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Abstract A straightforward and efficient method for the
synthesis of novel highly substituted and diversely func-
tionalized indazolone derivatives has been developed. The
transformation consists of a cyclocondensation of selected
1, 3, 3′-tricarbonyls with monosubstituted hydrazines. The
starting β-triketones were prepared by an efficient chemo-
and regioselective method under MW irradiation, exploiting
the oxazolone chemistry. The reaction is easily accomplished
under mild conditions and appears versatile, providing a
synthetic diversification method with potential for drug-like
compounds preparation.

Keywords Indazolone · Hydrazines · Oxazolone ·
β-Triketones

Introduction

Indazole- and indazolone-based compounds have recently
received special attention in virtue of their useful properties
[1] and biological activities, such as analgesic [2], anticancer
[3,4], anti-inflammatory [5], antifertility [6], antimicrobial
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[7], antifungal [8], anti-angiogenic [9], antiproliferative [10]
and cytotoxic [11].

Nonetheless, the synthesis of these privileged structures
suffers fromsome limitations, such as the difficulties of regio-
and stereochemical control. Accordingly, current efforts are
directed towards the identification of new, efficient and
selective synthetic strategies for the construction of highly
substituted and diversely functionalized indazolone deriva-
tives.

To address this issue, in the framework of our studies
dealing with the design of poly functionalized heterocycles
[12–18], we report herein the synthesis of a set of indazolone-
based compounds, with the aim to maximize their molecular
diversity by exploiting the oxazolone chemistry to function-
alize the starting 1,3-dicarbonyls.

Indeed, it is well known the usefulness of oxazol-5-(4H)-
ones as versatile intermediates for the preparation of highly
substituted heterocycles and structurally complex amino
acids [19]. Furthermore, our interest in the use of enolizable
cyclic 1,3-dicarbonyls as building blocks for the synthe-
sis of novel molecular architectures is well documented
[17,18,20–22].

The proposed strategy appears versatile providing a syn-
thetic diversification method with potential for drug-like
compounds preparation. The biological relevance of selected
novel compounds has been preliminarily assessed in vitro
against HT-29 colorectal adenocarcinoma and HepG2 hepa-
tocellular carcinoma cells, evaluating both the antiprolif-
erative and the cytotoxic effects. Additionally, our inda-
zolone scaffold includes necessary requirements for the
optimization of pharmaceutical properties, such as the
presence of an amino group in the side chain, which
could be further exploited to improve the druggability
by conjugation with aminoacids, peptides or biomateri-
als.
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Fig. 1 Overview of our recent
exploitation of oxazolone and
β-triketones chemistry

Scheme 1 Synthetic route to
tetrahydroindazolones 7 and 8.
(i) abs. EtOH, reflux, 5h. Yields
of compounds 7 and 8

Scheme 2 Proposed mechanism
for tetrahydroindazolones
formation

Results and discussion

As reported in our previous study [20], starting from selected
enolizable cyclic 1,3-dicarbonyls and 4-methyl-2-phenyl-
1,3-oxazol-5(4H)-one, a series of powerful open-chain deriv-
atives, bearing a Y-shaped 1, 3, 3′-tricarbonyl moiety, was
prepared by an efficient chemo- and regioselective method
under MW irradiation (Fig. 1). We have recently demon-
strated that cyclic β-triketones and their enol derivatives
represent useful building blocks for the construction of vari-
ous heterocyclic systems [21–24], due to their high degree of

functionalization and their well-known [25] high reactivity
(Fig. 1).

To further expand our ongoing studies on their syn-
thetic usefulness, we have herein investigated the cyclocon-
densation of selected 1, 3, 3′-tricarbonyls 1–3 with mono-
substituted hydrazines 4–6 as ambident nucleophiles
(Scheme 1).

The reaction proceeds efficiently in refluxing ethanol
through nucleophilic attack at the exo-cyclic carbonyl of 1–3
with the formation of a non-isolated hydrazone intermediate,
followed by intramolecular cyclocondensation (Scheme 2).
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Scheme 3 Synthetic route to
indazolones 9 and 10. (ii) 6N
HCl, glacial CH3COOH, reflux,
24h. Yields of compounds 9 and
10

The reaction proceeds regioselectively yielding 7 as the
sole product with arylhydrazines 4 and 5 because of the
inherent differences between the nucleophilicities of the two
nitrogens [26]. Indeed, the lower nucleophilicity of the inter-
nal nitrogen of arylhydrazines, due to the conjugation of the
lone-pair in the aromatic ring, leads to the regioselective syn-
thesis of 1,3-disubstituted tetrahydroindazolones 7.

Conversely, the similar nucleophilicities of the two nitro-
gens of alkylhydrazines, such as 6, induces a quite difficult
regiochemical control [26], yielding inseparable regioiso-
meric mixtures of tetrahydroindazolones 7 and 8. Therefore,
the regioisomeric ratio was determined by 1H-NMR spec-
troscopy on the crude reaction mixture, resulting in a 3. 5: 1
ratio.

