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Abstract 
Haskell has long needed a debugger. Although there has been 
much research into the topic of debugging lazy func tional pro-
grams, no robust tool has yet come from the Haskell  community 
that can help debug full Haskell - until now. This paper describes 
a portable debugger for full Haskell, building only  on commonly 
implemented extensions. It is based on the concept of observation 
of intermediate data structures, rather than the mo re traditional 
stepping and variable examination paradigm used by imperative 
debuggers. 

1 Introduction 
Debuggers allow you to see inside your program whil e running, 
and help you understand both the flow of control an d the internal 
data and structures that are being created, manipul ated and de-
stroyed. The art of debugging is viewing your progr am through 
this portal, letting you locate the difference betw een what the 
computer has been told to do, and what the programm er thinks the 
computer should be doing.  

When debugging an imperative program using traditio nal debug-
ging technology (like gdb or Visual Studio) the pro grammer 
might step through some suspect code using sample t est data, 
stopping and examining internal structures at key p oints. Haskell 
programs can have an imperative veneer, using the I O monad, and 
it should be possible to use typical debugging tech nology for such 
parts of a Haskell program. But when debugging othe r parts of 
Haskell, we cannot straightforwardly use the same d ebugging 
technology to render internal information, because many of the 
hooks that are used to provide the user with debugg ing facilities 
do not map neatly across to the lazy functional wor ld. 

• There are no variables to observe changing during e xecution. 
• The concept of sequences of actions or executing a specific 

line number does not exist. 
• Any closure has two parents, the static one (that b uild the 

closure and give context), and the dynamic one (tha t first 
evaluated the closure). A stack trace becomes a par ent tree. 

• When a function is called, its arguments might not yet be 
evaluated. Should the debugger do extra evaluations ? 

In this paper, we argue that the analog to breakpoi nting and exam-
ining variables for a functional program is observi ng intermediate 
data structures as they are passed between function s. This argu-
ment can be considered a generalization of the "deb ugging via 
dataflow" idea proposed by Sinclair [7].  

Consider this Haskell function 

natural :: Int -> [Int] 
natural 
  = reverse  
  . map (`mod` 10) 
  . takeWhile (/= 0)  
  . iterate (`div` 10) 

The first step to understanding this listful functi on is to run the 
function with some example data. 

Main> natural 3408 
[3,4,0,8] 

This tells us what the function does, but not how t he function 
works. To understand this function, we need to visu alize the hid-
den intermediate structures behind the function, an d see inside the 
pipeline of (lazy) intermediate lists. ($ is a comb inator for infix 
application) 

natural 3408 �
  reverse  

  . map (`mod` 10) 
  . takeWhile (/= 0)  
  . iterate (`div` 10) 
  $ 3408 �

  reverse  
  . map (`mod` 10) 
  . takeWhile (/= 0)  
  $ (3408 : 340 : 34 : 3 : 0 :_) �

  reverse  
  . map (`mod` 10) 
  $ (3408 : 340 : 34 : 3 : []) �

  reverse  
  $ (8 : 0 : 4 : 3 : []) �

  (3 : 4 : 0 : 8 : []) 

Displaying steps like this gets garrulous quickly. Yet the critical 
information - the intermediate structures - can be concisely ex-
pressed. 

-- after iterate (`div` 10) 
 ( 3408 : 340 : 34 : 3 : 0 : _ ) 
-- after takeWhile (/= 0) 
 ( 3408 : 340 : 34 : 3 : [] ) 
-- after map (`mod` 10) 
 ( 8 : 0 : 4 : 3 : [] ) 
-- after reverse 
 ( 3 : 4 : 0 : 8 : [] ) 

We want to build a portable debugger (in the form o f a Haskell 
library) that lets Haskell users get concise data s tructure informa-
tion, like the information displayed above, about t he structures in 
their Haskell programs. Even though our debugger an swers only 
this one question - what are the contents of specific intermediate 
structures, because structures in Haskell are both rich and regular, 
even this simple question can be the basis of a pow erful debug-
ging tool. 



 

Our overall debugging system is as follows: 

• We provide a Haskell library that contains combinat ors for 
debugging. (Taking this form allows the user to deb ug full 
Haskell.) 

• The frustrated Haskell programmer uses these debugg ing 
combinators to annotate their code, and re-runs the ir Haskell 
program. 

• The execution of the Haskell program runs as normal ; there 
are no behavioral changes because of the debugging annota-
tions.  

• The structures that have been marked for observatio n are 
displayed on the users console on termination of th eir pro-
gram.  

