Accepted Manuscript

Title: HISTOMORPHOMETRIC STUDY OF TESTIS IN DELTAMETHRIN TREATED ALBINO RATS

Author: Anil Kumar Mahindra Nagar

PII: S2214-7500(14)00050-X
DOI: http://dx.doi.org/doi:10.1016/j.toxrep.2014.07.005
Reference: TOXREP 49

To appear in:

Received date: 5-3-2014
Revised date: 6-7-2014
Accepted date: 6-7-2014

Please cite this article as: A. Kumar, M. Nagar, HISTOMORPHOMETRIC STUDY OF TESTIS IN DELTAMETHRIN TREATED ALBINO RATS, Toxico. Rep. (2014), http://dx.doi.org/10.1016/j.toxrep.2014.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
HISTOMORPHOMETRIC STUDY OF TESTIS IN DELTAMETHRIN TREATED ALBINO RATS

Anil Kumar
Department of Human Structure and Neurobiology, Oman medical college affiliated with West Virginia University (USA), Sohar, Sultanate of Oman
E-mail: virgo.8977@gmail.com

Mahindra Nagar
Department of Anatomy, University College of Medical Sciences & Guru Teg Bahadur Hospital, Delhi-110095
E-mail: nagarmahindara@hotmail.com

ABSTRACT
Deltamethrin, a type II synthetic Pyrethroid, has lead to a widespread concern over the potential adverse effects on human health. Adult Wistar albino rats, weighing (150-200gms) were divided into two groups of ten animals each. The Group II rats were injected with Deltamethrin (1mg / kg body weight) intraperitoneally, for five days/week for a month. The group I were controls. Animal were sacrificed within twenty four hours of the last injection by perfusion under anesthesia. Paraffin sections (8µ) were cut, and stained with haematoxylin and eosin. Histomorphometry was done. There was a decrease in the body weight but increase in the weight of the testis of rat. The mean vertical, antero-posterior and transverse diameter of the testis is reduced. The basement membrane enclosing the seminiferous tubules appeared thickened at sites. The number of seminiferous tubules per unit area is statistically significantly reduced. There was a generalized significant decrease in the diameter and the epithelium thickness (Height) of the seminiferous tubules, associated collapse and distortion at sites of the tubules predominantly in the central region. The data obtained in the present work suggest that gonadal (testis) changes could seriously affect the reproductive potential of the rat.

Key words: Deltamethrin, Pyrethroid, Testis, Seminiferous tubules, Spermatogenic cell, Supporting cell, Histopathological changes.
1-Introduction:

In the past five years, Deltamethrin, a type II synthetic broad spectrum Pyrethroid, occupies a leading position in many countries for commercial agriculture, garden and home pest control, forestry, aircraft disinfectant, livestock application and public health programmes and hence residues in foods are high leading to a widespread concern over the potential adverse effects on human health. Recently, toxicity in form of excessive salivation, impaired limb function, ataxia, loss of righting reflex, lethality, paraesthesias, choreoathetosis, tremors, rarely paralysis and convulsions has been reported on mice, rat, rabbit and guinea pig via dermal, oral and inhalational routes (Clark J M, 1990; Bateman, 2000; Soderlund, 2002). Reproductive effects in rats include decrease weight of testis, seminal vesicle, prostate gland, and decrease in sperm cell concentration, sperm motility, plasma testosterone levels and pregnancy rates (Abd El-Aziz MI et al., 1994a). Occupational hazards seen in human are transient cutaneous and mucous membrane irritation, itching, dizziness, abnormal facial sensations, anaphylaxis, bronchospasm, eosinophilia, fever, hypersensitivity, pneumonia, sweating, and sudden edema of the face, eyelids, lips, mucous membrane and tachycardia (O’Malley, 1997). International literature describes a significant increase in the incidence of male infertility in humans in the past decade possibly due to environmental contaminants like pesticides (Queiroz and Waissmann, 2006) which act as endocrine disruptors and since they are being widely used ever since the international technological shift in industrial and agricultural development which involves the handling and exposure to various substances although harmful to humans, further research is warranted. The available information indicates that Deltamethrin may pose serious hazards to non-target organs like testis resulting in infertility; the present experimental study was undertaken in a mammal, albino rat.