The proposed synthetic methodology appears versatile,
and it allows to maximize the molecular diversity of tetrahy-
droindazolone scaffold, using different enolizable cyclic
1,3-dicarbonyls and different aminoacids as starting mate-
rials for the oxazolone formation. Compounds 7 and 8, not
previously described in literature, have been obtained in good
to excellent yields (58–99%). Interestingly, to the best of our
knowledge, the introduction of a functionalized chain at the
pyrazole carbon is unprecedented, as only alkyl or aryl sub-
stituents (Me, Et, i-Pr, CF3, cyclohexyl, Ph, thienyl, etc.) have
been introduced so far [27–29].

Another advantage of our approach relies on the possi-
bility to further modify the mentioned chain derived from
the oxazolone ring opening. Indeed, the acid-promoted N -
deprotection of the functionalized chain of 7 and 8 leads
to the interesting amino derivatives 9 and 10 (Scheme 3),
whoseNH2 group could be further derivatized to improve the
pharmaceutical properties including pharmacokinetic and
druggability, by conjugation with aminoacids, peptides or
biomaterials.

The regioisomeric ratio for compounds 9 and 10 was
determined by 1H-NMR spectroscopy on the crude reaction
mixture, resulting in a 3.5:1 ratio.

The structures of new products were determined on the
basis of analytical and spectroscopic data (See “Experimen-
tal” section).

Structural assignment of regioisomerswas based on gHM-
BCAD and confirmed by 2D-NOESY experiments carried
out on compounds 7a and on 7c+8c.

The presence of a NOE correlation between the ortho pro-
tons of NC6H5 and the protons of the closer methylene group
in 7a suggested the exclusive formation of one regioisomer.

Conversely, in the mixture 7c+8c, the two regioisomers
can be conveniently distinguished on the basis of diagnostic
correlations between the protons of NMe group on the pyra-
zole ring and the protons of the closer methylene group in 7c
and between the protons of NMe group on the pyrazole ring
and the proton of the CH of the side chain in 8c.

Several indazolone derivatives have been reported as
anticancer agents [3,4,10,11]. Therefore, the antiprolifer-
ative effect of selected indazolones has been preliminarily
screened in vitro against HT-29 colorectal adenocarcinoma
andHepG2 hepatocellular carcinoma cells. To determine cell
proliferation, both MTT and cell count assays were per-
formed, while cytotoxicity was assessed by either lactate
dehydrogenase (LDH) and trypan blue tests. (see Electronic
Supplementary Material)

Conclusions

In summary, an efficient and straightforward route to novel
highly substituted and diversely functionalized indazolone
derivatives from enolizable cyclic 1, 3, 3′-tricarbonyls and
monosubstituted hydrazines has been developed. The reac-
tion is easily accomplished under mild conditions and
appears versatile, making new compounds suitable for fur-
ther studies. In addition, a preliminary screening has revealed
that some of them display in vitro antiproliferative effect
on HT-29 colorectal adenocarcinoma and HepG2 hepato-
cellular carcinoma cells, confirming the well-known bio-
logical relevance of this heterocyclic scaffold that may be
exploited to design novel andmore effective antiproliferative
agents, by appropriate chemical modifications and decora-
tions.
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Experimental

General

Melting points were determined on a Kofler melting appara-
tus and are uncorrected. IR spectra were recorded in Nujol
with a Nicolet Impact 410D spectrometer. 1H and 13C-NMR
spectrawere obtainedon aVarian 500MHzspectrometer. The
chemical shifts (δ) and coupling constants (J) are expressed
in ppmand hertz, respectively.Microanalyses andmass spec-
trometry analyses were carried out on a Carlo Erba EA
1102 and on a 3200 QTRAP (Applied Biosystem SCIEX),
respectively. All solvents and reagents were obtained from
commercial sources and purified before use if necessary.
MerckKieselgel 60F254 plateswere used forTLC, andMerck
Silica gel 60 (0.063–0.100mm) for column chromatography.
Compounds 1, 2 and 3 were prepared according to the liter-
ature [20,22].

Typical procedure for the preparation of compounds 7
and 8

To a stirred solution of 1, 2 or 3 (1 mmol) in abs EtOH
(20 mL), hydrazine 4, 5 or 6 (1.5 mmol) was added.
The mixture was stirred and heated at reflux for approxi-
mately 5h. The progress of the reaction was monitored by
TLC (CH2Cl2/AcOEt 9:1). After completion of reaction as
checked by TLC, the reaction mixture was evaporated and
purified by chromatographic column (CH2Cl2/AcOEt 9:1),
affording compounds 7 and 8 as yellowish oil.

