
Angela Sarabdjitsingh- PhD
- Professor (Assistant) at University Medical Center Utrecht
Angela Sarabdjitsingh
- PhD
- Professor (Assistant) at University Medical Center Utrecht
About
61
Publications
10,678
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,193
Citations
Introduction
In my Veni project we study the effects of early life stress on the development of the prefrontal cortex. We specifically focus on the MR as a putative protective factor against the detrimental effects of stress by using several genetically modified mouse models.
We study several critical time periods (e.g. early life and adolescence) for brain development. We focus on gender differences, the structure and function of the PFC, HPA axis activity and emotional, social and cognitive behavior.
Current institution
Additional affiliations
Education
September 2005 - July 2010
University of Leiden/ Leiden University Medical Center
Field of study
- Neuroendocrinology
October 2002 - January 2005
Publications
Publications (61)
Adverse early life events are a well-established risk factor for the precipitation of behavioral disorders characterized by anomalies in the dopaminergic system, such as schizophrenia and addiction. The correlation between early life conditions and the dopaminergic system has been causally investigated in more than 90 rodent publications. Here, we...
Early life adversity is a well-known risk factor for behavioral dysfunction later in life, including the formation of contextual memory; it is also (transiently) accompanied by hyperactivity of the stress system. We tested whether mifepristone (MIF) treatment, which among other things blocks glucocorticoid receptors (GRs), during the prepubertal pe...
Brain cells are continuously exposed to corticosteroid hormones, although the levels vary (e.g., after stress). Corticosteroids alter neural activity via two receptor types, mineralocorticoid (MR) and glucocorticoid receptors (GR). These receptors regulate gene transcription but also, as we now know, act nongenomically. Via nongenomic pathways, MRs...
The hypothalamo-pituitary-adrenal (HPA) axis comprises interactions between the hypothalamus, the pituitary and the adrenal glands and its activation results in the release of corticosteroid hormones. Corticosteroids are secreted from the adrenal gland in a distinct 24-h circadian rhythm overarching an ultradian rhythm, which consists of hourly cor...
Early life stress shapes brain development and animal behavior. Neurophysiological properties such as signal transmission and synaptic plasticity are thought to underlie the animal’s behavioral performance. We carried out a systematic review to determine how early life stress relates to neurophysiology in rodents. We specifically discuss effects on...
Early life stress (ELS) alters the excitation-inhibition-balance (EI-balance) in various rodent brain areas and may be responsible for behavioral impairment later in life. The EI-balance is (amongst others) influenced by the switch of GABAergic transmission from excitatory to inhibitory, the so-called "GABA-switch". Here, we investigated how ELS af...
Significance
Acute stress involves the majority of brain areas, which can be sequentially organized in functional brain networks as shown by our study with foot shock in mice. We used whole-brain microscopy to investigate different spatial resolutions over time. From mesoscale region–based analyses, we identified the order of activation of brain ar...
Early life adversity (ELA) is a well-documented risk factor for psychiatric illnesses in humans. This risk may, in part, be conferred by structural changes induced by ELA, lasting into adulthood. We here review the evidence for such lasting structural changes in rodent models for ELA involving altered maternal care during the first two postnatal we...
Early-life adversity (ELA) causes long-lasting structural and functional changes to the brain, rendering affected individuals vulnerable to the development of psychopathologies later in life. Immediate-early genes (IEGs) provide a potential marker for the observed alterations, bridging the gap between activity-regulated transcription and long-lasti...
While many people experience potentially threatening events during their life, only a minority develops posttraumatic stress disorder (PTSD). The identification of individuals at risk among those exposed to trauma is crucial for PTSD prevention in the future. Since re-experiencing trauma elements outside of the original trauma-context is a core fea...
Environmental information plays an important role in remembering events. Information about stable aspects of the environment (here referred to as ‘context’) and the event are combined by the hippocampal system and stored as context-dependent memory. In rodents (such as rats and mice), context-dependent memory is often investigated with the object-i...
Early-life adversity (ELA) causes long-lasting structural and functional changes to the brain, rendering affected individuals vulnerable to the development of psychopathologies later in life. Immediate-early genes (IEGs) provide a potential marker for the observed alterations, bridging the gap between activity-regulated transcription and long-lasti...
Responding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding prot...
