively) are consistently higher. It is possible that body dimensions may contribute to these differences, but we have insufficient data to make any worthwhile speculation on this issue. Resolution of this must await study of a much larger group of elite swimmers of different body builds. Although the values for e_{p} are not as high as those found for fish (80%), they are higher than was expected considering the relative small propulsive area (e.g., hand and forearm). However, e_{p} values $>50 \%$ do not seem to be unreasonable if we consider the next example. Suppose a swimmer has a maximal P_{o} of 250 W , an e_{p} of 50%, and a drag-velocity relationship of $\mathrm{F}_{\mathrm{d}}=30 v^{2}$. His maximal free-swimming velocity can be computed to be $v^{3}=(0.5 \cdot 250) / 30=4.17$; hence $v=1.6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. On the MAD system where $\mathrm{e}_{\mathrm{p}}=1$, $v^{3}=250 / 30=8.3$; hence $v=2.0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The actual increase in maximal swimming velocity on the MAD system would then be $<25 \%$, and this is in accordance with our own unpublished observations.

To calculate the P_{o} swimming free, it was assumed that the regression equation of $\mathrm{P}_{\mathrm{v}_{\mathrm{O}_{2 \text { MAD }}}}$ on P_{o} during MAD swimming could be used to compute P_{o} from $\mathrm{P}_{\mathrm{V}_{2}}$
during free swimming. This assumption would be valid only if the movement pattern was essentially the same in both forms of swimming. The fact that this is indeed the case is supported by the close similarity between the electromyographic activity of selected muscles during free and MAD swimming (3). This was also confirmed by the swimmers' own assessments, which, although subjective, are based on great experience and many hours of training. Of course it must be realized that some energy costs will not be reflected in the P_{\circ} measured. These will include the cost of overcoming the hydrostatic pressure on the lungs, making turns at the end of the pool, and recovering the arms to the point of entry. However, these additional costs are likely, in our view, to be a rather small and constant proportion of the total and will of course be the same in both forms of swimming. One methodological issue that might be commented on is the effect of floating the feet with a small buoy. However, it should be remembered that this is done in the same way both in MAD and free swimming, and thus any effect will be cancelled out in the calculation of e_{p}.

With these qualifications in mind the apparent e_{m},

FIG. 6. O_{2} uptake and mechanical power output (P_{o}) were measured simultaneously while swimming on MAD system. Regression equation of P_{o} (measured using MAD system where $P_{o}=P_{d}$) on power equivalence of O_{2} uptake ($\mathrm{P}_{\mathrm{O}_{2}}$) measured with Douglas bag technique is given. Each point represents 1 Douglas bag.
table 3. P_{d}, P_{o}, and e_{p} dependent on velocity

Velocity, $\mathrm{m} \cdot \mathrm{s}^{-1}$	PH			$G K$			KV			$F W$		
	P ${ }_{\text {d }}$ W	$\mathrm{P}_{\mathrm{o}}, \mathrm{W}$	$\mathrm{e}_{\mathrm{p}}, \%$	$\overline{P_{d}, W}$	P_{0}, W	$\mathrm{e}_{\mathrm{p}}, \%$	$\mathrm{P}_{\mathrm{d}}, \mathrm{W}$	$\mathrm{P}_{0}, \mathrm{~W}$	$\mathrm{e}_{\mathrm{p}}, \%$	$\overline{\mathrm{P}_{\mathrm{d}}, \mathrm{W}}$	$\mathrm{P}_{0}, \mathrm{~W}$	$\mathrm{e}_{\mathrm{p}}, \%$
1.08							41.6	78.0	53			
1.13	41.5	58.7	71	36.6	52.9	69	49.1	91.3	54	42.4	91.4	46
1.18	52.4	74.3	71	41.3	58.7	70	52.9	88.3	60	54.8	108.5	51
1.23	53.9	80.3	67	48.8	70.2	70	60.6	98.3	62	57.6	115.2	50
1.29	65.5	85.2	77	57.6	88.1	65	67.8	109.2	62	64.4	127.8	50

