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Introduction
Aging, such as demographic problem in the world due to 

conditions well recognized as declining fertility rates, the 
significant reduction in mortality in the early stages of life and 
decreased mortality of adult people [1]. When we focus our 
attention to the aging of the individual and the species causes 
not seem to be well defined and appear to be multiple and 
interrelated. At the level biological aging is associated with the 
accumulation of molecular and cellular damage that, over time, 
cause the decrease, gradually (although with great variability 
from one individual to another) reserves physiological and 
functional capacity, increasing the risk of disease and death [2,3].

As they appear different definitions of biological aging 
process, over time, we have presented many theories to explain 
its causes (more than 300) that include their content describing 
hundreds of cellular and molecular mechanisms that contribute 
to the specific biology intrinsic aging and, in a more synthetic, 
can be organized upon a small number of major theories [4,5]. 
At present, many studies have emphasized the importance of 
the association between chronic inflammation and aging, and its 
causal role in many diseases associated with aging such as cancer, 
arteriosclerosis and osteoarthritis. The source of this chronic 
inflammation is often attributed to the activation of immune cells 
over time [6].

The theory or mechanism of aging oxidative inflammatory 
(oxy-inflamm-aging) has emerged in recent years as hypothesized 
causal many changes that occur during aging per se, as well as 
the various diseases associated with aging. This article aims to 
describe the theoretical elements that set forth the theory of aging 
oxidative inflammatory (EOI) and their implications for clinical 
practice, taking into account its links with the major diseases 
associated with aging.

Immunosenescence and Flash
In the immune system appear significant changes associated 

with aging called immune senescence (IS). Currently discussing 
whether the IS is a process intrinsic aging (particularly thymic 

involution) that leads to dysregulation of the immune response 
is adaptive to the individual’s continuous exposure to pathogens 
(in particular viral infections prolonged as cytomegalovirus) or 
antigen exposure throughout life [7-9].

The commitment of the immune function with aging affects 
both the innate immunity as adaptive, and in the latter, particularly 
the sharing of T cells [10,11]. Another finding distinctive IS is the 
deviation of the cytokine response of TH1 CD4 helper to a TH2 
response leading to increased levels of pro inflammatory cytokine, 
which all contribute to the deregulation of the answer immune 
predominantly inflammation chronic low-grade [12].

People long life (ie., The centenarians) appear to face the 
subclinical inflammation through an inflammatory response. 
Cytokines are the expression of a network of compounds required 
genes, polymorphisms and environment and are involved in both 
inflammation and anti-inflammation (Table 1). The inflammation 
could be the key to understanding aging and anti-inflammatory 
one of secrets of longevity [13].
Table 1: Profile of cytokines in aging.

Proinflammatory FNT-α, IL-1, IL-2, IL-6, IL-12, IL-15, IL-18, 
IL-22, IL-23, IFNAS

Anti-Inflammatory IL-1RA, IL-4, IL-10, TGF-1

Cytokine Mediators Lipoxin A4, heat shock protein

Studies show a correlation between aging and significant 
swelling. Freund, et al. [6] indicate that there is an increase of 2-4 
times in serum levels of pro-inflammatory in individuals older than 
50 years compared with younger subjects. In addition, healthy 
centenarians have a lower profile inflammatory that centenarian 
fragile [14]. It has also demonstrated a high inflammatory state in 
older adults fragile, marked by high levels of IL-6 and C reactive 
protein and increasing the number of leukocytes current [15]. 
Considering many of these issues have proposed a new theory 
of aging integrator that combines elements of the theory of free 
radicals proposed by Hartman [16], the mitochondrial theory 
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Abstract

Oxidative stress leads to deregulation in key physiologic systems for the 
maintenance of homeostasis, like immune system and others. The immune 
system produces deregulation to chronic low grade inflammatory state in the 
aging process. That is the basis of a new theory named oxy-inflamm-aging. The 
article describing the basis of this theory and the current researches to support 
it, in Addition to STI links with the pathogenesis of the age related diseases. The 
author summarizes the interventions to modulate theoxi-inflamm-aging as a 
practical application of this theory.
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of Michael, et al. [17] and the inflammatory theory set which is 
called oxy-inflamm-aging and that was proposed in 2008 by De 
la Fuente [18].

Basically, the theories of free radicals and mitochondrial 
postulate that aging is the result of the accumulation of oxidative 
damage in biomolecules caused by the high reactivity of free 
radicals and reactive oxygen species (ROS) produced in all cells, 
especially mitochondria, organelles which is necessarily used 
oxygen in the oxidative metabolism [18]. Mitochondria are the 
site’s largest producer and at the same time the main target of 
ROS as this damage the mitochondrial DNA (mtDNA) and their 
functions, which in turn causes a vicious cycle of increased 
production of ROS. The formation of mtDNA mutations can be 
accelerated by this vicious circle, which could cause accelerated 
aging [19,20]. High levels of oxidative damage causes cellular 
changes that include a key reduction of NAD (+) is available, 
an essential molecule required for a number of vital cellular 
processes, including DNA repair, immune signaling and epigenetic 
processes [21].