Other versions of the debugging library allow for o ther debugging 
setups, like offline observations of data-structure s. 

2 Debugging Combinators 
We introduce our new debugging combinator in terms of an im-
provement of the current state of the art in full H askell debugging, 
which is using an unsafe function called trace. 

2.1 trace – A Reprise 

All current Haskell implementations come with this (non-
standard) function, which has the type: 

trace :: String -> a -> a 

The semantics of trace is to print (as a side effec t) the first argu-
ment, and return the second argument. There are thr ee main prob-
lems with using trace for debugging. 

The first problem with trace is the incomprehensibleness of out-
put. Augustsson and Johnsson had a variation of trace in their 
LML compiler [1]. Their conclusion about trace was that it was 
generally difficult to understand the "mish-mash" o f output from 
different instances of trace. This is partly becaus e the strictness of 
the first argument of trace might itself trigger ot her traces, and 
partly due to the unintuitive ordering of lazy eval uation. The 
"mish-mash" problem could perhaps be tackled using a post-
processor on the output. 

The second problem with trace is that inserting it into Haskell 
code tends to be invasive , changing the structure of code, For 
example, consider a variant of sum, which displays its own execu-
tion using trace. 

tracing_sum xs = trace message res 
    where  
 res = sum xs 
 message = "sum " ++ show xs ++ 
   " = " ++ show res 

Running tracing_sum using Hugs gives: 

Main> tracing_sum [1,2,3] 
sum [1,2,3] = 66 
Main> 

We have observed the behavior of sum, but needed to  make non-
trivial code changes to do so.  

The third problem is trace changes the strictness of the things it is 
observing because trace it is hyper-strict in its first argu ment. 
Consider a tracing version of fst. 

tracing_fst pair = trace message res 
    where  
 res = fst pair 
 message = "fst " ++ show pair ++ 
   " = " ++ show res 

Using this version of fst is problematic, because o f the strictness 
of tracing_fst. 

Main> tracing_fst (99,undefined :: Int) 
fst (99, 
Program error: {undefined} 
Main> 

2.2 Introducing observe 

The function trace can be really useful for debuggi ng Haskell, but 
the bona fide shortcoming is that trace is at too l ow a level. Build-
ing combinator libraries is a common way to build i n low-level 
primitives, giving interfaces that are both friendl ier and more 
intuitive.  

What form could a higher level debugging combinator  take? Us-
ing the example in the introduction as evidence, we  argue that it 
should take the form of a function that allows us t o observe data 
structures in a transparent way. As a way of achiev ing this, con-
sider the Haskell fragment: 

consumer . producer 

Imagine if the Prelude function id remembered its argument. We 
could insert strategically placed id’s, and id woul d tell us what got 
passed from the producer to the consumer.  

consumer . id . producer 

We argue that a higher level combinator for debuggi ng should 
take this form, and both passing an argument transp arently, and 
observing and remembering it. To facilitate multipl e observations 
in one program, we use a string argument, which is a label used 
only for identification purposes. The type of our p rincipal debug-
ging combinator is 

observe :: (Observable a) => String -> a -> a 

In the above (point-free) example, we could write: 

consumer . observe "intermediate" . producer 

This has identical semantics to consumer . producer , but the 
observe squirrels away the data structure that gets  drawn through 
it, putting it into some persistent structure for l ater perusal. As far 
as the execution of Haskell program is concerned, o bserve (with a 
label) is just a version of id. Notice that observe can be used to 
observe any expression, not just the intermediate values insid e a 
point-free pipeline; we will see examples of both s tyles later. 

observe has a type class restriction on the object being observed. 
This does not turn out to be as big a problem as mi ght be thought. 



 

We provide instances for all the Haskell98 base typ es (Int, Bool, 
Float, etc), as well as many containers (List, Arra y, Maybe, Tu-
ples, etc). We will return to the specifics of this  restriction in Sec-
tion 5.2, because the type class mechanism provided the frame-
work that enables observe to work. 

How does observe compare with respect to the three weakness of 
trace? 

• trace sometimes produced a "mish-mash" of output. I n our 
system, we provide renderings, using a pretty print er, of the 
specific observations made by observe. This is poss ible be-
cause observe provides a structured way of looking at 
Haskell objects. 

• Unlike advanced uses of trace, minimal code changes  are 
required to observe an intermediate structure. 

• Finally and critically, the strictness of the obser ved structure 
is not changed, because observe does not do any eva luation 
of the object it is observing. Observation of an in finite list, or 
a list full of �  is perfectly valid, as we shall see shortly. 