2-Material and Methods

2-1- Experimental design

Inbred adult Wistar albino rats (150-200grams) were divided into two groups. Animals were group housed (12 hours light / dark cycle) with ad libitum access to food and water. The Group II rats were injected with Deltamethrin without dilution (1mg / kg body weight) intraperitoneally, for five days/week for a month. The group I were controls. Animals were sacrificed within twenty four hours of the last injection by perfusion under anesthesia. Paraffin sections (8µ) were cut,
and stained with haematoxylin and eosin. Observations were done on every fifth section of on a Zeiss light microscope and Image Pro-Express Analysis System in both the groups.

2-2- Measurements

2-2-1- Body weight of the animals:
The body weights were recorded before the onset of the experiment and prior to the sacrifice of the animals. The data was tabulated and statistically analyzed.

2-2-2- Size and Weight of the testis:
The size of the testis was measured in a vertically between the upper and lower poles. The antero-posterior and transverse diameter was recorded in the middle of the testis with the help of vernier calipers in both the groups. Each testis was blotted and weighed in an electronic scale. The data was tabulated and statistically analyzed.

2-2-3- Histomorphological study
Observations were done on every fifth section of the testis stained with haematoxylin and eosin on a Zeiss light microscope and Image Pro-Express Analysis System in both the groups. The various characteristics of the testis with regard to the state of tunica albuginea, seminiferous tubules, various cells in the seminiferous epithelium and interstitial tissue were studied with haematoxylin and eosin staining in both the groups, experimental and control.

2-2-4- Histomorphometric study
For all linear measurements, Abercrombie’s (1946) method was used, in which ocular micrometer was calibrated with stage micrometer.

2-2-4-1- Calibration of Ocular Micrometer for Linear Measurements:
Calibration of ocular micrometer was done with the help of stage micrometer, separately for low power and high power objective of a light microscope, keeping the particular eyepiece and particular objective, the readings were constant.

2-2-4-1-1- Measurement of seminiferous tubules
The size of the seminiferous tubules was measured in the peripheral and central regions, from four different fields of every section of the testis. Two diameters at
right angles to each other, passing through the center of the tubule were measured. One was considered the long diameter and the other called the short diameter. Hundred tubular profiles that were round or nearly round were chosen randomly and measured in each animal (Franca et al, 2006). These readings, obtained from experimental and control animals were tabulated and statistically analyzed.

2-2-4-1-2- Measurement of the epithelium thickness (Height) in the seminiferous tubules
The height of the epithelium was measured in hundred seminiferous tubules that were round or nearly round, at four sites, at right angles and opposite each other in the peripheral and central regions of the testis in each animal. The readings from all the animals in both the groups were tabulated and statistically analyzed.

2-2-4-2- Tubular Count
2-4-4-1- Measurement of Unit Area
An ocular micrometer with an engraved square grid was used to measure an area. The length of one side of the square grid was calibrated with the stage micrometer, to find out the length of one side of the grid. Then the area of the grid was then calculated.

2-2-4-2-2- Tubule count in a unit area
Counting of seminiferous tubules was done in sections stained with haematoxylin and eosin by placing an ocular micrometer with an engraved square grid of an area of 57600 µ², in the peripheral and central region. Tubules falling on the right and lower border of the square were included, whereas those falling on the upper and left border were excluded for the count. The four corners and two central fields in each section were chosen randomly and measured in each animal. The readings from all the animals in both the groups were tabulated and statistically analyzed.

2-2-5- Statistical analysis
Quantitative observations in all the rats were done in both the groups and the data was tabulated and statistically analyzed by independent sample “t” test. But Body weight in the experimental and control rats after was tabulated and statistically analyzed by Tukey’s test. Statistical analysis was performed using SPSS 11.5 software. P < 0.001 was considered as a significant level.
3- Results

3-1-Control group
Animals included in the study survived well throughout the period of thirty days. There was no appreciable change in appetite and behavior of the animals. The mean body weight of the animals was 178.5 0±7.47gms before the onset of the experiment and 182.50 ± 8.57gms prior to the sacrifice of the rats (Table I). There was an increase in the animal weight before the onset of the experiment and prior to the sacrifice but it was not statistically significant (Table 1).