Analytical and spectral data of compounds 7 and 8

N -(1-(4-oxo-1-phenyl -4,5,6,7-tetrahydro-1H-indazol-3-yl)
ethyl)benzamide (7a) (73%); IR (CHCl3): 3287, 1732, 1660,
1645; 1H NMR (500 MHz, CDCl3) : δ = 1.55 (d, J =
7.0 Hz, 3H), 2.16–2.21 (m, 2H), 2.61–2.65 (m, 2H), 2.91–
3.00 (m, 2H), 5.77 (dq, J = 7.0 Hz, 9.5 Hz, 1H), 7.41–7.48
(m, 3H Ar), 7.49–7.50 (m, 5H Ar), 7.91 (d, J = 7.0 Hz, 2H
Ar), 8.94 (d, J = 9.5 Hz, 1H, NH);13C NMR (125 MHz,
CDCl3) : δ = 22.2, 23.3, 23.3, 38.0, 44.0, 116.5, 123.6,
127.1, 127.1, 128.4, 129.3, 131.2, 134.5, 138.1, 151.4, 154.7,
165.8, 195.2; ESI-MS (m/z) = 360.14 [M+1]+; Anal. Calcd
for C22H21N3O2: C, 73.56; H, 5.92; N, 11.71.

N -(1-(1-(4-nitrophenyl)-4-oxo-4,5,6,7-tetrahydro-1H-in
dazol-3-yl)ethyl)benzamide (7b) (84%); IR (CHCl3):
3320, 1730, 1661, 1646, 1519, 1347; 1H NMR (500 MHz,
CDCl3): δ = 1.54 (d, J = 7.1Hz, 3H), 2.21–2.24 (m, 2H),
2.63–2.67 (m, 2H), 3.03–3.08 (m, 2H), 5.74 (dq, J= 7.1 Hz,
9.8 Hz, 1H), 7.42–7.55 (m, 3H Ar), 7.73 (d, J = 8.8Hz,
2H Ar), 7.86 (d, J = 8.0Hz, 2H Ar), 8.34 (d, J= 8.8 Hz,
2H Ar), 8.76 (d, J= 9.8 Hz,1H, NH);13C NMR (125 MHz,
CDCl3): δ = 21.7, 23.3, 23.9, 37.9, 43.9, 117.8, 123.5, 124.9,

127.1, 128.5, 131.5, 134.1, 143.1, 146.5, 151.9, 155.8, 166.2,
195.0; ESI-MS (m/z) = 405.14 [M + 1]+; Anal. Calcd for
C22H20N4O4 : C, 65.36; H, 4.94; N, 13.88.

N -(1-(1-methyl-4-oxo-4,5,6,7-tetrahydro -1H -indazol-3-
yl)ethyl)benzamide (7c) (45%); IR (CHCl3): 3270, 1730,
1656, 1638; 1H NMR (500 MHz, CDCl3): δ = 1.47 (d,
J = 7.1Hz, 3H), 2.16–2.19 (m, 2H), 2.51–2.56 (m, 2H),
2.76–2.81 (m, 2H), 3.75 (s, 3H), 5.62 (dq, J = 7.1Hz, 9.3
Hz, 1H), 7.40–7.45 (m, 3HAr), 7.89 (d, J = 8.4Hz, 2HAr),
8.90 (d, J = 9.3Hz,1H, NH); 13CNMR (125MHz, CDCl3):
δ = 22.1, 22.8, 35.7, 37.7, 43.9, 115.1, 127.0, 128.3, 131.1,
134.4, 151.5, 153.6, 165.8, 194.6; ESI-MS (m/z) = 298.36
[M+1]+; Anal. Calcd for C17H19N3O2 : C, 68.70; H, 6.42;
N, 14.16.

N -(1-(2-methyl-4-oxo-4,5,6,7-tetrahydro -2H-indazol-3-
yl)ethyl)benzamide (8c) (13%); IR (CHCl3): 3270, 1730,
1656, 1638; 1H NMR (500 MHz, CDCl3): δ = 1.48 (d,
J = 7.1Hz, 3H), 2.10–2.13 (m, 2H), 2.50–2.54 (m, 2H),
2.75–2.80 (m, 2H), 3.94 (s, 3H), 5.64 (dq, J = 7.1Hz, 8.9
Hz, 1H), 7.40–7.45 (m, 3HAr), 7.89 (d, J = 8.4Hz, 2HAr),
9.36 (d, J = 8.9Hz,1H, NH);13C NMR (125MHz, CDCl3):
δ = 20.5, 21.2, 35.7, 38.8, 41.0, 115.2, 127.1, 128.4, 131.5,
134.0, 146.8, 156.9, 166.1, 196.4; ESI-MS (m/z) = 298.36
[M+1]+; Anal. Calcd for C17H19N3O2 : C, 68.70; H, 6.42;
N, 14.16.