3 Examples of using observe 
Now we look at several examples of observe being used, before 
explaining how to implement observe in Section 5. 

3.1 Observing a finite list 

As a first example consider: 

ex1 :: IO () 
ex1 = print  
     ((observe "list" :: Observing [Int]) [0..9]) 

If we run this IO action inside the debugging conte xt (explained in 
Section 6.1), we would make the observation 

-- list 
  0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : [] 

We have successfully observed an intermediate data structure, 
without changing the value or semantics of the fina l Haskell pro-
gram. 

We use the observe type synonym to allow us to be explicit abo ut 
what type we think we are observing. 

type Observing a = a -> a 

However, using this explicit typing is optional. We  could have 
equally well written 

ex1 = print (observe "list" [0..9]) 

This definition however relies on the default mecha nism choosing 
an Int or Integer list. Typically the type of obser ve is fully deter-
mined by its context, but we sometimes include the type signature 
with our examples to make explicit to the reader wh at type is be-
ing observed. 

3.2 Observing an intermediate list 

observe can be used partially applied, which is the typical use 
scenario when observing inside a point-free pipelin e.  

ex2 = print  
    . reverse 
    . (observe "intermediate" :: Observing [Int]) 
    . reverse 
    $ [0..9] 

This observe makes the following observation  

-- intermediate 
  9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 : [] 

3.3 Observing a infinite list 

Both the lists we have observed so far were finite.  As an example 
of an observation on an infinite list, consider: 

ex3 :: IO () 
ex3 = print  
       (take 10 
          (observe "infinite list" [0..]) 
       ) 

Here we observe an infinite list, starting at 0, wh ich has the first 
10 elements taken from it, and is then printed. Run ning this ex-
ample allows us to make the observation 

-- infinite list 
  0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : _ 

We can see that 0 to 9 have been evaluated, but the  tail of the 10 th 
cons has not been evaluated, rendered using the not ation " _". If 
more of the list were extracted, we would see more cons cells, etc.  

3.4 Observing lists with unevaluated 
elements 

So what about unevaluated elements of the list? Wha t if we were 
to take the length of a finite list? 

ex4 :: IO () 
ex4 = print  
       (length 
         (observe "finite list" [1..10]) 
       ) 

This gives the observation as 

-- finite list 
_ : _ : _ : _ : _ : _ : _ : _ : _ : _ : [] 

What if the elements were � ? 

ex5 :: IO () 
ex5 = print  
      (length 
       ((observe "finite list" :: Observing [()]) 
            [ error "oops!" | _ <- [0..9]] 
       ) 
      ) 

This gives exactly the same debugging output as ex4 . Because we 
never evaluate the elements, it did not matter what  they were, 
even if the elements were bottom. We needed to give  them some 
non-polymorphic type, so we can actually observe th em, though. 



 

What about if only some elements are observed? 

ex6 :: IO () 
ex6 = let xs = observe "list" [0..9] 
      in print (xs !! 2 + xs !! 4) 

This example gives 

-- list 
 _ : _ : 2 :  _ : 4 : _ 

We can use observe to both see date inside intermed iate struc-
tures, and also as a tool to see how much of a lazy  structure is 
actually evaluated, without fear of changing the evaluation order.  
This is where the power of observe lies. 

3.5 Using more than one observe 

One program can contain many specific instances of observe. We 
might rewrite the natural example from the introduc tion. ("…" 
refers to more text, as shown in output comments) 

natural :: Int -> [Int] 
natural 
 = (observe "after reverse" :: Observing [Int]) 
 . reverse  
 . (observe "after map …" :: Observing [Int]) 
 . map (`mod` 10) 
 . (observe "after takeWhi …" :: Observing [Int]) 
 . takeWhile (/= 0)  
 . (observe "after iterate …" :: Observing [Int]) 
 . iterate (`div` 10) 

Running this on the example data, 3408, gives: 

-- after iterate (`div` 10) 
 (3408 : 340 : 34 : 3 : 0 : _) 
-- after takeWhile (/= 0) 
 ( 3408 : 340 : 34 : 3 : [] ) 
-- after map (`mod` 10) 
 ( 8 : 0 : 4 : 3 : [] ) 
-- after reverse 
 ( 3 : 4 : 0 : 8 : []) 

This is exactly what we were looking for in our int roduction!  

4 Advanced uses of observe 
We have seen how observe is a powerful tool for see ing what 
before was hidden. We now look at a number of other  ways of 
using observe for debugging, beyond simply looking inside pipe-
lines. 