3-1-1 Gross observation
In the adult rat the testes were light brown in color and were located in the scrotal sac, situated ventrolateral to the anus with its curved surface directed caudally. The testicles of adult rats were large relative to the body size and usually abundance of fat was seen surrounding them. The mean vertical, transverse and anteroposterior diameters of the left testis were 1.89±0.029cms, 0.91±0.043 and 0.88±0.039cms whereas diameters of the right testis were 1.88±0.030, 0.91 ±0.032 and 0.87±0.033cms respectively (Table 2). The average weight of the left testis was 900±46.33 gms. and of the right testis it was 907±38.40 gms. Mean weight of the testis in controls was calculated as 903.61±45.32 (Table 4)

3-1-1 Histomorphological and Histomorphometric observations in control group
The seminiferous tubules were counted in a unit area with the help of an ocular micrometer with an engraved square grid and by a pro image-express analyzer. The mean count of seminiferous tubule per unit area was found to be 8.61 ± 0.43 (Table 5). The mean long and short diameter of the peripheral seminiferous tubules measured was 219.87 ± 4.44 and 146.76 ± 8.42 microns respectively (Table 6). The mean long and short diameter of the central seminiferous tubules was found to be 319.75 ± 11.74 and 216.97 ± 8.92 microns respectively (Table 7). The mean height of the epithelium of the seminiferous tubule in the peripheral and central region was measured to be 11.40 ± 0.93 and 19.82 ± 1.48 microns respectively (Table 8).

The interstitial tissue consisted of loose connective tissue with interspersed flattened fibroblasts, macrophages, lymphatics, nerves, mast cells and interstitial cells of leydig.
3-2- Observations in experimental group after deltamethrin treatment

3-2-1- Experimental group
During the course of the experiment, it was observed that the rats became more hyperactive immediately after receiving the first dose of deltamethrin. The increase in the activity was accompanied by sneezing, shivering, groaning, excessive salivation which lasted for half hour. On subsequent days, the animals appeared sluggish, there was a loss of appetite associated with loose faeces and occasional vomiting was observed. Before administration of the next dose of the drug the rats became very aggressive and showed resistance during injecting the drug.

The mean body weight of the animals at the beginning of the experiment was 181.50 ± 6.25gms while just prior to the sacrifice the weight was 166.00 ± 8.09 gms (Table 1). The decrease in the body weight in the experimental rats after administration of deltamethrin was found to be statistically significant (p< 0.001) by Tukey’s test when compared with the control animals (Table 1).

3-2-2- Gross observations
The testis was smooth and encapsulated. There were patchy areas of fatty tissue adherence on the surface and at sites hemorrhages were observed. Grossly, there was a nodular enlargement on the lower pole of the testis. No abnormal lobulation of the testis was seen (Figure 1).

The testis appeared smaller in size as compare to the testis of control animals. When measured with vernier calipers, the mean vertical, antero-posterior and transverse diameters of the right testis were 1.87±0.028, 0.87±0.033 and 0.90±0.030cms respectively whereas it was 1.88±0.034, 0.87±0.028 and 0.91±0.044cms in the left testis (Table 3). The average weight of the right and left testis was 1049.00 ± 46.47 and 1053 ± 44.42 respectively. Mean weight of the testis in the treated rats was calculated as 1051.00±42.41. The average weight of the testis in the treated rats showed a significant increase in the weight (Table 4).

Under the tunica albuginea, a number of cut sections of the seminiferous tubules were observed which appeared to be smaller and mostly irregular. The basement
membrane stained pink with haematoxylin and eosin. It appeared to be slightly thickened at sites (Figure 2).

The mean tubular population in unit area appeared to be reduced. It was found to be 4.62 ± 0.36 in a unit area of $57600 \mu^2$ whereas it was 8.61 ± 0.43 in the control animals (Table 5). On statistical analysis, the tubular population was significantly reduced in the experimental rats as compared to the control animals (Table 5).

The mean long and short diameters of the peripheral seminiferous tubules were 219.19 ± 4.22 microns and 132.92 ± 2.84 microns respectively (Table 6). Statistical analysis showed there was no statistical significant difference in the diameters of the peripheral seminiferous tubules as compared to the peripheral seminiferous tubules in the control animals (Table 6). The mean long and short diameters of the central seminiferous tubules were 273.23 ± 7.52 microns and 132.92 ± 2.84 microns respectively (Table 7). Statistical analysis showed there was a significant decrease in the diameters of the central seminiferous tubules as compared to the central seminiferous tubules in the control animals (Table 7).

