Anibal Ollero

Anibal Ollero
Universidad de Sevilla | US · Systems Engineering and Automatics

About

652
Publications
117,795
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,720
Citations
Introduction
Aerial robotics, Aerial robotics manipulation, Unmanned Aerial Vehicles

Publications

Publications (652)
Article
Most current insect research techniques are ground-based and provide scarce information about flying insects in the planetary boundary layer (PBL), which remains a poorly studied ecological niche. To address this gap, we developed a new insect-sampling method consisting of a fixed-wing drone platform with net traps attached to the fuselage, a mobil...
Preprint
Flapping wings are a bio-inspired method to produce lift and thrust in aerial robots, leading to quiet and efficient motion. The advantages of this technology are safety and maneuverability, and physical interaction with the environment, humans, and animals. However, to enable substantial applications, these robots must perch and land. Despite rece...
Preprint
Full-text available
Flapping wings are a bio-inspired method to produce lift and thrust in aerial robots, leading to quiet and efficient motion. The advantages of this technology are safety and maneuverability, and physical interaction with the environment, humans, and animals. However, to enable substantial applications, these robots must perch and land. Despite rece...
Article
In this work, the application of an optimization algorithm is investigated to optimize static and dynamic engineering problems. The methodology of the approach is to generate random solutions and find a zone for the initial answer and keep reducing the zones. The generated solution in each loop is independent of the previous answer that creates a p...
Preprint
This paper presents the first design of a soft, 3D-printed in flexible filament, lightweight UAV, capable of adapting to the industrial environment using soft tendons, specifically landing and stabilizing on pipelines without the need for an auxiliary system. The flexibility of the UAV can be controlled during the additive manufacturing process by...
Article
In recent years, aerial manipulators with fully-actuated capabilities are gaining popularity for being used in aerial manipulation operations such as critical infrastructure inspection or aerial manipulation tasks. Those scenarios usually demand the aerial platform to operate in constrained and narrow scenarios. It is well known that in these situa...
Article
Many sensor systems in robotics are bio-inspired by similar mechanisms in living creatures. Birds frequently use their beaks to grasp and manipulate objects. This work proposes a very lightweight sensor system that emulates a birds beak, thus allowing flapping aerial robots to interact with the environment, as e.g. to perform grasping or manipulati...
Article
Full-text available
Multirotor aerial robots are becoming widely used for the inspection of powerlines. To enable continuous, robust inspection without human intervention, the robots must be able to perch on the powerlines to recharge their batteries. Highly versatile perching capabilities are necessary to adapt to the variety of configurations and constraints that ar...
Article
The quaternion is a powerful and common tool to avoid singularity in rotational dynamics in three-dimensional (3D) space. Here it has been particularly used as an alternative to Euler angles and rotation matrix. The application of the quaternion is exercised in quadrotor modeling and control. It changes the dynamics and represents a singularity-fre...
Article
Full-text available
In recent years, several countries have developed the use of sterile insect techniques (SIT) to fight against mosquitoes that transmit diseases. From a technical and economic point of view, the use of drones in the aerial release of sterile mosquitoes leads to important improvements in aerial coverage and savings in operational costs due to the req...
Article
The unsteady aerodynamics of flapping low-aspect-ratio ellipsoidal-wings in ornithopters is analyzed and modeled by the use of three dimensional Computational Fluid Dynamics (CFD) simulations. The range of interest is high amplitude, moderate frequency flapping, and low to moderate angles of attack at Reynolds around 10⁵, where autonomous ornithopt...
Article
Full-text available
This work investigates the gravity compensation topic, from a control perspective. The gravity could be levelled by a compensating mechanical system or in the control law, such as proportional derivative (PD) plus gravity, sliding mode control, or computed torque method. The gravity compensation term is missing in linear and nonlinear optimal contr...
Article
The manipulation capabilities of flapping-wing flying robots (FWFRs) is a problem barely studied. This is a direct consequence of the load-carrying capacity limitation of the flapping-wing robots. Ornithopters will improve the existent multirotor unmanned aerial vehicles (UAVs) since they could perform longer missions and offer a safe interaction i...
Article
Full-text available
This paper presents a threat management methodology for Unmanned Aircraft Systems (UAS) operating in the civil airspace. The work is framed within an Unmanned Traffic Management (UTM) system based on the U-space initiative. We propose a new method that focuses on providing the required automated decision-making during real-time threat management an...
Article
Full-text available
The inspection and maintenance tasks of electrical installations are very demanding. Nowadays, insulator cleaning is carried out manually by operators using scaffolds, ropes, or even helicopters. However, these operations involve potential risks for humans and the electrical structure. The use of Unmanned Aerial Vehicles (UAV) to reduce the risk of...
Article
This paper investigates the inspection-of-pipe topic in a new framework, by rotation around a pipe, peculiar to industrial sites and refineries. The evolution of the ultimate system requires prototype design and preliminary tests. A new benchmark has been designed and built to mimic the rotation around a pipe, with the main purpose of assessing the...