P_{d}, power to overcome drag; P_{o}, mechanical power output; e_{p}, propelling efficiency.
defined as the ratio between total P_{o} and the rate of energy expenditure could be calculated. Values of e_{m} ranged from 8 to 12%, and these are comparable with similar calculations for e_{m} in other forms of arm work such as wheelchair riding (up to 11.5%) (24) and arm cranking ($8-10 \%$) (5). In this context it should be remembered that the data in this paper are based on swimming with the arms only and that this is by far the most important source of P_{o} (up to 86%) (20) in normal frontcrawl swimming.
"Total" efficiency defined as the product of e_{m} and e_{p}
(reflecting the O_{2} cost of performing "useful" work), ranged from 5 to 8%. These values are similar to the values reported by Holmér (9), who reported efficiencies of 4-7.7\%, and Pendergast et al. (14), who reported values of $2.7-9.4 \%$, despite the fact that these previous investigators were unable to make reliable estimates of drag in the active situation (22). Probably, the drag values that they used, which were approximately twice the values reported in this study, compensated for the fact that the e_{p}, which is $\sim 50 \%$, was not taken into account in the earlier studies. Their data may be an example of two
wrongs making one right.
No correlation appears to exist between drag and swimming performance (8) or between $\dot{\mathrm{V}} \mathrm{O}_{2_{\text {max }}}$ and maximal swimming performance $(10,19)$. However, there is unanimous agreement that proficient swimmers are much more economical in terms of energy expenditure than less skilled swimmers ($2,9,11,14,15$). Costill et al. (4) reported no difference in $\mathrm{V}_{2_{\text {max }}}$ between competitive and recreational swimmers, whereas the mean maximum swimming velocity of the competitive swimmers was significantly higher ($1.29 \mathrm{vs} .0 .89 \mathrm{~m} \cdot \mathrm{~s}^{-1}$). They suggested that the energy cost is strongly influenced by among other things the effective application of force during the arm stroke, as noted by the distance per stroke at a specific swimming velocity. The relationship between stroke technique and energy cost of swimming is also pointed out by De Groot and van Ingen Schenau (6), who calculated the effects of lift and drag propulsion generated by the hand and arm on the wasted power P_{k}. They reported that the application of drag forces induces five to six times more wasted power $\left(\mathrm{P}_{\mathrm{k}}\right)$ compared with the same propulsive force generated by lift forces. They concluded that maximal swimming speed is not only dependent on the magnitude of the propulsive forces. The best technique seems to be the one that leads to high lift-to-drag ratios. They showed that this technique results in longer strokes because the backward component of the hand speed is lower compared with a straight backward pull. This suggests that values of e_{p} can be used to evaluate the effectiveness of individual stroke technique.

Finally it is concluded that e_{p} is a very important factor determining performance and that in competitive swimming the ability to swim faster arises from the capacity 1) to reduce drag, 2) to increase the propelling force, and 3) to perform at a high e_{p}.

We acknowledge the kind cooperation of the staff of the Groenendaal Swimming Pool at Heemstede and especially B. de Vos for all the facilities provided. We thank our students Wilma Knops, Thomas Janssen, Marc Kluft, and Kees Vervoorn and our technicians Henk de Best and Ton Meulemans for cooperation in the process of data collection.

Received 22 June 1987; accepted in final form 16 June 1988.