The average height of the epithelium in peripheral and central seminiferous tubules was measured and found to be 10.10 ± 2.23 and 18.32 ± 1.53 microns respectively (Table 8). It was found to be statistically significantly reduced when compared to the height of the epithelium in the control rats in both, the peripheral and central seminiferous tubules (Table 8).

4-DISCUSSION

During the course of the experiment, it was observed that the rats became hyperactive immediately after receiving the first dose of deltamethrin. The increase in activity was accompanied by sneezing, shivering, groaning, and excessive salivation which lasted for half an hour. On subsequent days, the animals appeared sluggish; there was a loss of appetite associated with loose faeces and occasional vomiting. Prior to the administration of the next dose of the drug the rats became very aggressive and showed resistance during injecting the drug. Deltamethrin is known to be neuropoisonous acting on the axons in the
peripheral and central system by interacting sodium channels (Corbett et al, 1984).
Manna et al (2006) explained it to be a result of significantly low Gamma amino butyric acid concentrations in the brain tissue. Chen et al (2007) has suggested mitochondria-mediated apoptosis of the nerve cells in the rat brain to be the cause of these toxic effects.

At the onset of the experiment the mean body weight was 178.50± 7.47 gms, while just prior to their sacrifice, it was 182.50±8.57gms in the control rats. The slight increase in the body weight in these animals was not statistically significant. In the experimental rats the mean body weight at the beginning of the experiment was 181.50± 6.25 gms and prior to their sacrifice it was 166.00± 8.09 gms. There was a statistically significant decrease in the body weight (p<0.001) (Graph 1) in deltamethrin treated rats which may have resulted due to the hyperactivity, excessive salivation, loss of appetite, diarrhea and the occasional vomiting observed in these animals. This decrease in body weight in experimental rats is in accordance with the findings of Kavlock et al, (1996) who reported a twenty percent reduction in the body weight in female rats. Madsen et al, (1996) and Elbetieha et al (2001) also reported a similar reduction in body weight in male Fisher and Sprague–Dawley rats respectively after oral administration of deltamethrin. Similar findings were seen when deltamethrin was administered dissolved in propylene glycol intraperitoneally in Wistar albino rat by Patro et al, (1997). However our findings are in contrast with the observations of Sayim et al, (2005) and Varshneya et al, (1992) who did not observe a significant change in the body weight of the animals after administration of a type II pyrethroid, cypermethrin. The difference in observation of the body weight might have resulted due to the different routes and doses of administration used in our studies. However, Andrade et al (2002) observed no significant alteration in body weight of rats after oral administration of deltamethrin. This could be due to the difference in the route of administration and/or a variable dose used as compared to the present study.

In the control animals, the mean vertical, antero-posterior and transverse diameters were 1.88± 0.030cm, 0.87 ± 0.033cm, 0.91 ± 0.032cm respectively in the middle of the testis. The vertical diameter of the testis in the present study is favorably comparable with Hebel and Stromberg (1976) who recorded a vertical length of 2.00cm in the albino Wistar rat. The transverse diameter of the testis as
cited by him was 1.40 cm was greater than either of the antero-posterior and transverse diameters measurement in the present study. The difference in opinion may have resulted due to the different methods of fixatives used for the organ. According to Howroyd et al, (2005) there are many factors that affect fixation and different fixatives are better at preserving tissue for different endpoints of analysis in rat testes.

In the experimental group, the mean vertical length of the testis was 1.87 ± 0.028 cm where as in control rats, it was 1.88 ± 0.030 cm. On statistical analysis it was evident that the apparent decrease in the length of the testis when compared to the control is not statistically significant. The mean antero-posterior diameter of the testis in the control animals was 0.87 ± 0.033 cm and in the experimental animals it was 0.87 ± 0.033 cm. These values are statistically insignificant when compared to the diameters in the control animals. The mean transverse diameter was 0.91 ± 0.032 cm and 0.90 ± 0.030 cm in the control and experimental animals respectively. The reduced transverse diameter in the deltamethrin treated rats was not statistically significant as suggested by the independent sample “t” test. These findings suggest that the deltamethrin did not affect the gross size of the testis in the albino rats (Graph 2). Since no data was available with respect to the measurements of the testis after administration of this pesticide, it could not be compared.