Article
This paper presents a novel algorithm to plan energy-efficient trajectories for autonomous ornithopters. In general, trajectory optimization is quite a relevant problem for practical applications with Unmanned Aerial Vehicles (UAVs). Even though the problem has been well studied for fixed and rotatory-wing vehicles, there are far fewer works explor...
Article
This paper addresses autonomous fire-fighting missions with a heterogeneous team of Unmanned Aerial Vehicles (UAVs). We use UAVs with different capabilities to extinguish cooper- atively fires on the ground and on facades of high-rise buildings. The former is done by deploying fireproof blankets, whereas a water-jet system is used to extinguish fir...
Conference Paper
Full-text available
The development of perception and control methods that allow bird-scale flapping-wing robots (a.k.a. ornithopters) to perform autonomously is an under-researched area. This paper presents a fully onboard event-based method for ornithopter robot visual guidance. The method uses event cameras to exploit their fast response and robustness against moti...
Article
Full-text available
The inspection of public infrastructure, such as viaducts and bridges, is crucial for their proper maintenance given the heavy use of many of them. Current inspection techniques are very costly and manual, requiring highly qualified personnel and involving many risks. This article presents a novel solution for the detailed inspection of viaducts us...
Article
Full-text available
This paper presents a localization system for Unmanned Aerial Vehicles (UAVs) especially designed to be used in infrastructure inspection, where the UAVs have to fly in challenging conditions, such as relatively high altitude (e.g., 15 m), eventually with poor or absent GNSS (Global Navigation Satellite System) signal reception, or the need for a B...
Article
Full-text available
This work presents the application of an aerial manipulation robot for the semi-autonomous installation of clip-type bird flight diverters on overhead power line cables. A custom-made prototype is designed, developed, and experimentally validated. The proposed solution aims to reduce the cost and risk of current procedures carried out by human oper...
Article
Full-text available
This paper describes a method for autonomous aerial cinematography with distributed lighting by a team of unmanned aerial vehicles (UAVs). Although camera-carrying multi-rotor helicopters have become commonplace in cinematography, their usage is limited to scenarios with sufficient natural light or of lighting provided by static artificial lights....
Article
Full-text available
The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehic...
Article
Full-text available
A safe integration of UAVs into the airspace is fundamental to unblock all the potential of drone applications. U-space is the drone traffic management solution for Europe, intended to handle a large number of drones into the airspace, especially at Very Low Level (VLL). This paper is focused on conflict management for multiple unmanned aerial vehi...
Article
Although ground robots have been successfully used for many years in manufacturing, the capability of aerial robots to agilely navigate in the often sparse and static upper part of factories makes them suitable for performing tasks of interest in many industrial sectors. This paper presents the design, development, and validation of a fully autonom...
Article
Full-text available
The use of aerial manipulators for the inspection and maintenance of the power grid requires the safe interaction of the robot with high voltage power lines. In order to identify possible faults or malfunctions during the approaching or interaction phases, this paper presents experimental results in a real 15 kV power line, considering four differe...
Article
Winged animals such as birds, flying mammals or insects have lightweight limbs which allow them to perform different tasks. Although in robotics there are some examples of winged robots (called ornithopters), it has not been yet studied how to add them some manipulation-like capabilities, similarly to the anatomy of animals limbs. Adding those capa...
Article
Full-text available
This article analyzes the evolution and current trends in aerial robotic manipulation, comprising helicopters, conventional underactuated multirotors, and multidirectional thrust platforms equipped with a wide variety of robotic manipulators capable of physically interacting with the environment. It also covers cooperative aerial manipulation and i...
Article
Full-text available
This paper presents a crawling mechanism using a soft-tentacle gripper integrated into an unmanned aerial vehicle for pipe inspection in industrial environments. The objective was to allow the aerial robot to perch and crawl along the pipe, minimizing the energy consumption, and allowing to perform contact inspection. This paper introduces the desi...
Conference Paper
Full-text available
This paper presents a multi-layer software architecture to perform cooperative missions with a fleet of quad-rotors providing support in electrical power line inspection operations. The proposed software framework guarantees the compliance with safety requirements between drones and human workers while ensuring that the mission is carried out succe...
Conference Paper
Full-text available
Automatic intrusion detection in unstructured and complex environments using autonomous Unmanned Aerial Systems (UAS) poses perception challenges in which traditional techniques are severely constrained. Event cameras have high temporal resolution and dynamic range, which make them robust against motion blur and lighting conditions. This paper pres...
Article
Full-text available
This paper presents a software architecture for Unmanned aerial system Traffic Management (UTM). The work is framed within the U-space ecosystem, which is the European initiative for UTM in the civil airspace. We propose a system that focuses on providing the required services for automated decision-making during real-time threat management and con...