N -(1-(6,6-dimethyl-4-oxo-1-phenyl-4,5,6,7-tetrahydro-
1H-indazol-3-yl)ethyl)benzamide (7d) (81%); IR (CHCl3):
3294, 1730, 1670, 1630; 1H NMR (500 MHz, CDCl3):
δ = 1.08 (s, 3H), 1.16 (s, 3H), 1.55 (d, J = 7.1Hz, 3H),
2.47 (d, J = 16.4Hz, 1H), 2.56 (d, J = 16.4Hz, 1H),
2.77 (d, J = 16.4Hz, 1H), 2.87 (d, J = 16.4Hz, 1H),
5.78 (dq, J = 7.1Hz, 9.4 Hz, 1H), 7.41–7.48 (m, 3H Ar),
7.50–7.55 (m, 5H Ar), 7.92 (d, J = 10Hz, 2H Ar), 8.96
(d, J = 9.4Hz,1H, NH);13C NMR (125 MHz, CDCl3):
δ = 22.3, 27.8, 28.8, 35.8, 37.1, 44.0, 52.2, 115.7, 123.9,
127.2, 128.4, 128.4, 129.4, 131.2, 134.6, 138.1, 150.4, 154.8,
166.0, 194.4; ESI-MS (m/z) = 388.16 [M+1]+; Anal. Calcd
for C24H25N3O2 : C, 74.41; H, 6.52; N, 10.86.

N -(1-(6,6-dimethyl-1-(4-nitrophenyl)-4-oxo-4,5,6,7-tetr
ahydro-1H-indazol-3-yl)ethyl)benzamide (7e) (98%); IR
(CHCl3): 3448, 1732, 1673, 1630; 1521; 1345; 1H NMR
(500 MHz, CDCl3): δ = 1.11 (s, 3H), 1.19 (s, 3H), 1.56
(d, J = 7.0Hz, 3H), 2.50 (d, J = 16.5Hz, 1H), 2.58
(d, J = 16.5Hz, 1H), 2.87 (d, J = 17.0Hz, 1H), 2.96
(d, J = 17.0Hz, 1H), 5.78 (dq, J = 7.0Hz, 9.4 Hz,
1H), 7.41–7.49 (m, 3H Ar), 7.75 (d, J = 9.4Hz, 2H),
7.90 (d, J = 10Hz, 2H Ar), 8.40 (d, J = 9.4Hz,
2H), 8.76 (d, J = 9.4 z,1H, NH);13C NMR (125 MHz,
CDCl3): δ = 21.7, 27.8, 28.4, 35.8, 37.5, 43.7, 51.8, 116.7,
123.5, 124.8, 126.9, 128.3, 131.2, 134.1, 142.9, 146.4, 150.9,
155.5, 166.0, 194.2; ESI-MS (m/z) = 388.16 [M + 1]+;
Anal. Calcd for C24H24N4O4 : C, 66.69; H, 5.61; N,
12.99.
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N -(1-(1,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-inda
zol-3-yl)ethyl)benzamide (7f) (51%); IR (CHCl3): 3294,
1733, 1653, 1600; 1HNMR (500MHz, CDCl3): δ = 0.93 (s,
3H), 0.98 (s, 3H), 1.34 (d, J = 8.2Hz, 3H), 2.20–2.32 (m,
2H), 2.44–2.58 (m, 2H), 3.58 (s, 3H), 5.48 (dq, J = 8.2Hz,
9.0 Hz, 1H), 7.25–7.34 (m, 3H Ar), 7.75 (d, J = 7.3Hz, 2H
Ar), 8.89 (d, J = 9.0Hz,1H, NH); 13C NMR (125 MHz,
CDCl3): δ = 22.2, 28.0, 35.0, 35.7, 43.9, 51.9, 114.0, 127.0,
128.3, 131.1, 134.4, 150.7, 153.4, 165.8, 193.9; ESI-MS
(m/z) = 326.16 [M+1]+; Anal. Calcd for C19H23N3O2 : C,
70.17; H, 7.16; N, 12.93.

N -(1-(2,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-2H-inda
zol-3-yl)ethyl)benzamide (8f) (14%); IR (CHCl3): 3294,
1733, 1653, 1600; 1HNMR (500MHz, CDCl3): δ = 0.92 (s,
3H), 0.95 (s, 3H), 1.35 (d, J = 8.2Hz, 3H), 2.21–2.33 (m,
2H), 2.45–2.59 (m, 2H), 3.81 (s, 3H), 5.50 (dq, J = 8.2Hz,
9.0 Hz, 1H), 7.25–7.34 (m, 3H Ar), 7.75 (d, J = 7.3Hz,
2H Ar), 9.32 (d, J = 9.0Hz,1H, NH);13C NMR (125 MHz,
CDCl3): δ = 20.8, 28.5, 35.2, 35.7, 41.1, 52.7, 114.2, 127.1,
128.4, 131.5, 133.9, 147.0, 156.2, 166.0, 195.9; ESI-MS
(m/z) = 326.16 [M+1]+; Anal. Calcd for C19H23N3O2 : C,
70.17; H, 7.16; N, 12.93.