4.1 Observing Functions 

If we can observe base types (like Int and Bool), a nd can observe 
containers (like tuples and lists), can we also obs erve Haskell 
functions?  

What does it mean to observe a function? We argue t hat to ob-
serve a function is to observe a finite mapping fro m (observable) 
arguments to (observable) results. So, for our obse rvational pur-
poses, functions are just a bag of argument-result pairs, one for 
each time the observed function is invoked. 

Functions are observed only in the specific ways th ey are used. 
Function arguments (or results) might contain uneva luated as-
pects, like several of the examples in Section 2.1. 

What does this mean in practical terms? Let's look at an example: 

ex7 = print 
  ((observe "length" :: Observing ([Int] -> Int)) 
        length [1..3] 
  ) 

This allows the following observation 

-- length 
  { \ (_ : _ : _ : []) -> 3 
  } 

We notice a number of things about this example. 

• observe now takes three arguments, the label, the o bserved 
entity (the length function), and the argument to l ength. Re-
member that "observe <label>" is a style of id, and  id just re-
turns its argument. The effect on the Haskell progr am can be 
explained using simple rewriting 

  (observe "length" :: Observing ([Int] ->Int)) 
 length [1..3] 
   -- remove the type annotation 
=  observe "length" length [1..3] 
   -- turn observe into id 
=  id length [1..3] 
   -- id takes one argument 
=  (id length) [1..3] 
   -- which is simply returned 
=  (length) [1..3] 

This line of reasoning also works with further argu ments, and 
observe can successfully observe multiple argument func-
tions. 

• Rather than render functions as a bag of pairs, we take liber-
ties and use a more Haskell like syntax when printi ng debug-
ging output.  

• The length function did not look at part of its arg ument, spe-
cifically the elements of the list. This is in no w ay reflecting 
the state of the list itself. Someone else might ha ve evaluated 
the elements, but we will never see this by observi ng length, 
because the observation on length is only concerned with th e 
way the argument and result is used specifically by  length  in 
that context.  

Observing functions is general and powerful! We pla ce observe at 
the caller site, and can see the effect that a spec ific function has 
from this context, including higher order functions . 

ex8 = print 
      ((observe "foldl (+) 0 [1..4]"  
         :: Observing ((Int -> Int -> Int)  
                    -> Int -> [Int] -> Int) 
       ) foldl (+) 0 [1..4] 
      ) 

 



 

-- foldl (+) 0 [1..4] 
  { \ { \ 6 4 -> 10 
      , \ 3 3 -> 6 
      , \ 1 2 -> 3 
      , \ 0 1 -> 1 
      }  
      0 
      ( 1 : 2 : 3 : 4 : []) 
      -> 10 
  } 

Notice by observing foldl, we have also observed its arguments, 
including a functional one. We can see exactly how higher-
orderness in this example is used. 

We can make great use of observing functions when e xamining 
pipelines. Returning to our natural example, we can  now observe 
the individual transformers, rather than the struct ures between 
them. 

natural :: Int -> [Int] 
natural 
 = observe "reverse"           reverse  
 . observe "map (`mod` 10)"    map (`mod` 10) 
 . observe "takeWhile (/= 0)"  takeWhile (/= 0) 
 . observe "iterate (`div` …)" iterate (`div` 10) 

Notice there is no " . " between the observes and the original code. 
We give the output from "iterate …" and "takeWhile …"; the 
others are similar in style.  

-- iterate (`div` 10) 
  { \ { \ 3  -> 0 
      , \ 34  -> 3 
      , \ 340  -> 34 
      , \ 3408  -> 340 
      } 3408 
       -> 3408 : 340 : 34 : 3 : 0 : _ 
  } 
-- takeWhile (/= 0) 
  { \ { \ 0  -> False 
      , \ 3  -> True 
      , \ 34  -> True 
      , \ 340  -> True 
      , \ 3408  -> True 
      } (3408 : 340 : 34 : 3 : 0 : _) 
       -> 3408 : 340 : 34 : 3 : [] 
  } 

This is a clear summary of what the transformers we re doing. 
iterate took an integer (3408), and produced a stre am of decreas-
ing numbers, of which the first 5 were evaluated. W e also see how 
the functional argument to iterate was used. takeWh ile turned an 
infinite list into a finite list, when it found the element 0. 

