Angelo Antonio Salatino

Angelo Antonio Salatino
The Open University (UK) · Knowledge Media Institute

Master's Degree in Computer Systems Engineering

About

35
Publications
4,995
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
301
Citations
Additional affiliations
July 2013 - November 2014
Politecnico di Bari
Position
  • Research Assistant

Publications

Publications (35)
Preprint
Full-text available
Interest in Artificial Intelligence (AI) continues to grow rapidly, hence it is crucial to support researchers and organisations in understanding where AI research is heading. In this study, we conducted a bibliometric analysis on 257K articles in AI, retrieved from OpenAlex. We identified the main conceptual themes by performing clustering analysi...
Article
Full-text available
Classifying scientific articles, patents, and other documents according to the relevant research topics is an important task, which enables a variety of functionalities, such as categorising documents in digital libraries, monitoring and predicting research trends, and recommending papers relevant to one or more topics. In this paper, we present th...
Article
Scientific conferences are essential for developing active research communities, promoting the cross-pollination of ideas and technologies, bridging between academia and industry, and disseminating new findings. Analyzing and monitoring scientific conferences is thus crucial for all users who need to take informed decisions in this space. However,...
Article
Full-text available
Academia and industry share a complex, multifaceted, and symbiotic relationship. Analysing the knowledge flow between them, understanding which directions have the biggest potential, and discovering the best strategies to harmonise their efforts is a critical task for several stakeholders. Research publications and patents are an ideal medium to an...
Chapter
Full-text available
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graph...
Chapter
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graph...
Article
Full-text available
Knowledge graphs (KGs) are widely used for modeling scholarly communication, performing scientometric analyses, and supporting a variety of intelligent services to explore the literature and predict research dynamics. However, they often suffer from incompleteness (e.g., missing affiliations, references, research topics), leading to a reduced scope...
Preprint
Full-text available
The incompleteness of Knowledge Graphs (KGs) is a crucial issue affecting the quality of AI-based services. In the scholarly domain, KGs describing research publications typically lack important information, hindering our ability to analyse and predict research dynamics. In recent years, link prediction approaches based on Knowledge Graph Embedding...
Preprint
Full-text available
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graph...
Article
The incompleteness of Knowledge Graphs (KGs) is a crucial issue affecting the quality of AI-based services. In the scholarly domain, KGs describing research publications typically lack important information, hindering our ability to analyse and predict research dynamics. In recent years, link prediction approaches based on Knowledge Graph Embedding...
Preprint
Full-text available
Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this paper, we present the CSO Classifier, a new unsupervised approach for automatically class...
Preprint
Full-text available
Identifying the research topics that best describe the scope of a scientific publication is a crucial task for editors, in particular because the quality of these annotations determine how effectively users are able to discover the right content in online libraries. For this reason, Springer Nature, the world's largest academic book publisher, has...
Chapter
Full-text available
Ontologies of research areas have been proven to be useful resources for analysing and making sense of scholarly data. In this chapter, we present the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field, and discuss a number of applications that build on CSO to support high-level tasks, such as topic classi...
Chapter
Understanding, monitoring, and predicting the flow of knowledge between academia and industry is of critical importance for a variety of stakeholders, including governments, funding bodies, researchers, investors, and companies. To this purpose, we introduce ResearchFlow, an approach that integrates semantic technologies and machine learning to qua...
Conference Paper
Full-text available
Research on database and information technologies has been rapidly evolving over the last couple of years. This evolution was lead by three major forces: Big Data, AI and Connected World that open the door to innovative research directions and challenges, yet exploiting four main areas: (i) computational and storage resource modeling and organizati...
Chapter
Full-text available
Academia and industry are constantly engaged in a joint effort for producing scientific knowledge that will shape the society of the future. Analysing the knowledge flow between them and understanding how they influence each other is a critical task for researchers, governments, funding bodies, investors, and companies. However, current corpora are...
Article
Full-text available
Ontologies of research areas are important tools for characterizing, exploring, and analyzing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance,...
Preprint
Full-text available
Ontologies of research areas have been proven to be useful in many application for analysing and making sense of scholarly data. In this chapter, we present the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field of Computer Science, and discuss a number of applications that build on CSO, to support high-le...
Preprint
Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain d...
Chapter
Full-text available
Identifying the research topics that best describe the scope of a scientific publication is a crucial task for editors, in particular because the quality of these annotations determine how effectively users are able to discover the right content in online libraries. For this reason, Springer Nature, the world’s largest academic book publisher, has...
Chapter
Full-text available
Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this paper, we present the CSO Classifier, a new unsupervised approach for automatically class...
Conference Paper
Full-text available
Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain d...
Article
Full-text available
The ability to recognise new research trends early is strategic for many stakeholders, such as academics, institutional funding bodies, academic publishers and companies. While the state of the art presents several works on the identification of novel research topics, detecting the emergence of a new research area at a very early stage, i.e., when...
Article
Full-text available
The ability to recognise new research trends early is strategic for many stakeholders, such as academics, institutional funding bodies, academic publishers and companies. While the state of the art presents several works on the identification of novel research topics, detecting the emergence of a new research area at a very early stage, i.e., when...
Article
Full-text available
The ability to recognise new research trends early is strategic for many stakeholders, such as academics, institutional funding bodies, academic publishers and companies. While the state of the art presents several works on the identification of novel research topics, detecting the emergence of a new research area at a very early stage, i.e., when...
Conference Paper
The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task...
Conference Paper
The process of classifying scholarly outputs is crucial to ensure timely access to knowledge. However, this process is typically carried out manually by expert editors, leading to high costs and slow throughput. In this paper we present Smart Topic Miner (STM), a novel solution which uses semantic web technologies to classify scholarly publications...
Article
Full-text available
The ability to recognise new research trends early is strategic for many stakeholders, such as academics, institutional funding bodies, academic publishers and companies. While the state of the art presents several works on the identification of novel research topics, detecting the emergence of a new research area at a very early stage, i.e., when...
Conference Paper
Being aware of new research topics is an important asset for anybody involved in the research environment, including researchers, academic publishers and institutional funding bodies. In recent years, the amount of scholarly data available on the web has increased steadily, allowing the development of several approaches for detecting emerging resea...
Conference Paper
In this paper we present the results of an experimental Italian research project finalized to support the classification process of the two behavioural status (resonance and dissonance) of a candidate applying for a job position. The proposed framework is based on an innovative system designed and implemented to extract and process the non-verbal e...
Conference Paper
Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction. In this paper a SER system is developed with the aim of providing a classification of the "state of interest" of a human subject involved in a job interview. Classification of emotions is performed by analyzing the speech produced during the intervi...

Network

Cited By

Projects

Project (1)