N -(1-(6-isopropyl-4-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-
indazol-3-yl)ethyl)benzamide (7g) (two diastereomers, in
a 1:1 molar ratio racemic mixture) (99%); IR (CHCl3):
3286, 1717, 1659, 1640; 1H NMR (500 MHz, CDCl3):
δ = 0.91 − −0.94 (m, 6H), 1.49 (d, J = 7.1Hz, 3H), 1.52
(d, J = 7.1Hz, 3H), 1.65–1.70 (m, 2H), 2.03–2.06 (m, 2H),
2.32–2.43 (m, 2H), 2.59–2.74 (m, 4H), 2.82–2.86 (m, 2H),
5.72 (dq, J = 7.1Hz, 9.3 Hz, 2H), 7.31–7.48 (m, 16H Ar),
7.86 (d, J = 7.3Hz, 2H Ar), 7.90 (d, J = 7.1Hz, 2H Ar),
8.97 (d, J = 9.3Hz, 1H, NH), 9.07 (d, J = 9.6Hz,1H,
NH); 13C NMR (125 MHz, CDCl3): δ = 19.5, 19.5, 19.6,
19.6, 22.1, 22.2, 26.8, 26.9, 31.6, 31.8, 41.9, 42.0, 42.5, 42.7,
44.0, 116.5, 116.6, 123.8, 123.9, 127.1, 127.1, 127.2, 128.2,
128.4, 129.4, 129.9, 131.3, 132.9, 134.4, 138.0, 138.1, 151.5,
151.7, 154.5, 166.1, 195.1, 195.4; ESI-MS (m/z) = 402.54
[M+1]+; Anal. Calcd for C25H27N3O2 : C, 74.82; H, 6.81;
N, 10.50.

N -(1-(6-isopropyl-1-(4-nitrophenyl)-4-oxo-4,5,6,7-tetra
hydro-1H-indazol-3-yl)ethyl)benzamide (7h) (two diastere-
omers, in a 1:1 molar ratio racemic mixture) (98%); IR
(CHCl3): 3355, 1716, 1661, 1650; 1520; 1346; 1H NMR
(500 MHz, CDCl3): δ = 0.99 − −1.01 (m, 6H), 1.53 (d,
J = 6.7Hz, 3H), 1.57 (d, J = 7.1Hz, 3H), 1.76–1.79 (m,
2H), 2.13–2.14 (m, 2H), 2.40–2.50 (m, 2H), 2.68–2.86 (m,
4H), 2.90–3.05 (m, 2H), 5.70 (m, 2H), 7.41–7.56 (m, 6H
Ar), 7.73 (d, J = 8.9Hz, 2H Ar), 7.91 (d, J = 8.0Hz, 2H
Ar), 8.38 (d, J = 8.9Hz, 2H Ar), 8.75 (d, J = 9.3Hz, 1H,
NH), 8.82 (d, J = 9.3Hz,1H, NH); 13C NMR (125 MHz,
CDCl3): δ = 19.3, 19.4, 19.5, 19.5, 21.7, 21.8, 27.3, 27.4,
31.6, 31.7, 41.7, 41.8, 42.5, 42.7, 43.9, 117.8, 117.8, 123.3,
123.5, 123.6, 124.9, 127.0, 127.0, 128.2, 128.4, 129.2, 131.4,

134.0, 142.9, 143.0, 146.5, 152.0, 152.1, 155.5, 166.2, 195.0,
195.1; ESI-MS (m/z) = 447.24 [M + 1]+; Anal. Calcd for
C25H26N4O4 : C, 67.30; H, 5.90; N, 12.50.

N -(1-(6-isopropyl-1-methyl-4-oxo-4,5,6,7-tetrahydro-1H
-indazol-3-yl)ethyl)benzamide (7i) (two diastereomers, in a
1:1 molar ratio racemic mixture) (76%); IR (CHCl3): 3274,
1714, 1655; 1HNMR (500MHz, CDCl3): δ = 0.99−−1.00
(m, 6H), 1.47 (d, J = 5.4Hz, 3H), 1.50 (d, J = 5.7Hz,
3H), 1.72–1.76 (m, 2H), 2.11–2.12 (m, 2H), 2.25–2.36 (m,
2H), 2.42–2.56 (m, 2H), 2.57–2.79 (m, 2H), 2.81–2.84 (m,
2H), 3.75 (s, 3H), 5.59–5.61 (m, 2H), 7.38–7.46 (m, 6H Ar),
7.87 (d, J = 8.0Hz, 2H Ar), 7.90 (d, J = 8.0Hz, 2H Ar),
8.90 (d, J = 9.3Hz, 1H, NH), 8.95 (d, J = 9.3Hz,1H,
NH);13C NMR (125 MHz, CDCl3): δ = 19.5, 19.6, 19.6,
19.6, 22.2, 24.9, 31.6, 31.8, 31.9, 35.8, 41.9, 41.9, 42.1,
42.3, 43.9, 115.2, 115.3, 127.1, 127.2, 127.2, 128.3, 128.5,
131.1, 131.5,134.6, 151.4, 151.6, 153.8, 153.8, 165.9, 194.4,
194.6; ESI-MS (m/z) = 340.14 [M + 1]+; Anal. Calcd for
C20H25N3O2 : C, 70.80; H, 7.44; N, 12.40.