Article
Full-text available
The aim of this work is to present the development of a bio-inspired approach for a robotic tail using Macro Fiber Composites (MFC) as actuators. The use of this technology will allow achieving closer to the nature approach of the tail, aiming to mimic a bird tail behavior. The tail will change its shape, performing morphing, providing a new type o...
Article
Full-text available
This paper presents an asynchronous event-based scheme for automatic intrusion monitoring using Unmanned Aerial Systems (UAS). Event cameras are neuromorphic sensors that capture the illumination changes in the camera pixels with high temporal resolution and dynamic range. In contrast to conventional frame-based cameras, they are naturally robust a...
Article
This paper presents a method for planning optimal trajectories with a team of Unmanned Aerial Vehicles (UAVs) performing autonomous cinematography. The method is able to plan trajectories online and in a distributed manner, providing coordination between the UAVs. We propose a novel non-linear formulation for this challenging problem of computing m...
Article
Autonomous lightweight flapping-wing robots show potential to become a safe and affordable solution for rapidly deploying robots around humans and in complex environments. The absence of propellers makes such vehicles more resistant to physical contact, permitting flight in cluttered environments, and collaborating with humans. Importantly, the pro...
Article
The development of automatic perception systems and techniques for bio-inspired flapping-wing robots is severely hampered by the high technical complexity of these platforms and the installation of onboard sensors and electronics. Besides, flapping-wing robot perception suffers from high vibration levels and abrupt movements during flight, which ca...
Article
Acrobatic flip is one of the most challenging representatives of aggressive maneuvers to test the performance of an aerial system’s capability or a controller. A variable-pitch rotor quadcopter generates thrust in both vertical directions for the special design of the rotor’s actuation mechanism. Flip maneuver sets the rotation matrix of the copter...
Article
Full-text available
This paper presents an aerial manipulation robot consisting of a hexa-rotor equipped with a 2-DOF (degree of freedom) Cartesian base (XY–axes) that supports a 1-DOF compliant joint arm that integrates a gripper and an elastic linear force sensor. The proposed kinematic configuration improves the positioning accuracy of the end effector with respect...
Article
Full-text available
This paper presents a team of multiple Unmanned Aerial Vehicles (UAVs) to perform cooperative missions for autonomous construction. In particular, the UAVs have to build a wall made of bricks that need to be picked and transported from different locations. First, we propose a novel architecture for multi-robot systems operating in outdoor and unstr...
Article
In this paper, a novel control framework for coordinated motion for kinematically redundant multi-robot systems is developed. The framework embeds both tasks expressed as equality constraints and set-based tasks, i.e., tasks expressed via inequality constraints, in a task-priority kinematic control scheme. The effectiveness of the approach is exper...
Article
Full-text available
This paper considers the problem of performing bimanual aerial manipulation tasks in grabbing conditions, with one of the arms grabbed to a fixed point (grabbing arm) while the other conducts the task (operation arm). The goal was to evaluate the positioning accuracy of the aerial platform and the end effector when the grabbing arm is used as posit...
Article
Full-text available
A redundant fast prototyping autopilot solution for unmanned aerial systems has been developed and successfully tested outdoors. While its low-level backbone is executed in a Raspberry Pi® 3 + NAVIO2® with a backup autopilot, the computational power of an Intel® NUC mini-computer is employed to implement complex functionalities directly in Simulink...
Article
Full-text available
For the Remotely Piloted Aircraft Systems (RPAS) market to continue its current growth rate, cost-effective ‘Detect and Avoid’ systems that enable safe beyond visual line of sight (BVLOS) operations are critical. We propose an audio-based ‘Detect and Avoid’ system, composed of microphones and an embedded computer, which performs real-time inference...
Article
Full-text available
This paper deals with the inherent instability observed in the speed of a planing type craft. In the case of displacement craft, the systems governing the speed are stable hence closed-loop control is trivial. In the case of planing craft, however, there may exist instability in their speed. By using the Qualitative Theory of Dynamical Systems (QTD...
Preprint
For the Remotely Piloted Aircraft Systems (RPAS) market to continue its current growth rate, cost-effective "Detect and Avoid" systems that enable safe beyond visual line of sight (BVLOS) operations are critical. We propose an audio-based "Detect and Avoid" system, composed of microphones and an embedded computer, which performs real-time inference...
Conference Paper
Aerial robot perception for surveillance and search and rescue in unstructured and complex environments poses challenging problems in which traditional sensors are severely constrained. This paper analyzes the use of event cameras onboard aerial robots for surveillance applications. Event cameras have high temporal resolution and dynamic range, whi...
Preprint
Full-text available
This paper presents a novel algorithm to plan energy-efficient trajectories for autonomous ornithopters. In general, trajectory optimization is quite a relevant problem for practical applications with \emph{Unmanned Aerial Vehicles} (UAVs). Even though the problem has been well studied for fixed and rotatory-wing vehicles, there are far fewer works...