To protect themselves from oxygen toxicity cells have several 
mechanisms antioxidants that prevent the formation of ROS or 
neutralizing after its generation systems (superoxide dismutase, 
catalase and glutathione reductase) [22,23]. These defensive 
systems are not perfect and when the concentration of ROS 
overwhelms the capacity of these systems appears to clarify a 
situation of oxidative stress which damages the biomolecules 
(lipids, proteins and DNA) and cellular structures (membranes, 
mitochondria and nuclear material) [24]. In this way, the functions 
of the cell and organism are based on a perfect balance between 
the levels of ROS and antioxidants [25].

The oxidative-inflammatory theory of aging [26,27] suggests 
that this process is linked to chronic oxidative stress, which 
affects all body cells, but especially those of the regulatory 
systems (nervous, endocrine, immune). These systems, as a 
result, reduce its ability to preserve its redox state, with functional 
loss incompatible with proper maintenance of homeostasis, 
physiological cardinal fact of aging. This theory is given a 
primary role of the immune system, since the deregulation of 
their responses, increased oxidative stress can lead to increased 
production of proinflammatory cytokines, which causes a 
chronic inflammatory condition of low grade that contributes 
the generation of ROS, so it produces a vicious circle oxidation, 
inflammation, oxidation [28].

The immune system, due to its need to continuously 
generate oxidative and inflammatory compounds can activate, 
if not properly regulated, with factors such as nuclear factor-
kB (NF-kB), which after reaching a certain level of activation 
stimulates expression genes that program the production of these 
compounds, contributing to the vicious circle mentioned above 
[29]. Thus, both the oxidative stress as inflammatory stress by 
damaging physiological homeostasis provoke oxy-inflamm-aging.

Implications for Clinical Practice
It is now accepted that chronic inflammation is the main 

underlying condition in many diseases associated with aging such 

as atherosclerosis, osteoarthritis, cancer, diabetes, osteoporosis, 
dementia, vascular diseases, obesity and metabolic syndrome 
[30,31] (Table 2). In populations aged human metabolic 
dysfunction, particularly insulin resistance and inflammatory 
disorders are very common and identify the molecular mechanisms 
underlying the immune-metabolic integration becomes 
important for understanding the pathogenesis of these diseases 
and their approach therapeutic. Moreover, the identification of 
pathways that control inflammation associated with age is also 
valuable for understanding and treatments focused on modular 
oxy-inflamm-aging can be beneficial for longevity [32]. In this 
sense, the studies have led to changes in lifestyle, such as caloric 
restriction and physical exercise, and the use of antioxidants. It 
would be very extensive and this article will address all the details 
of the pathogenesis of chronic diseases associated with aging, so 
we will refer only to the importance of inflammation mechanism 
as producer on three of the most prevalent in elderly people: 
atherosclerosis, cancer and dementia.
Table 2: Aging-Related diseases that have a chronic inflammatory 
component.

Obesity

Metabolic Syndrome

Diabetes Mellitus Type 2

Arterial Hypertension

Atherosclerosis

Heart Failure

Cancer

Dementia

Other neurodegenerative Diseases (Parkinson's disease)

Osteoporosis

Arthritis

Senile Macular Degeneration

Inflammation and atherosclerosis

The damage of endothelial cells increases ROS production 
by cells causing vascular inflammatory response and the onset 
of atherosclerosis [33]. The oxidative stress is involved also in 
the lipid metabolism in plaque rupture, thrombosis, myocardial 
damage, apoptosis, fibrosis and heart failure [34]. Recientes 
studies provide strong evidence that vascular calcification is 
associated the inflammatory state and increases the inflammatory 
cytokines [35].

Inflammation and cancer

Several surveys suggest a direct link between chronic 
inflammation and cancer [31,33]. The key molecules linking 
inflammation with cellular genetic alterations in cancer are 
prostaglandins, cytokines, NF-kB, chemokines and angiogenic 
factors. The main effectors are chemicals derived ROS 
inflammatory reactions that may act directly or indirectly 
damaging transcription factors such as NF-kB. These observations 
suggest that the oxy-inflamm-aging contributes to the induction 
and progression of cancer in the signaling pathway of NF-kB.

http://dx.doi.org/10.15406/moji.2016.03.00103
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Inflammation and dementia

Research suggests that chronic inflammation may be an 
important contributor to the development of neurodegenerative 
diseases, including dementia [31,36]. It is suggested that IFN-γ 
and other proinflammatory cytokines interact with the process 
of production of the amyloid beta peptide, the findinghallmark 
of Alzheimer’s disease [37]. In addition there immunoreactivity 
cytokines; such as interleukin-6 (IL-6), the tumor necrosis factor 
α (TNF-α) and factor crecimiento transformante b (TGF-b) [38].