N -(1-(6-isopropyl-2-methyl-4-oxo-4,5,6,7-tetrahydro-2
H-indazol-3-yl)ethyl)benzamide (8i) (two diastereomers, in
a 1:1molar ratio racemicmixture) (22%); IR (CHCl3): 3274,
1714, 1655; 1HNMR (500MHz, CDCl3): δ = 0.96−−0.97
(m, 6H), 1.47 (d, J = 5.4Hz, 3H), 1.50 (d, J = 5.7Hz, 3H),
1.69–1.73 (m, 2H), 1.99–2.10 (m, 2H), 2.25–2.36 (m, 2H),
2.42–2.56 (m, 2H), 2.57–2.79 (m, 2H), 2.85–2.90 (m, 2H),
3.94 (s, 3H), 5.62–5.64 (m, 2H), 7.38–7.46 (m, 6H Ar), 7.87
(d, J = 8.0Hz, 2H Ar), 7.90 (d, J = 8.0Hz, 2H Ar), 9.39
(d, J = 9.3Hz, 1H, NH), 9.41 (d, J = 9.3Hz,1H, NH); 13C
NMR (125 MHz, CDCl3): δ = 21.0, 21.0, 21.1, 21.1, 22.2,
26.5, 31.6, 31.8, 31.9, 36.9, 41.0, 42.7, 43.0, 43.0, 115.2,
115.3, 127.1, 127.2, 127.2, 128.3, 128.5, 131.1, 131.5,134.6,
151.4, 151.6, 153.8, 153.8, 165.9, 194.4, 194.6; ESI-MS
(m/z) = 340.14 [M+1]+; Anal. Calcd for C20H25N3O2 : C,
70.80; H, 7.44; N, 12.40.

Typical procedure for the preparation of compounds 9
and 10

0.3 g of 7 and 8 were dispersed in 30 mL of a mixture of 6N
HCl (15 mL) and glacial acetic acid (15 mL). The mixture
was stirred and heated at reflux for approximately 24h. After
cooling, a 10% solution of NaOH was added to reach pH 9–
10. The aqueous solution was extracted with CHCl3 (3×50
mL). The combined organic layers were dried over anhy-
drous NaSO4, filtered, evaporated under reduced pressure
and purified by chromatographic column (CH2Cl2/AcOEt
9:1), affording compounds 9 and 10 as yellowish oil.

Analytical and spectral data of compounds 9 and 10

3-(1-Aminoethyl)-1-phenyl-6,7-dihydro-1H-indazol-4(5H)-
one (9a) (66%); IR (CHCl3): 3353, 1668, 1652; 1H NMR
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(500 MHz, CDCl3): 1.50 (d, J = 6.9Hz, 3H), 2.19–2.22
(m, 2H), 2.57–2.60 (m, 2H), 3.02–3.05 (m, 2H), 4.34 (q,
J = 6.9Hz, 1H), 7.38–7.48 (m, 5H Ar); 13C NMR (125
MHz, CDCl3): δ = 22.2, 23.4, 23.5, 38.3, 45.9, 116.6, 123.8,
128.1, 129.3, 138.5, 150.8, 158.8, 193.8; ESI-MS (m/z) =
256.35 [M + 1]+; Anal. Calcd for C15H17N3O : C, 70.59;
H, 6.74; N, 16.50.

3-(1-Aminoethyl)-1-(4-nitrophenyl)-6,7-dihydro-1H-ind
azol-4(5H)-one (9b) (98%); IR (CHCl3): 3367, 1668, 1598,
1520, 1346; 1H NMR (500 MHz, CDCl3): 1.50 (d, J =
7.1Hz, 3H), 2.11–2.14 (m, 2H), 2.52–2.55 (m, 2H), 2.90–
2.92 (m, 2H), 4.37 (q, J = 7.1Hz, 1H), 7.73 (d, J = 8.9Hz,
2H Ar), 8.36 (d, J = 8.9Hz, 2H Ar); 13C NMR (125 MHz,
CDCl3): δ = 22.0, 23.5, 24.0, 38.1, 45.7, 113.3, 123.3, 124.9,
143.5, 146.4, 151.2, 158.7, 193.6; ESI-MS (m/z) = 301.15
[M+1]+; Anal. Calcd for C15H16N4O3 : C, 60.01; H, 5.41;
N, 18.70.

3-(1-Aminoethyl)-1-methyl-6,7-dihydro-1H-indazol-4(5
H)-one (9c) (65%); IR (CHCl3): 3394, 1655, 1640; 1HNMR
(500MHz, CDCl3): 1.30 (d, J = 6.5Hz, 3H), 2.02–2.10 (m,
2H), 2.30–2.42 (m, 2H), 2.65–2.70 (m, 2H), 3.70 (s, 3H),
4.10 (q, J = 6.5Hz, 1H);13C NMR (125 MHz, CDCl3):
δ = 21.3, 22.0, 22.9, 35.6, 38.0, 45.6, 115.1, 150.9, 157.6,
193.4; ESI-MS (m/z) = 194.20 [M + 1]+; Anal. Calcd for
C10H15N3O : C, 62.10; H, 7.79; N, 21.70.