The mean weight of the testis on the left side was 900 ± 46.33 and 1053.00 ± 44.42 mg and on the right side was 907.22 ± 38.40 and 1049.00 ± 46.47 mg in the control and experimental groups respectively. This increase in the mean weight of the testis was statistically significant (Graph 3). Madsen et al (1996) also observed significant increase in the testis and brain weight in Fisher rats after administration of oral deltamethrin in soyabean oil by gavage for twenty eight consecutive days. It was suggested that the increase in the weight was a result of excessive fluid retention in the interstitial tissue. In our study too this could be one of causes for the increase in testicular weight and probably if the duration of the experiment was prolonged, ultimately a loss of testicular weight may have resulted due the associated tubular degeneration. Hassan et al. (1993) and Abd El-Aziz et al. (1994) exhibited a significantly lower weight of the testicles in rat after administration of oral deltamethrin in doses as low as one milligram per kilogram per day (the lowest level tested) for sixty five days. This significant reduction in
testicular weight was attributed to the significantly reduced plasma testosterone levels which occurred as early as fourteen days after the onset of the treatment. However, Abd El-Khalek MM et al. (1999) and Elbetieha et al (2001) observed a reduced male reproductive organ weight with other type II pyrethroids like cypermethrin and fenvalerate, in a dose-dependent manner in Sprague–Dawley rats. Rai et al (2003) observed reduction in the testicular weight after immobilization stress in albino rats which was attributed to the severe suppression of spermatogenesis and degeneration of testicular tissue.

In the control animals, deep to the tunica albuginea, were a number of cut sections of normal seminiferous tubules with intervening interstitial tissue. The mean long diameter of the seminiferous tubule in the controls varied from 319.75 ± 11.74 and 219.87 ± 4.22 microns in central and peripheral tubules. The mean short diameter of seminiferous tubules is 216.97 ± 8.92 and 169.55 ± 6.47 microns in the central and peripheral regions respectively. Kalle and Bansal (1975) observed that the diameter of the seminiferous tubules ranged between 269 and 289 micron in mature Sprague-Dawley rats. The mean diameters of the tubules in his study are lower than that in the present study probably due to the different strain of rats used in the respective studies. It may also be partially due to the concentration of the myoid cells in the lamina propria.