Caloric restriction

Although it has been shown that calorie restriction (CR), a 
method to reduce ROS production, slows aging and extends the 
maximum life in various animal species [39-41], their effects on 
disease resistance and mortality in primates - the mammalian 
closest to man - not very consistent. An initial study of 20 years 
of follow-on rhesus monkeys in which CR was used without 
malnutrition showed a decrease in the incidence of diseases 
related to age (diabetes, cancer, cardiovascular disease and 
brain atrophy) [42]. However, another study tracked 23 years of 
primates youngsters who underwent CR was also a delay in the 
onset of age-related diseases, but no improvement in the survival 
curves [43].

CR in humans, which recently published some results, in most 
cases involves reducing calorie intake by 25-40% compared 
with income from normal food, so it was considered a severe 
intervention with results both beneficial and harmful. Recent 
clinical trials of restriction of 25% of calories in humans have 
shown improvement in longevity as predictors of decreased 
resting metabolic Latas, TNF-α and cardiometabolic risk factors 
[44] but is identified as significant adverse effects decreased of 
bone mineral density in clinically important sites for osteoporotic 
fractures like femoral neck and lumbar spine [45].

Some consider today that the effects of CR on aging are not 
simply the result of reducing the amount of calories consumed, but 
also on the composition of the diet, and it is more convenient to 
perform periodic interventions (cycles) RC not as strict (reduction 
of less than 20% of calories) that prolonged interventions [46]. 
What does seem clear is that the lower caloric intake and diet-
called healthy compared to the so-called Western diet improves 
parameters of healthy aging, as demonstrated in a recent study 
[47]. Is currently developing a multi-center study to better design 
(phase 2 CALERIE) RC with 25% that measure aspects of medical, 
physical and psychological behavior that will bring more light on 
this in a future intervention Mediate [48].

Antioxidants

Antioxidants protect the body from the damaging effects of free 
radicals and ROS, normally produced in the oxidative metabolism, 
where oxygen and nutrients are transformed into energy. The 
discovery of the antioxidants increased the hope of slowing the 
aging simply by adding them to the diet. However, studies with 
antioxidant supplements have provided little support for this 
conclusion and epidemiological studies are needed on a large scale 
to clarify this question. For the moment there is positive evidence 
for the health of the consumption of fruits and vegetables, which 
are foods rich in natural antioxidants [49].

A recent review of clinical trials on the antioxidant (vitamin 
C, vitamin E, resveratrol, curcumin, hydroxytyrosol and coenzyme 
Q10) and its influence on diseases related to aging also found 
conflicting results, which is explained by a incorrect initial 
screening of patients, not done a quantitative characterization of 
the redox state of each individual and not take into account the 
demands individual as genetic background of these [50].

The use of resveratrol, an antioxidant component of grapes, 
has been a topic of intense research in recent decades. Recent 
research has suggested that grape products as a whole (which 
also contains resveratrol, catechins, polyphenols and flavonoids) 
may help maintain cardiovascular health and provide protection 
against aging, their illnesses associated neurodegeneration and 
cancer [51]. A follow-up study for 3, 6, 9 and over (Aging in the 
Chianti Project) found that elderly people exposed to a usual diet 
high in resveratrol had lower risk of developing fragile syndrome, 
but only during the first 3 years, in later [52].

Exercise and physical activity

The benefits of exercise and physical activity reported 
health are indisputable. The evidences are multiple, based on 
experimental and epidemiological studies that both exercise 
and physical training combat the aftermath of aging, including 
Fragile. It has been shown that exercise has antioxidant and anti-
inflammatory, exercised primarily on adipose tissue, skeletal 
muscle, the immune system and cardiovascular system modulating 
cytokine profile anti / pro-inflammatory transcription factors 
redox-sensitive as the FN-kB the activator protein-1 enzyme pro 
oxidants and antioxidants and proteins as restorative protein 
heat shock, the complex proteasome DNA glycosylase oxiguanina, 
glycosylase DNA uracil and telomerase [53].

A longitudinal study found that older adults with a lifestyle-
based moderate or intense exercise showed a lower profile of 
inflammatory cytokines, less changes in the T cell compartment 
and its functions, and showed longer telomeres [54]. Today 
develop well-designed trials on the role of endurance exercise 
on the immune system and muscle adaptation coupled with 
nutritional interventions [55].

Conclusion
Among the many theories and mechanisms described to 

explain aging, oxy-inflamm-aging has emerged as a comprehensive 
proposal based on recent research to reveal the intrinsic biology of 
this process and its relationship with its related diseases. Adopting 
from an early age a healthy lifestyle that includes a balanced 
diet, without excess calories and rich in natural antioxidants 
and exercise appropriate physical, sustained can help ensure a 
successful aging, limiting the fragility and preserving function as 
a measure of quality of life.

They continue to research the potential benefits of caloric 
restriction and supplements of antioxidant products with the aim 
of curbing the oxy-inflamm-aging in an attempt to achieve greater 
longevity and lower burden of diseases associated with aging.
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