REFERENCES

1. Alexander, R. McN. Swimming. In: Mechanics and Energetics of Animal Locomotion, edited by R. McN. Alexander and G. Goldspink. London: Chapman \& Hall, 1977, p. 222-248.
2. Andersen, K. L. Energy cost of swimming. Acta Chir. Scand. Suppl. 253: 169-174, 1960.
3. Clarys, J. P., H. M. Toussaint, E. Bollens, W. Vaes, P. A. Huljing, G. de Groot, A. P. Hollander, and J. Carri. Muscular specificity and intensity in swimming a mechanical resistance: surface EMG in MAD- and free swimming. In: Swimming Science V, edited by B. E. Ungerechts, K. Reischle, and K. Wilke. Champaign, IL: Human Kinetics, 1988, p. 191-199.
4. Costill, D. L., J. Kovaleski, D. Porter, J. Kirwan, R. Fielding, and D. King. Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int. J. Sports Med. 6: 266-270, 1985.
5. Glaser, R. M., M. N. Sawka, L. L. Laubach, and A. G. Suryaprasad. Metabolic and cardiopulmonary responses to wheelchair and bicycle ergometry. J. Appl. Physiol. 46: 1066-1070, 1979.
6. Groot, G. de, and G. J. van Ingen Schenau. Fundamental mechanics applied to swimming: technique and propelling efficiency. In: Swimming Science V, edited by B. E. Ungerechts, K. Reischle, and K. Wilke. Champaign, IL: Human Kinetics, 1988, p. 17-29.
7. Hollander, A. P., G. de Groot, G. J. van Ingen Schenau, H. M. Toussaint, H. de Best, W. Peeters, A. Meulemans, and A. W. Schreurs. Measurement of active drag forces during swimming. J. Sports Sci. 4: 21-30, 1986.
8. Hollander, A. P., H. M. Toussaint, G. de Groot, and G. J. van Ingen Schenau. Active drag and swimming performance. $N Z$ J. Sports Med. 13: 110-113, 1985.
9. Holmer, I. Oxygen uptake during swimming in man. J. Appl. Physiol. 33: 502-509, 1972.
10. Holmér, I. Physiology of swimming man. In: Exercise and Sports Sciences Reviews, edited by R. S. Hutton and D. I. Miller. Philadelphia, PA: Franklin Inst., 1979, p. 87-123.
11. Karpovich, P. V., and N. Millman. Energy expenditure in swimming. Am. J. Physiol. 142: 140-144, 1944.
12. Kemper, H. C. G., J. P. Clarys, R. Verschuur, and J. Jiskoot. Total efficiency and swimming drag in swimming the front crawl. In: Biomechanics and Medicine in Swimming, edited by A. P. Hollander, P. A. Huijing, and G. de Groot. Champaign, IL: Human Kinetics, 1983, p. 199-206.
13. Lighthill, J. Mathematical Body Fluid Dynamics. Philadelphia, PA: Soc. Ind. Appl. Math., 1975.
14. Pendergast, D. R., P. E. di Prampero, A. B. Craig, D. R. Wilson, and D. W. Rennie. Quantitative analysis of the front crawl in men and women. J. Appl. Physiol. 43: 475-479, 1977.
15. Prampero, P. E. di, D. R. Pendergast, D. R. Wilson, and D. W. Rennie. Energetics of swimming in man. J. Appl. Physiol. 37: 1-5, 1974.
16. Toussaint, H. M., G. de Groot, A. P. Hollander, and G. J. van Ingen Schenau. Measurement of efficiency in swimming man (Abstract). J. Physiol. Lond. 377: 3P, 1986.
17. Toussaint, H. M., G. de Groot, A. P. Hollander, G. J. van Ingen Schenau, K. Vervoorn, H. de Best, A. Meulemans, and A. W. Schreurs. Measurement of efficiency in swimming man. In: Swimming Science V, edited by B. E. Ungerechts, K. Reischle, and K. Wilke. Champaign, IL: Human Kinetics, 1988, p. 45-52.
18. Toussaint, H. M., G. de Groot, H. H. C. M. Savelberg, K. Vervoorn, A. P. Hollander, and G. J. van Ingen Schenau. Active drag related to velocity in male and female swimmers. J. Biomech. 21: 435-438, 1988.
19. Toussaint, H. M., F. C. T. van der Helm, J. R. Elzerman, A. P. Hollander, G. de Groot, and G. J. van Ingen Schenau. A power balance applied to swimming. In: Biomechanics and Medicine in Swimming, edited by A. P. Hollander, P. A. Huijing, and G. de Groot. Champaign, IL: Human Kinetics, 1983, p. 165-172.
20. Toussaint, H. M., A. P. Hollander, G. de Groot, R. Kahman, and G. J. van Ingen Schenau. Power of leg-kicking in front crawl swimming. In: Biomechanics of Human Movement, edited by N. Berme and A. Capozzo. Dordrecht, The Netherlands: Nijhoff. In press.
21. Toussaint, H. M., A. Meulemans, G. de Groot, A. P. Hollander, A. W. Schreurs, and K. Vervoorn. Respiratory valve for oxygen uptake measurements during swimming. Eur. J. Appl. Physiol. Occup. Physiol. 56: 363-366, 1987.
22. Vaart, A. J. M. van der, H. H. C. M. Savelberg, G. de Groot, A. P. Hollander, H. M. Toussaint, and G. J. van Ingen Schenau. An estimation of drag in front crawl swimming. J. Biomech. 20: 543-546, 1987.
23. Webs, P. W. The swimming energetics of trout. II. Oxygen consumption and swimming efficiency. J. Exp. Biol. 55: 521-540, 1971.
24. Woude, L. H. V. van der, G. de Groot, A. P. Hollander, G. J. van Ingen Schenau, and R. H. Rozendal. Wheelchair ergonomics and physiological testing of prototypes. Ergonomics 29 : 1561-1573, 1986.