Whole-brain microscopy allows for high-resolution imaging of intact mouse brains. It is a promising technique to relate behaviour to underlying brain activity, for example when combined with staining of immediate early genes. Multiple tools have been developed to transform images to machine-readable numbers, but these do not address the statistical...
Environmental information plays an important role in remembering events. Information about stable aspects of the environment (here referred to as ‘context’) and the event are combined by the hippocampal system and stored as context-dependent memory. In rodents (such as rats and mice), context-dependent memory is often investigated with the object-i...
Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer’s disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic...
In this study we tested the hypothesis i) that age-dependent shifts in the excitation-inhibition balance of prefrontal neurons are accelerated by early life stress, a risk factor for the etiology of many psychiatric disorders; and if so, ii) that this process is exacerbated by genetic forebrain-specific downregulation of the mineralocorticoid recep...
An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tra...
Low statistical power challenges the reliability of animal research; yet, increasing sample sizes to the required level raises important ethical and practical issues. We present an alternative solution, RePAIR , which capitalizes on the observation that control groups in general are expected to be similar to each other. As shown in a simulation stu...
An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in many disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neurona...
Early life stress (ELS) is considered a major risk factor for developing psychopathology. Increasing evidence points towards sex-dependent dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis as a contributing mechanism. Additionally, clinical studies suggest that the mineralocorticoid receptor (MR) may further confer genetic vulnerabilit...
The development of social behavior could be affected by stressful parenting. The mineralocorticoid receptor, one of the two main receptors for the stress hormone cortisol, plays a vital role in adequate responses to stress. Therefore, the effects of stressful parenting on social development (i.e., empathic concern, perspective taking and prosocial...
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones, but can have differential effects on cellular function. Several lines of evidence suggest that MR‐specific target genes must exist, and might underlie distinct effects of the receptors. Our goal was to identify MR‐specific target...
Altered cognitive performance is considered an intermediate phenotype mediating early life adversity (ELA) effects on later-life development of mental disorders, e.g. depression. Whereas most human studies are limited to correlational conclusions, rodent studies can prospectively investigate how ELA alters cognitive performance in several domains....
Mineralocorticoid receptor (MR)-mediated signaling in the brain has been suggested as a protective factor in the development of psychopathology, in particular mood disorders. We recently identified genomic loci at which either MR or the closely related glucocorticoid receptor (GR) binds selectively, and found members of the NeuroD transcription fac...
Stress is among the most frequently self‐reported factors provoking epileptic seizures in children and adults. It is still unclear though, why some people display stress‐sensitive seizures while others don't. Recently, we showed that young epilepsy patients with stress‐sensitive seizures exhibit a dysregulated hypothalamus‐pituitary‐adrenal (HPA)‐a...
Background
Altered cognitive performance has been suggested as an intermediate phenotype mediating the effects of early life adversity (ELA) on later-life development of mental disorders, e.g. depression. Whereas most human studies are limited to correlational conclusions, rodent studies can prospectively investigate how ELA alters cognitive perfor...
Diffusion MRI (dMRI)-based tractography offers unique abilities to map whole-brain structural connections in human and animal brains. However, dMRI-based tractography indirectly measures white matter tracts, with suboptimal accuracy and reliability. Recently, sophisticated methods including constrained spherical deconvolution (CSD) and global tract...
After stress, the brain is exposed to waves of stress mediators, including corticosterone (in rodents) and cortisol (in humans). Corticosteroid hormones affect neuronal physiology in two time‐domains: rapid, non‐genomic actions primarily via mineralocorticoid receptors; and delayed genomic effects via glucocorticoid receptors. In parallel, cognitiv...
Hippocampal cells are continuously exposed to varying concentrations of corticosteroid hormones. These hormones can alter hippocampal activity by binding to mineralocorticoid receptor (MR) or glucocorticoid receptor (GR). Via nongenomic pathways, MRs generally enhance hippocampal excitability. The rapid nongenomic MR actions are important shortly a...
Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS...
Corticosteroid hormones easily enter the brain and bind to receptors that translocate to the nucleus, where they regulate transcription of responsive genes. It has become evident that corticosteroid receptors can also mediate rapid nongenomic actions. Within the brain corticosterone binds with high affinity to mineralocorticoid receptors (MRs) that...
Early life stress (ELS) increases the risk for developing psychopathology in adulthood. When these effects occur is largely unknown. We here studied at which time during development ELS affects hippocampal synaptic plasticity, from early life to adulthood, in a rodent ELS model. Moreover, we investigated whether the sensitivity of synaptic plastici...
