Anita Antoninka

Anita Antoninka
Northern Arizona University | NAU · School of Forestry

Ph. D. Biological Sciences

About

45
Publications
10,976
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,102
Citations
Citations since 2016
33 Research Items
997 Citations
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200

Publications

Publications (45)
Article
Full-text available
Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts...
Article
Soil has the ability to sequester carbon (C) and mitigate anthropogenic enrichment of carbon dioxide, however numerous variables influence its C storage potential. Climate, soil properties, plant species composition, and livestock management practices, may all influence C storage in rangeland soils. The purpose of this study was to examine the rela...
Article
Full-text available
Climate change is expanding drylands even as land use practices degrade them. Representing ∼40% of Earth’s terrestrial surface, drylands rely on biological soil crusts (biocrusts) for key ecosystem functions including soil stability, biogeochemical cycling, and water capture. Understanding how biocrusts adapt to climate change is critical to unders...
Article
As wildfires increase in extent and severity, we need new tools to rehabilitate burned landscapes. We tested the effectiveness of adding fire moss tissue, produced in the greenhouse, as a bio-inoculant to severely burned soils in dry mixed conifer forests. We conducted three sequential experiments using knowledge gained from previous experiments to...
Article
The soil and its biota can shape the development of colonizing vascular plant communities. Because they occupy soil surfaces where most seeds disperse to, biological soil crusts (biocrusts) are uniquely positioned to influence vascular plant communities established by direct seeding, e.g., for restoration. We created mesocosms of soil overtopped by...
Article
Full-text available
Thinning, mastication, and prescribed fire are restoration treatments frequently employed in unnaturally dense second-growth Pinus ponderosa forests of the Western United States. Although a goal of these treatments is to restore ecosystem structure and function, little information is available regarding treatment effects on soil micro- and mesofaun...
Article
Increasing drought and changing temperatures drive researchers to seek more efficient and effective means to aid management of coniferous forests across the western United States. Thinning allows for effective removal of biomass, but with few options to remove the residual slash from the treatment unit after saleable timber is taken away, pile burn...
Article
Biodiversity describes the variety of life and may influence properties and processes of ecosystems, such as biomass production and resistance to disturbance. We investigated the effects of multiple facets of biodiversity – species richness and composition of the community, and intraspecific diversity in two key species – on both production and res...
Article
Full-text available
Biological soil crusts (biocrusts) are a complex community of algae, cyanobacteria, lichens, bryophytes, and assorted bacteria, fungi, archaea, and bacteriophages that colonize the soil surface. Biocrusts are particularly common in drylands and are found in arid and semiarid ecosystems worldwide. While diminutive in size, biocrusts often cover larg...
Article
We developed a system that waters biocrust moss with fog on a burlap substrate, tested its production capacity, and evaluated field establishment of the moss-colonized fabrics it produced. First, we studied effects of application rate, watering period, and pulverization on biomass increase of Syntrichia ruralis, a globally distributed moss. We obse...
Article
Full-text available
The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important be...
Article
Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyano...
Article
Full-text available
Biocrusts’ functional importance and vulnerability to disturbance have motivated consistent interest in biocrust restoration, as well as a recent increase in research to cultivate biocrusts in laboratory and greenhouse settings for use in ecological restoration. As part of a sustainable approach to developing biocrust restoration, we argue that a c...
Article
Fire mosses, including Ceratodon purpureus, Funaria hygrometrica and Bryum argenteum, can achieve high cover within months to years after high-severity fire, but do so heterogeneously across space and time. We conducted a survey of moss cover and erosion-related functions after 10 wildfires in Pinus ponderosa and mixed-conifer forests of the southw...
Article
As dryland degradation continues, it is increasingly important to understand how to effectively restore biocrust communities. Potential techniques include the addition of biocrust inoculum to accelerate biocrust recovery. Enhanced erosion typical of degraded environments creates a challenge for these approaches, due to loss by wind or water and bur...
Article
Full-text available
Methods to reduce soil loss and associated loss of ecosystem functions due to land degradation are of particular importance in dryland ecosystems. Biocrusts are communities of cyanobacteria, lichens, and bryophytes that are vulnerable to soil disturbance, but provide vital ecosystem functions when present. Biocrusts stabilize soil, improve hydrolog...
Article
Full-text available
1.Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens, and fungi — suggesting biotic interact...
Article
Full-text available
Biocrust restoration is an emerging field relevant to management of rangelands. Manual dispersal of biocrust is an effective approach, though there are few examples of biocrust restoration greater than a square meter, in part because specialized machinery has yet to be developed or adapted for dispersal across larger areas. Restoration with vascula...
Article
Biocrusts are multifunctional communities that are increasingly being used to restore degraded or damaged ecosystems. Concurrently, restoration science is shifting away from the use of purely structural metrics, such as relative abundance, to more functional approaches. Although biocrust restoration technology is advancing, there is a lack of readi...
Article
Drylands are a widely degraded biome characterized by low productivity and high abiotic stress. Biological soil crust (biocrust) inoculants hold promise as a rehabilitation material in drylands, useful for boosting ecosystem functions including stabilization of eroding soil surfaces. However, biocrust materials cultivated ex situ by humans inconsis...
