Angelo R Tome

Angelo R Tome
University of Coimbra | UC · Department of Life Sciences, Faculty of Sciences and Technology

PhD

About

76
Publications
14,113
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,699
Citations
Citations since 2017
25 Research Items
1628 Citations
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
Introduction
Ângelo R Tomé currently works as a teacher at the Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, and as a researcher at the Center for Neurosciences and Cell Biology, University of Coimbra. Ângelo does research in Neuroscience.
Additional affiliations
January 1991 - present
University of Coimbra
Position
  • Researcher

Publications

Publications (76)
Article
Full-text available
Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we reported the ergogenic mechanism of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We now demonstrate that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8–10 weeks, 47 ±...
Article
Full-text available
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and...
Article
Full-text available
Extracellular ATP can be a danger signal, but its role in striatal circuits afflicted in Parkinson’s disease (PD) is unclear and was now investigated. ATP was particularly released at high stimulation intensities from purified striatal nerve terminals of mice, which were endowed with different ATP-P2 receptors (P2R), although P2R antagonists did no...
Preprint
Full-text available
Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we presented the ergogenic mechanism of caffeine through neuronal A 2A R antagonism in the central nervous system [1]. We demonstrate here that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8–10 weeks,...
Preprint
Full-text available
Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we presented the ergogenic mechanism of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We demonstrate here that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8-10 weeks, 47...
Article
Full-text available
The contribution of astrocytes to Alzheimer’s disease (AD) is still ill defined. AD involves an abnormal accumulation of amyloid-β peptides (Aβ) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular Ca²⁺ oscillat...
Article
Full-text available
Alzheimer’s disease (AD) is characterized by progressive memory deficits accompanied by synaptic and metabolic deficits, namely of mitochondrial function. AD patients also display a disrupted circadian pattern. Thus, we now compared memory performance, synaptic plasticity, and mitochondria function in 24-week-old non-transgenic (non-Tg) and triple...
Article
Full-text available
Synapse stabilization Early in brain development, neurons connect to each other enthusiastically. With development, an overabundance of synapses is winnowed down to refine efficiently connected circuits. Inactive synapses are prime targets for elimination, whereas active synapses tend to be retained. Gomez-Castro et al . took a closer look at how t...
Article
Full-text available
Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alteratio...
Article
Full-text available
Angelman syndrome (AS) is a neurogenetic disorder involving ataxia and motor dysfunction, resulting from the absence of the maternally inherited functional Ube3a protein in neurons. Since adenosine A2A receptor (A2AR) blockade relieves synaptic and motor impairments in Parkinson’s or Machado-Joseph’s diseases, we now tested if A2AR blockade was als...
Article
Full-text available
The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A 2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chloro...
Article
Full-text available
Depressive conditions precipitated by repeated stress are a major socio-economical burden in Western countries. Previous studies showed that ATP-P2X7 receptors (P2X7R) and adenosine A2A receptors (A2AR) antagonists attenuate behavioral modifications upon exposure to repeated stress. Since it is unknown if these two purinergic modulation systems wor...
Article
Physical exercise attenuates the development of L-DOPA-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injecti...
Article
Full-text available
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of function of the maternally inherited Ube3a neuronal protein, whose main features comprise severe intellectual disabilities and motor impairments. Previous studies with the Ube3am−/p+ mouse model of AS revealed deficits in synaptic plasticity and memory. Since adenosine A2A re...
Article
The initial exploration using pharmacological tools of the role of adenosine receptors in the brain, concluded that adenosine released as such acted on A1R to inhibit excitability and glutamate release from principal neurons throughout the brain and that adenosine A2A receptors (A2AR) were striatal-‘specific’ receptors controlling dopamine D2R. Thi...
Article
Full-text available
Adenosine is an endogenous anticonvulsant and neuroprotectant of the brain. Seizure activity produces large quantities of adenosine, and it is this seizure-induced adenosine surge that normally stops a seizure. However, within the context of epilepsy, adenosine plays a wide spectrum of different roles. It not only controls seizures (ictogenesis), b...
Article
Full-text available
Caffeine is one of the most widely consumed psycho-stimulants. The study of the beneficial effects of caffeine consumption to decrease the risk of developing several neuropsychiatric pathologies is receiving increasing attention. Thus, accurate and sensitive methods have been developed, mainly by LC-MS/MS, in order to quantify caffeine and its meta...
Article