In the experimental rats, deep to the tunica albuginea, there were a number of smaller and mostly irregular cut sections of the seminiferous tubules. The basement membrane enclosing the seminiferous tubules appeared to be slightly thickened at sites and surrounded externally by a thin layer of lamina propria containing myoepithelial cells. Similar observations were also reported by El-Gohary et al (1999) after administration of deltamethrin in adult male albino rats in a dose of 1mg/kg intraperitoneally for twenty-one consecutive days. The mean long and short diameters of the seminiferous tubules were 219.19 ± 4.22 and 132.92 ± 2.84 microns and 273.23 ± 7.52 and 169.55 ± 6.47 microns in the peripheral and central region of the testis respectively. This generalized statistically significant decrease in the diameter of the tubules (Graph 4 &5) with an associated collapse and distortion at sites of the tubules predominantly in the central region may have resulted due to the thickening of the tunica albuginea and a decrease in the vascularity in the central area of the testis. Elbetieha et al (2001) found no changes in the diameter of tubules in Sprague–Dawley rats after administration of a type II pyrethroid. Whereas Andrade et al (2002)
administered deltamethrin in a dose of four milligrams per kilogram by an oral gavage and observed adverse effects on the diameter of seminiferous tubules. Smaller seminiferous tubule diameters after introduction of deltamethrin in Sprague-Dawley rats by Kilian et al (2007) was attributed to an endocrinal disturbance leading to the atrophy of the male reproductive health. The average height of the epithelium in peripheral and central seminiferous tubules was measured and found to be 10.10 ± 2.23 and 18.32 ± 1.53 microns respectively in the experimental rats as compared to the controls which were measured to be 11.40 ± 0.93 and 19.82 ± 1.48 microns in the peripheral and central region respectively. Epithelial height was found to be statistically significantly reduced in the experimental rats when compared to the height of the epithelium in the control rats in both, the peripheral and central seminiferous tubules (Graph 6). It is suggested that due to the detachment of these cells from the basal lamina resulting in a vascular insufficiency causes sloughing of these cells into the lumen leading to the decrease in the height of the tubular epithelium in the deltamethrin treated rats resulting in a proportional spermatogenic hypoplasia with marked thinning of the spermatogenic cell rows. Testicular atrophy and degenerative changes of the seminiferous tubules have been reported in experimental animals with various insecticides (Chapin et al. 2001; Ezeasor, 1990). Our histopathological results are in agreement with the observations of Hess and Nakai (2000) who found that the administration of pyrethroids induced sloughing of germ cells and abnormal development of the head of elongating spermatids and assigned these changes to the intracellular redistribution of water and ions. Wu et al (2000) administered deltamethrin in corn oil, intraperitoneally to male Sprague-Dawley rats and found large number of cells showed pyknosis and disruption of eosinophilic cytoplasm, indicating cellular degeneration. Kilian et al (2007) after administration of deltamethrin in Sprague-Dawley rats observed a reduction of the epithelium thickness in testes along with apical sloughing and vacuolization which he suggested to be due to a disrupted endocrinal activity. The comparison between the numbers of tubules per unit area revealed that the tubules per unit area had reduced in the experimental rats (Graph 7). This could be due to the increased edema in the interstitial space between the tubules along with the reduced tubular diameter as a result of atrophy of the tubules, massive spermatogenic necrosis, more so in the central regions of the testes. Tewari et al, (1981) also observed a similar decrease in the number of tubules in the central region of the testis after deltamethrin and suggested that this may be due to the
peculiar blood supply of the testis and/or because of the fibrosed tunica albuginea. Observations of our study are in conformity with those of the Elbetieha et al, (2001) who observed an increase in the amount of connective tissue between seminiferous tubules, a decrease in the perimeter and the number of seminiferous tubules per unit area in male Sprague–Dawley rats after administration of a similar type II pyrethroid, cypermethrin. Similar observation have been reported by Clos et al 1994, Tamura et al (2004), Turner et al, (2002), Hernandez et al (2006). According to Manna et al, (2006) repeated doses of deltamethrin in rats caused a edematous fluid accumulation between the tubules and focally at sites within some of the tubules. However in contrast, Mohammed and Ameen (2007) reported that there was no fluid accumulation between the tubules in rats with Type II pyrethroids. The difference in opinion may have resulted due to the higher dose and longer duration of the drug administration.

In control rats the interstitial tissue filled the intertubular space and consisted of loose meshwork of connective tissue with the fibroblasts, Leydig cells along with arterioles, venules and capillaries. Similar observations have been recorded by Richard et al (1976), Fawcett et al (1973). In the experimental animal the intertubular space appeared to have increased. Deltamethrin probably caused damage to the components of the loose areolar tissue in the interstitial space along with the few of the Leydig cells resulting in an increase in the interstitial fluid which has emerged as edema. This was called testes tissue cell damage by Soleimanirad (1996).

There is a significant increase in the incidence of male infertility in humans in the past decade possibly due to environmental contaminants like pesticides which act as endocrine disruptors (Queiroz and Weisman, 2006). Ever since the international technological shift in industrial and agricultural development from the 20th century they are being widely used involving handling and exposure although these are harmful to human. Despite the diversity of habits and cultures around the world, various authors have reaffirmed the possible significant drop in sperm quality and consequently an increase in male infertility rates, apparently this constitutes an international phenomenon (Swan et al 1997; Golden et al 1999; Skakkebaek et al, 2001; Multigner et al, 2002 and Pasqualotto et al, 2003) The actual causes of increased infertility remain controversial but research suggests that pyrethroids to which men are exposed constantly in developing countries like India may be one of the major reasons that can affect male fertility.
Despite the relative lack of studies on this issue, the relevance of such risk calls for further studies as well as measures to prevent human exposure to the various environmental harmful substances which may be affecting the male reproductive system. The present study is one such attempt with deltamethrin in a mammal, the albino rat and it is suggested that the distinct histomorphological changes noted after chronic administration of deltamethrin are characteristic of toxic effects on the testis like tubular atrophy resulting in absence or scarce formation of normal sperms and subsequent infertility.