3-(1-Aminoethyl)-2-methyl-6,7-dihydro-2H-indazol-4(5
H)-one (10c) (19%); IR (CHCl3): 3394, 1655, 1640; 1H
NMR (500 MHz, CDCl3): 1.32 (d, J = 6.5Hz, 3H), 2.02–
2.10 (m, 2H), 2.30–2.42 (m, 2H), 2.65–2.70 (m, 2H), 3.73
(s, 3H), 4.10 (q, J = 6.5Hz, 1H);13C NMR (125 MHz,
CDCl3): δ = 21.4, 22.0, 22.30, 36.7, 37.0, 45.9, 115.1,
150.9, 157.6, 193.4; ESI-MS (m/z) = 194.20 [M + 1]+;
Anal. Calcd for C10H15N3O : C, 62.10; H, 7.79; N,
21.70.

3-(1-Aminoethyl)-6,6-dimethyl-1-phenyl-6,7-dihydro-1
H-indazol-4(5H)-one (9d) (49%); IR (CHCl3): 3351, 1670,
1598; 1HNMR(500MHz,CDCl3): 1.05 (s, 3H), 1.06 (s, 3H),
1.45 (d, J = 6.7Hz, 3H), 2.37 (s, 2H), 2.73 (s, 2H), 4.30 (q,
J= 6.7 Hz, 1H), 7.36–7.47 (m, 5H Ar);13C NMR (125MHz,
CDCl3): δ = 22.1, 28.2, 28.3, 35.6, 37.1, 45.8, 52.4, 115.6,
123.8, 128.1, 129.3, 138.4, 150.0, 158.5, 193.2; ESI-MS
(m/z) = 256.35 [M+ 1]+; Anal. Calcd for C17H21N3O : C,
72.09; H, 7.44; N, 14.88.

3-(1-Aminoethyl)-6,6-dimethyl-1-(4-nitrophenyl)-6,7-di
hydro-1H-indazol-4(5H)-one (9e) (48%); IR (CHCl3): 3360,
1658, 1620; 1523; 1344; 1H NMR (500 MHz, CDCl3): 1.08
(s, 6H), 1.45 (d, J = 6.6Hz, 3H), 2.41 (s, 2H), 2.86 (s, 2H),
4.31 (q, J = 6.6Hz, 1H), 7.70 (d, J = 8.4Hz, 2H Ar),
8.30 (d, J = 8.4Hz, 2H Ar);13C NMR (125 MHz, CDCl3):
δ = 21.9, 28.2, 28.2, 35.8, 37.6, 45.6, 52.1, 116.9, 123.4,
124.9, 143.4, 146.3, 150.5, 159.2, 193.2; ESI-MS (m/z) =
328.17 [M+ 1]+; Anal. Calcd for C17H20N4O3 : C, 62.20;
H, 6.10; N, 17.09.

3-(1-Aminoethyl)-1,6,6-trimethyl-6,7-dihydro-1H-indaz
ol-4(5H)-one (9f) (40%); IR (CHCl3): 3354, 1657, 1610;
1H NMR (500MHz, CDCl3): 1.07 (s, 3H), 1.08 (s, 3H), 1.38
(d, J = 6.4Hz, 3H), 2.29 (s, 2H), 2.57 (s, 2H), 3.68 (s, 3H),
4.17 (q, J = 6.4Hz, 1H); 13C NMR (125 MHz, CDCl3):
δ = 22.2, 28.5, 35.3, 35.4, 45.5, 52.2, 114.1, 150.2, 157.5,
192.7; ESI-MS (m/z) = 222.20 [M + 1]+; Anal. Calcd for
C12H19N3O : C, 65.15; H, 8.70; N, 18.95.

3-(1-Aminoethyl)-2,6,6-trimethyl-6,7-dihydro-2H-indaz
ol-4(5H)-one (10f) (11%); IR (CHCl3): 3354, 1657, 1610;
1H NMR (500 MHz, CDCl3): 1.02 (s, 6H), 1.38 (d, J =
6.4Hz, 3H), 2.29 (s, 2H), 2.57 (s, 2H), 3.79 (s, 3H), 4.17 (q,
J = 6.4Hz, 1H); 13C NMR (125 MHz, CDCl3): δ = 22.2,
28.4, 35.3, 35.4, 45.7, 52.2, 114.1, 150.2, 157.5, 192.7; ESI-
MS (m/z) = 222.20 [M+ 1]+; Anal. Calcd for C12H19N3O :
C, 65.15; H, 8.70; N, 18.95.
3-(1-Aminoethyl)-6-isopropyl-1-phenyl-6,7-dihydro-1H