Adenosine A2A receptors (A2AR) overfunction causes synaptic and memory dysfunction in early Alzheimer's disease (AD). In a β-amyloid (Aβ1-42)-based model of early AD, we now unraveled that this involves an increased synaptic release of ATP coupled to an increased density and activity of ecto-5'-nucleotidase (CD73)-mediated formation of adenosine se...
Article
Background and purpose: Parkinson's disease (PD) involves an initial loss of striatal dopamine terminals evolving into degeneration of dopamine neurons in substantia nigra (SN), which can be modeled by 6-hydroxydopamine (6-OHDA) administration. Adenosine A2A receptor (A2A R) blockade attenuates PD features in animal models, but the source of the a...
Article
Full-text available
Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the reti...
Article
Mitochondrial dysfunction is proposed to trigger memory deficits and synaptic damage at the onset of Alzheimer's disease (AD). However, it is unknown how mitochondria dysfunction might trigger synaptotoxicity and if a differential susceptibility of mitochondria located in synapses underlies the greater glutamatergic than GABAergic synaptotoxicity i...
Article
Chronic inflammatory lung diseases remain a health concern and new anti-inflammatory treatments are needed. Targeting adenosine A2A receptors (A2AR) affords robust anti-inflammatory effects in animal models, but the translation of this promising strategy to humans has been challenging, possibly due to interspecies differences in receptor distributi...
Article
Full-text available
Caffeine prophylactically prevents mood and memory impairments through adenosine A2A receptor (A2AR) antagonism. A2AR antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now...
Article
Full-text available
Significance Epidemiological studies show that individuals exposed to repeated stress, a major trigger of depression, increase their caffeine intake, which correlates inversely with the incidence of depression. However, the mechanism underlying this protective effect is unknown. We used an animal model of chronic unpredictable stress (CUS) to show...
Article
Full-text available
ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine recept...
Article
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A2A receptors (A2AR), located at pre- and post-synaptic elements of the cortico-striata...
Article
Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A 2A receptors (A 2A Rs). To test if A 2A R activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways oper...
Article
Full-text available
Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated...
Conference Paper
Caffeine is the most widely consumed psychoactive drug worldwide and has received renewed interest in view of the health benefit associated wit its consumption. The effects of caffeine have been proposed to involve the release of calcium from intracellular deposits or the inhibition/antagonism of phosphodiesterases, GABAA receptors or adenosine rec...
Article
α2-Adrenoceptor agonists are used frequently in human and veterinary anesthesia as sedative/analgesic drugs. However, they can impair cognition. Little is known about the concentration-dependent effects of α2-adrenoceptor agonists on synaptic plasticity, the neurophysiological basis of learning and memory. Therefore, we investigated the effects of...
Article
Full-text available
There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD) begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-...
Article
Full-text available
We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid receptors (NMDARs) in glutamatergic terminals of the nucleus accumbens (NAc). Immunocytochemical studies showed that a significant percentage of NAc term...
Article
Background and purpose: Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1 -A2A receptor interaction has already been elucidated, but the presynaptic A2A recepto...
Article
Full-text available
Ketamine is frequently used to induce analgesia or anesthesia in laboratory animals, but its effects on learning and memory are poorly characterized. Long-term potentiation (LTP) is considered a cellular mechanism for learning and memory. Ketamine administration immediately abolishes hippocampal LTP in vivo, but whether this effect persists is not...
Article
The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (...
Conference Paper
Glaucoma is a neurodegenerative retinal disease characterized by retinal ganglion cell (RGC) death. Evidence suggests that caffeine attenuates inflammatory responses and affords protection upon CNS injury. The aim of this work was to investigate whether caffeine intake prevents retinal neuroinflammation and cell death induced by retinal ischemia-re...
Article
Full-text available
Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to ca...
Article
Background and PurposePre‐synaptic nicotinic ACh receptors (nAChRs) and adenosine A2A receptors (A2ARs) are involved in the control of dopamine release and are putative therapeutic targets in Parkinson's disease and addiction. Since A2ARs have been reported to interact with nAChRs, here we aimed at mapping the possible functional interaction betwee...
Conference Paper
The regular consumption of moderate doses of caffeine alleviates the incidence of different neuropsychiatric conditions, such as depression, Alzheimer’s or Parkinson’s diseases. Although it is well established that caffeine acts through the antagonism of adenosine receptors, it remains to be explored if caffeine metabolites might also be involv...
Article
Full-text available