5-Conclusion
There was a statistically significant increase in the body weight of the animals. The gross diameters of the testis did not reveal any statistically significant difference. The weight of the testis had probably increased due to the interstitial edema as observed histologically. There was a generalized significant decrease in the diameter of the tubules with an associated collapse and distortion at sites of the tubules predominantly in the central region which may have resulted due to the thickening of the tunica albuginea and a decrease in the vascularity in the central area of the testis. Epithelial height was found to be statistically significantly reduced in the experimental rats when compared to the height of the epithelium in the control rats in both, the peripheral and central seminiferous tubules. It is suggested that the detachment of these cells from the basal lamina resulted in a vascular insufficiency which caused sloughing of these cells into the lumen leading to the decrease in the height of the tubular epithelium in the deltamethrin treated rats resulting in a proportional spermatogenic hypoplasia with marked thinning of the spermatogenic cell rows. The distinct histopathological changes noted after administration of deltamethrin are characteristic of toxic effects on the testis.

6-Acknowledgement
I would like to express my profound gratitude to Dr. Mahindra Nagar, Dr. Kamlesh Khatri and Dr. Veena Bharihole who enlightened my period of work and invaluable guidance and continuous inspiration. Also like to thanks Mr. Laxman Singh for their assistance and technical support.
7-REFERENCES

[39] Soleimanirad J. Experimentation, effects of EMF on spermatogenesis is a process in rat medicine magazine, University of medicine science 1996; 31: 55.

Fig. 1: Photograph of the experimental rat testis showing growth (Arrow marked) of the lower part of the testis.
Figure 2: Photomicrograph of the transverse section of the Normal rat testis and Experimental rat testis showing altered and distorted seminiferous tubules with irregular shape, basement membrane thickening. *Haematoxylin and eosin stain (200x).*
Fig. 1: Photograph of the experimental rat testis showing growth (Arrow marked) of the lower part of the testis.

NORMAL TESTIS

EXPERIMENTAL TESTIS

Figure 2: Photomicrograph of the transverse section of the Normal rat testis and Experimental rat testis showing altered and distorted seminiferous tubules with irregular shape, basement membrane thickening. *Haematoxylin and eosin stain (200x).*

Control

Experimental
Table 1: Comparison of body weight (gm) in control and experimental rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (µ)</th>
<th>S.D</th>
<th>p-value (one way ANOVA)</th>
<th>Significance (Tukey's test at 5% level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>178.5</td>
<td>7.47</td>
<td>>0.001</td>
<td>The groups were not statistically significant</td>
</tr>
<tr>
<td>Experimental</td>
<td>181.5</td>
<td>6.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior to sacrifice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>182.0</td>
<td>8.57</td>
<td><0.001</td>
<td>Experimental group was statistically significantly different control groups</td>
</tr>
<tr>
<td>Experimental</td>
<td>166.0</td>
<td>8.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Diameters (cm) of the Testis in control rats

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Antero-posterior</td>
</tr>
<tr>
<td>1</td>
<td>1.88</td>
<td>0.84</td>
</tr>
<tr>
<td>2</td>
<td>1.90</td>
<td>0.86</td>
</tr>
<tr>
<td>3</td>
<td>1.86</td>
<td>0.88</td>
</tr>
<tr>
<td>4</td>
<td>1.92</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>1.94</td>
<td>0.92</td>
</tr>
<tr>
<td>6</td>
<td>1.86</td>
<td>0.88</td>
</tr>
<tr>
<td>7</td>
<td>1.88</td>
<td>0.84</td>
</tr>
<tr>
<td>8</td>
<td>1.86</td>
<td>0.96</td>
</tr>
<tr>
<td>9</td>
<td>1.88</td>
<td>0.90</td>
</tr>
<tr>
<td>10</td>
<td>1.88</td>
<td>0.84</td>
</tr>
</tbody>
</table>