-indazol-4(5H)-one (9g) (two diastereomers, in a 1:1 molar
ratio racemic mixture) (92%); IR (CHCl3): 3363, 1664,
1598; 1H NMR (500 MHz, CDCl3): 0.95 (d, J = 7.1Hz,
6H), 0.96 (d, J = 7.1Hz, 6H), 1.51 (d, J = 6.7Hz, 3H),
1.52 (d, J = 6.7Hz, 3H), 1.70–1.75 (m, 2H), 2.00–2.10 (m,
2H), 2.30–2.40 (m, 2H), 2.65–2.72 (m, 2H), 2.75–2.80 (m,
2H), 2.90–2.95 (m, 2H), 4.30 (q, J = 6.7Hz, 2H), 7.40–7.52
(m, 10H Ar); 13C NMR (125 MHz, CDCl3): δ = 19.5, 19.6,
22.0, 22.1, 26.9, 31.8, 42.0, 42.7, 45.9, 116.6, 123.8, 128.1,
129.4, 138.5, 151.5, 151.0, 158.3, 193.9; ESI-MS (m/z) =
298.20 [M + 1]+; Anal. Calcd for C18H23N3O : C, 72.72;
H, 7.81; N, 14.11.

3-(1-Aminoethyl)-6-isopropyl-1-(4-nitrophenyl)-6,7-dih
ydro-1H-indazol-4(5H)-one (9h) (two diastereomers, in a
1:1 molar ratio racemic mixture) (84%); IR (CHCl3): 3343,
1668, 1598; 1H NMR (500 MHz, CDCl3): 0.97 (d, J =
6.6Hz, 6H), 1.00 (d, J = 6.6Hz, 6H), 1.49 (d, J = 6.6Hz,
3H), 1.51 (d, J = 6.6Hz, 3H), 1.72–1.76 (m, 2H), 2.09–2.11
(m, 2H), 2.35–2.44 (m, 2H), 2.60–2.64 (m, 2H), 2.78–2.81
(m, 2H), 2.93–2.97 (m, 2H), 4.35 (q, J = 6.6Hz, 2H), 7.72
(d, J = 8.5Hz, 4H Ar), 8.37 (d, J = 8.5Hz, 4H Ar); 13C
NMR (125 MHz, CDCl3): δ = 19.5, 19.6, 22.0, 27.5, 31.7,
42.0, 42.7, 45.8, 117.9, 123.4, 125.0, 143.5, 146.3, 151.5,
158.8, 193.7; ESI-MS (m/z) = 343.20 [M+1]+; Anal. Calcd
for C18H22N4O3 : C, 63.18; H, 6.50; N, 16.32.

3-(1-Aminoethyl)-6-isopropyl-1-methyl-6,7-dihydro-1H
-indazol-4(5H)-one (9i) (two diastereomers, in a 1:1 molar
ratio racemic mixture) (68%); IR (CHCl3): 3476, 1660,
1600; 1HNMR (500MHz,CDCl3): 0.89-0.93 (m, 12H), 1.33
(d, J = 6.6Hz, 3H), 1.34 (d, J = 6.6Hz, 3H), 1.60–1.68 (m,
2H), 1.98–2.05 (m, 2H), 2.17–2.21 (m, 2H), 2.37–2.47 (m,
4H), 2.73–2.77 (m, 2H), 3.67 (s, 3H), 4.13 (q, J = 6.6Hz,
2H); 13C NMR (125 MHz, CDCl3): δ = 19.5, 19.6, 22.1,
24.8, 31.7, 35.6, 42.1, 42.1, 42.2, 45.6, 45.6, 115.1, 151.1,
151.1, 157.4, 193.2, 193.3; ESI-MS (m/z) = 236.30 [M+1]+;
Anal. Calcd for C13H21N3O : C, 66.38; H, 8.94; N, 17.90.
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3-(1-Aminoethyl)-6-isopropyl-2-methyl-6,7-dihydro-2H
-indazol-4(5H)-one (10i) (two diastereomers, in a 1:1 molar
ratio racemic mixture) (20%); IR (CHCl3): 3476, 1660,
1600; 1HNMR (500MHz,CDCl3): 0.88-0.92 (m, 12H), 1.33
(d, J = 6.6Hz, 3H), 1.34 (d, J = 6.6Hz, 3H), 1.42–1.43 (m,
2H), 1.85–1.90 (m, 2H), 2.17–2.21 (m, 2H), 2.37–2.47 (m,
4H), 2.73–2.77 (m, 2H), 3.76 (s, 3H), 4.13 (q, J = 6.6Hz,
2H); 13C NMR (125 MHz, CDCl3): δ = 19.7, 19.7, 22.0,
26.5, 31.7, 36.3, 42.6, 42.8, 43.6, 115.1, 151.1, 151.1, 157.4,
193.2, 193.3; ESI-MS (m/z) = 236.30 [M+1]+; Anal. Calcd
for C13H21N3O : C, 66.38; H, 8.94; N, 17.90.
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