In recent years it has become clear that corticosteroid hormones (such as corticosterone) are released in ultradian pulses as a natural consequence of pituitary-adrenal interactions. All organs, including the brain, are thus exposed to pulsatile changes in corticosteroid hormone level, important to ensure full genomic responsiveness to stress-induc...
Significance
A pulse of the adrenal hormone corticosterone (CORT) changes hippocampal glutamate transmission for many hours. CORT is normally released in hourly pulses, with a steeply rising amplitude just before awakening. How organisms can be prepared for imminent danger if the first high-amplitude pulse of CORT would lastingly change glutamate t...
Background:
Glucocorticoid hormones, in interaction with noradrenaline, enable the consolidation of emotionally arousing and stressful experiences in rodents and humans. Such interaction is thought to occur at least partly in the basolateral nucleus of the amygdala (BLA) which is crucially involved in emotional memory formation. Extensive evidence...
Glucocorticoid hormones are released in rapid hourly hormone bursts by the adrenal gland. These ultradian oscillations are fundamental to hypothalamic-pituitary-adrenal activity and transcriptional regulation of glucocorticoid responsive genes. The physiological relevance of glucocorticoid pulsatility is however unknown. Using a novel automated inf...
In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enri...
Ultradian release of glucocorticoids is thought to be essential for homeostasis and health. Furthermore, deviation from this pulsatile release pattern is considered to compromise resilience to stress-related disease, even after hormone levels have normalised. In the present study, we investigate how constant exposure to different concentrations of...
Pronounced ultradian and circadian rhythms in the hormones of the hypothalamic-pituitary-adrenal (HPA) axis (i.e. glucocorticoids), one of the body’s major neuroendocrine axes, were already demonstrated several decades ago. Until now, the clinical relevance of the pulsatile nature of glucocorticoids was poorly understood or sometimes even regarded...
Chronically elevated circulating glucocorticoid levels are although to enhance vulnerability to psychopathology. Here we hypothesized that such sustained glucocorticoid levels, disturbing corticosterone pulsatility, attenuate glucocorticoid receptor signaling and target gene responsiveness to an acute challenge in the rat brain. Rats were implanted...
After glucocorticoid stimulation, glucocorticoid receptors (GRs) are translocated to the nucleus to modulate transcription of glucocorticoid target genes. The subcellular distribution and trafficking of GR in cultured cells has been studied quite intensively using several techniques. However, the intracellular localization of nuclear receptors in l...
Corticosteroids exert important effects on brain function via glucocorticoid (GRs) and mineralocorticoid receptors (MRs) by inducing receptor translocation to the nucleus, where the receptor-ligand complexes modulate transcription of target genes. Based on studies describing uneven receptor expression patterns, regionally different corticosterone e...
While the actions of glucocorticoids on brain functions have been comprehensively studied, the underlying genomic mechanisms are poorly understood. In this study, we show that glucocorticoid-induced leucine zipper (GILZ) mRNA is strongly and ubiquitously induced in rat brain. To decipher the molecular mechanisms underlying these genomic effects, it...
During corticogenesis, radial glia-derived neural progenitors divide and migrate along radial fibers to their designated positions within the cortical plate. The microtubule-associated proteins doublecortin (DCX) and doublecortin-like (DCL) are critically involved in neuronal migration and division, and may function in a partially redundant pathway...
During corticogenesis, progenitors divide within the ventricular zone where they rely on radial process extensions, formed by radial glial cell (RG) scaffolds, along which they migrate to the proper layers of the cerebral cortex. Although the microtubule-associated proteins doublecortin (DCX) and doublecortin-like kinase (DCLK) are critically invol...
The aim of the current study was (i) to examine the overlap in the pattern of glucocorticoid receptor (GR)-mediated transcriptional responses between different neuronal substrates and (ii) to assess the nature of these responses by differentiating between primary and downstream GR-responsive genes. For this purpose, nerve growth factor-differentiat...
A high scalp sensitivity to androgens is part of the pathophysiology of male-pattern baldness (MPB). Androgens affect established risk factors for coronary heart disease (CHD), and a supposedly heightened impact on these risk factors is hypothesized to explain the epidemiological association between MPB and CHD. In this retrospective, observational...
Questions
Question (1)
There is practically no literature existing on this topic. Suggestions are very much welcome