MEAN | 1.89 | 0.88 | 0.91 | 1.88 | 0.87 | 0.91 |
S.D | 0.026 | 0.039 | 0.043 | 0.030 | 0.033 | 0.032 |
Table 3: Diameters (cm) of the Testis in experimental rats.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.88</td>
<td>0.87</td>
<td>0.98</td>
<td>1.86</td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>1.92</td>
<td>0.92</td>
<td>0.88</td>
<td>1.84</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>1.84</td>
<td>0.91</td>
<td>0.86</td>
<td>1.86</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>1.92</td>
<td>0.89</td>
<td>0.88</td>
<td>1.87</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>5</td>
<td>1.94</td>
<td>0.84</td>
<td>0.85</td>
<td>1.85</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>6</td>
<td>1.86</td>
<td>0.84</td>
<td>0.88</td>
<td>1.86</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>7</td>
<td>1.85</td>
<td>0.86</td>
<td>0.92</td>
<td>1.92</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td>8</td>
<td>1.86</td>
<td>0.84</td>
<td>0.94</td>
<td>1.90</td>
<td>0.86</td>
<td>0.94</td>
</tr>
<tr>
<td>9</td>
<td>1.87</td>
<td>0.86</td>
<td>0.96</td>
<td>1.86</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>10</td>
<td>1.86</td>
<td>0.88</td>
<td>0.88</td>
<td>1.92</td>
<td>0.87</td>
<td>0.90</td>
</tr>
</tbody>
</table>

MEAN | 1.88 | 0.87 | 0.91 | 1.87 | 0.87 | 0.90 |

S.D | 0.034 | 0.028 | 0.044 | 0.028 | 0.029 | 0.030 |

Table 4: Comparison of weight (gms) of Testis in control and experimental rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (µ)</th>
<th>S.D</th>
<th>P-value (one way ANOVA)</th>
<th>Significance (Tukey’s test at 5% level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>903.61</td>
<td>45.32</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td>Experimental</td>
<td>1051.00</td>
<td>42.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Comparison of mean count per unit area (57600 µ2) of seminiferous tubules in control and experimental rats.

<table>
<thead>
<tr>
<th>Region</th>
<th>Group</th>
<th>Mean (µ)</th>
<th>S.D</th>
<th>p-value (one way ANOVA)</th>
<th>Significance (Tukey's test at 5% level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean count per unit area</td>
<td>Control</td>
<td>8.61</td>
<td>0.43</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>4.62</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Comparison of mean diameters (µ) of peripheral seminiferous tubules in control and experimental rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group</th>
<th>Mean (µ)</th>
<th>SD</th>
<th>p-value (one way ANOVA)</th>
<th>Significance (Tukey's test at 5% level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Diameter</td>
<td>Control</td>
<td>219.87</td>
<td>4.22</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>219.19</td>
<td>4.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Diameter</td>
<td>Control</td>
<td>146.76</td>
<td>8.42</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>132.92</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Comparison of mean diameters (µ) of central seminiferous tubules in control and experimental rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group</th>
<th>Mean (µ)</th>
<th>S.D</th>
<th>p-value (one way ANOVA)</th>
<th>Significance (Tukey's test at 5% level)</th>
</tr>
</thead>
</table>
Table 8: Comparison of mean thickness (μ) of the epithelium of the central and peripheral seminiferous tubules in control and experimental rats.

<table>
<thead>
<tr>
<th>Region</th>
<th>Group</th>
<th>Mean (μ)</th>
<th>SD</th>
<th>p-value (one way ANOVA)</th>
<th>Significance (Tukey’s test at 5% level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Control</td>
<td>19.82</td>
<td>1.48</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>18.32</td>
<td>1.53</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td>Control</td>
<td>11.40</td>
<td>0.93</td>
<td><0.001</td>
<td>Both groups were significantly different from each other</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>10.10</td>
<td>2.23</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>
Graph 1: Comparison of body weight (gm) in control and experimental rats

![Graph of body weight comparison](image)

Graph 2: Comparison of the mean diameter (cm) of the testis in control and experimental rats.

![Graph of testis diameter comparison](image)
Graph 3: Comparison of weight (mg) of testis in control and experimental rats.

Graph 4: Comparison of mean diameters (μ) of peripheral seminiferous tubules in control and experimental rats.
Graph 5: Comparison of mean diameters (μ) of central seminiferous tubules in control and experimental rats.
Graph 6: Comparison of mean thickness (μ) of the epithelium of the central and peripheral seminiferous tubules in control and experimental rats.

Graph 7: Mean count of the seminiferous tubules per unit area (57600 μ²) in control and experimental rats.