Background and purpose: Pre-synaptic nicotinic ACh receptors (nAChRs) and adenosine A2A receptors (A2A Rs) are involved in the control of dopamine release and are putative therapeutic targets in Parkinson's disease and addiction. Since A2A Rs have been reported to interact with nAChRs, here we aimed at mapping the possible functional interaction b...
Article
Full-text available
Blockade of adenosine A2A receptors (A2AR) affords robust neuroprotection in a number of brain conditions, although the mechanisms are still unknown. A likely candidate mechanism for this neuroprotection is the control of neuroinflammation, which contributes to the amplification of neurodegeneration, mainly through the abnormal release of pro-infla...
Article
J. Neurochem. (2011) 117, 100–111. The blockade of adenosine A2A receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially becau...
Article
Full-text available
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, w...
Article
Full-text available
Adenosine has long been considered an endogenous anti-epileptic compound. This concept was based on the widespread distribution of adenosine A 1 receptors (A 1 R), which are mostly located in excitatory synapses; here, A 1 R in-hibit glutamate release, decrease glutamatergic responsiveness and hyperpolarise neurons. However, the combined obser-vati...
Article
Full-text available
The glucose sensitivity of bursting electrical activity and pulsatile insulin release from pancreatic islets was determined in absence of functional K(ATP) channels. Membrane potential, [Ca(2+)](i) and 5-HT/insulin release were measured by intracellular recording, fura-2 fluorescence and 5-HT amperometry, respectively. Single mouse islets, bathed i...
Article
Glucose-induced insulin secretion from pancreatic beta cells is modulated by several hormones and transmitters, namely adenosine triphosphate (ATP) via purinergic receptors. Although P2Y receptors are well documented in beta cells, the presence of P2X receptors remains elusive. We present the first electrophysiological evidence for the presence of...
Article
Full-text available
2-Methylthioadenosine 5'-triphosphate (2-MeSATP), formerly regarded as a specific P2Y (metabotropic) purinergic receptor agonist, stimulates Ca2+ influx and evokes catecholamine release from adrenal chromaffin cells. These cells express P2Y and P2X (ionotropic) purinoceptors, with the latter providing an important Ca2+ influx pathway. Using single...
Article
Full-text available
Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors....
Article
Li(+) transport, intracellular immobilisation and Li(+)/Mg(2+) competition were studied in Li(+)-loaded bovine chromaffin cells. Li(+) influx rate constants, k(i), obtained by atomic absorption (AA) spectrophotometry, in control (without and with ouabain) and depolarising (without and with nitrendipine) conditions, showed that L-type voltage-sensit...
Article
Nicotine-induced catecholamine (CA) secretion and inward ionic currents were inhibited by the opioid antagonist naloxone in cultured bovine chromaffin cells. Naloxone inhibited nicotine-induced CA secretion, as detected by an on-line real-time electrochemical technique, in a dose-dependent manner (IC(50)=29 microM). In voltage-clamped chromaffin ce...
Article
We used botulinum neurotoxins (BoNT) to examine whether differences in the secretory activity of noradrenergic and adrenergic chromaffin cells are related to differences in the exocytotic machinery of these two types of bovine adrenal medulla cells. Cleavage of syntaxin and SNAP-25 by BoNT/C1 decreased in a dose-dependent way the release of both no...
Article
Using clonal insulin-secreting BRIN-BD11 cells, we have assessed whether the graded response of the whole cell population to glucose can be accounted for by a dose-dependent recruitment of individual cells, an amplification of the response of the recruited cells or both. Cytosolic free Ca(2+) concentration ([Ca(2+)](i)) is an established index of b...
Article
Full-text available
1. Glucose-induced insulin release from single islets of Langerhans is pulsatile. We have investigated the correlation between changes in cytosolic free calcium concentration ([Ca2+]i) and oscillatory insulin secretion from single mouse islets, in particular examining the basis for differences in secretory responses to intermediate and high glucose...
Article
We report a highly sensitive electrochemical approach suitable for the real time measurement of insulin release from single islets of Langerhans, the functional endocrine units in the pancreas. The method is based on the detection of the insulin surrogate 5-hydroxytryptamine (5-HT) by carbon fibre microelectrodes implanted in the islets. Based on t...
Article
Objectives: This study evaluated the effects of six phosphoric acid-etching agents on dentin, the independent variables being two acid concentrations (10% and 32%-37%) and three thickener conditions (no thickener, silica, and polymer). The tested hypothesis was that the use of different etchants with similar concentrations of phosphoric acid would...
Article
Full-text available
We have assessed the relative contribution of Ca2+ entry and Ca2+ release from internal stores to the [Ca2+]i transients evoked by purinergic receptor activation in bovine adrenal chromaffin cells. The [Ca2+]i was recorded from single cells using ratiometric fura-2 microfluorometry. Two discrete groups of ATP-sensitive cells could be distinguished...
Article
Full-text available
We have assessed the relative contribution of Ca2+ entry and Ca2+ release from internal stores to the [Ca2+]i transients evoked by purinergic receptor activation in bovine adrenal chromaffin cells. The [Ca2+]i was recorded from single cells using ratiometric fura-2 microfluorometry. Two discrete groups of ATP-sensitive cells could be distinguished...