Article
Selection pressures of crop breeding in varying abiotic contexts may produce cultivars differing in their relationships with belowground organisms. Nematode assemblages associated with a Hopi maize (Zea mays L.) landrace and two commercial maize varieties were examined at three traditional farms (two irrigated, one dry-farmed) near the village of M...
Article
Full-text available
Biological soil crusts (biocrusts) are common to dryland ecosystems and can influence a broad suite of soil ecological functions including stability and surface hydrology. Due to long recovery times following disturbance, there is a clear need for rehabilitation strategies to enhance the recovery of biocrust communities. Essential to biocrust recov...
Article
Full-text available
Background and Aims Biological soil crust (biocrust) communities, though common and important in the intermountain west, have received little research attention. There are gaps in understanding what influences biocrust species’ abundance and distributions in this ecoregion. Climatic, edaphic, topographic, and biotic forces, in addition to anthropog...
Article
Full-text available
Aims Biological soil crusts (biocrusts) are soil-surface communities in drylands, dominated by cyanobacteria, mosses, and lichens. They provide key ecosystem functions by increasing soil stability and influencing soil hydrologic, nutrient, and carbon cycles. Because of this, methods to reestablish biocrusts in damaged drylands are needed. Here we t...
Article
Full-text available
Aims A growing body of research supports the feasibility of biocrust rehabilitation. Identifying populations of key species that are amenable to cultivation and that are resilient in rehabilitation contexts would advance the efficacy of these technologies. Here we investigate the growth and stress response of the cosmopolitan biocrust moss, Syntric...
Article
Degraded rangelands around the world may benefit from the reestablishment of lost biological soil crusts (biocrusts, soil surface cryptogamic-microbial communities). Cultivation of biocrust organisms is the first step in this process, and may benefit from harnessing species interactions. Species interactions are a dominant force structuring ecologi...
Article
Full-text available
Background and aims Rehabilitation of biological soil crusts (biocrusts) in degraded drylands may facilitate ecosystem recovery. In order to rehabilitate biocrusts, ex situ culture methods for biocrust organisms must be optimized so that biocrusts may be grown in sufficient quantities to be reintroduced into degraded areas. Our goal was to improve...
Article
Background: Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly impor...
Article
Full-text available
Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of...
Article
Mosses are an often-overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to preci...
Article
Mycorrhizas influence plant productivity, community composition, nutrient dynamics and soil structure, yet the factors determining the abundance and diversity of these symbioses in natural ecosystems are poorly understood. We studied arbuscular mycorrhizal (AM) fungi (Glomeromycota) in long-term grazed and un-grazed plots at eight sites forming nat...
Article
Full-text available
Biocrusts (also known as biological soil crust, cryp- togamic crusts, or cyptobiotic soils) are an aridland community of soil dwelling organisms composed pri- marily of cyanobacteria, mosses, and lichens that provide valuable ecosystem functions, including: soil stabilization, nitrogen fixation, and increased runoff infiltration in some systems (Ev...
Conference Paper
Background/Question/Methods Temporal dynamics over a growing season are an integral part of arthropod community assembly patterns. We examined the hypothesis that arthropod trophic constraints follow predictable patterns over a growing season in an extremely hot, managed riparian stand of a foundation tree species, Populus fremontii. We believe t...
Conference Paper
Full-text available
Background/Question/Methods Desert mosses are often overlooked as an important component of desert and biological soil crusts (biocrust) ecosystems, yet they provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and house N-fixing cyanobacteria on their leaves. They respond extremely rapidly to precipitat...
Conference Paper
Background/Question/Methods Wide-scale restoration of biocrust, a living matrix of soil-dwelling dust and nutrient fixers, could mitigate dust storms, and resulting deposition on snowpack, which threatens quality of life, safety, and water supplies in arid regions. Mosses are common and vital members in many biocrust communities. We investigated...
Conference Paper
Full-text available
Background/Question/Methods Enrichment of atmospheric CO2 and soil N impacts the structure and function of plant communities. Understanding how cryptic soil communities respond to these changes in resource availability can help us understand how the structure and function of terrestrial ecosystems is impacted by global change. We investigated the...
Article
• We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. • We quantified AM fungal spores and extramatrical...
Article
Full-text available
Surprising little is known about the factors controlling Arbuscular Mycorrhizal (AM) fungal diversity and distribution patterns. A better understanding of these factors is necessary before mycorrhizas can be effectively managed for their benefits in ecosystem restoration and agriculture. The goal of this chapter is to examine the relationships betw...
Conference Paper
Background/Question/Methods Mycorrhizal symbioses influence grassland productivity, community structure, nutrient dynamics, and belowground carbon sequestration. Species and genera of arbuscular mycorrhizal (AM) fungi are known to vary in their habitat requirements and in their effects on plant communities and ecosystem processes; yet little is k...
Conference Paper
Background/Question/Methods Changing resource availability either above- or belowground can alter the structure and function of soil food webs. Understanding how soil food webs respond to long-term carbon dioxide (CO2) and nitrogen (N) enrichment either directly, or indirectly through plant community change, is important for predicting ecosystem r...
Article
Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of...

Network

Cited By