4.2 Observing the State Monad 

We can use observe to look at the state inside the state monad. 
State monads typically have a state transformer fun ction that takes 
a complete state, and returns a new state. Let’s ca ll this function 
modify. 

modify :: (State -> State) -> M () 

We can observe the state at a specific point using the function 
observeM. 

observeM :: String -> M () 
observeM label  
   = modify (observe label :: Observing State) 

By placing observeM at appropriate places, we can take snapshots 
of the state. Other combinators can be built to loo k inside other 
monads, like the reader monad and writer monad.  

observeM was instrumental to the debugging of a Has kell model 
of a pretty printer used in the Java based data str ucture browser  
presented in Section 6.2. Quickcheck [2] was used to find prob-
lematic counter examples, and observeM opened up th e inner 
working of the faulty Haskell model. One problem wi th the origi-
nal Haskell model was that an update of the state i n the monad 
was not being done correctly, and this manifested i tself in the 
form of unevaluated components inside the state tha t were ex-
pected to contain evaluated data-structures. 

4.3 Observing the IO Monad 

Can we observe an IO action? An IO action has two parts, the 
action (which is opaque), and the result of the act ion, which we 
can observe. We render an IO action using the pseudo-constructor 
<IO> , followed by an observation on the returned object . Consider 
this example: 

ex9 :: IO Int 
ex9 = print 
      ((observe "getChar" :: Observing (IO Char)) 
        getChar 
      ) 

It would render as 

-- getChar 
<IO> 'x' 

We read this as "some side effect happened, resulti ng in the value 
'x' being returned". As another example, consider: 

ex10 :: Char -> IO () 
ex10 ch  
 = print 
   (observe "putChar"  
                  :: Observing (Char -> IO ())) 
     putChar ch 
   ) 

 

-- putChar 
let fn 'x' = <IO> () 

We read this as "we have a function that takes 'x',  does some side-
effect stuff, and returns unit". 

One great possible use of observing the IO monad is  for remem-
bering reads and writes to mutable variables (IORef s and MVars).  
In this way, functional programs written in an impe rative manner 
can be debugged using observe. 



 

4.4 Multiple Observations 

One weakness of observe is that there is no way of tying together 
the different observation inside one function. Two invocations of 
natural would result in each observation being reco rded, giving a 
set containing two structures for each label.  

So, if we call natural with 3408, and later with 12 3, we have two 
observations for each label. We return to the list of Int observa-
tions example for brevity; the problem (and solutio n) carries over 
to functions trivially. 

-- after iterate (`div` 10) 
 { (3408 : 340 : 34 : 3 : 0 : _) 
 , (123 : 12 :1 : 0 : _) } 
-- after takeWhile (/= 0) 
 { ( 3408 : 340 : 34 : 3 : [] ) 
 , (123 : 12 :1 : []) } 
-- after map (`mod` 10) 
 { ( 8 : 0 : 4 : 3 : [] ) 
 , (3 : 2 :1 : []) } 
-- after reverse 
 { ( 3 : 4 : 0 : 8 : []) 
 , (1 : 2 :3 : []) } 

Now there is nothing tying together the data that s hare the same 
pipeline, apart from manual observations. There is no guarantee 
(because of lazy evaluation) that the data will be ordered like this 
example. In order to allow individual pipelines to have a way of 
tying observation together, we provide another comb inator. 

observations :: (Observable a) 
        => String -> (Observer -> a) -> a 
data Observer 
   = Observer (forall a .(Observable a)  
                       => String -> a -> a) 

We have now left the Haskell98 camp, because we are  using rank-
2 polymorphism. observations passes a local version  of observe, 
allowing a scoped version of be used when debugging . An exam-
ple use of this combinator is 

natural :: Observer -> Int -> [Int] 
natural = observations "natural" natural' 
  $ \ (Observer observe) -> 
    (observe "after reverse" :: Observing [Int]) 
  . reverse 
  . (observe "after map …" :: Observing [Int]) 
  . map (`mod` 10) 
  . (observe "after takeWhi …":: Observing [Int]) 
  . takeWhile (/= 0)  
  . (observe "after iterate …":: Observing [Int]) 
  . iterate (`div` 10) 

At this point, we are getting diminishing returns b ecause we have 
made a number of changes to the code to get use the se combina-
tors. Notice we can't just return a local observe b ut need to wrap 
in inside the constructor, Observer, because observ e must have a 
fully polymorphic type. 

The example outputs…  

-- natural 
  { \ 3408  -> 3 : 4 : 0 : 8 : [] 
  } 
  -- after reverse 
    3 : 4 : 0 : 8 : [] 
  -- after map 
    8 : 0 : 4 : 3 : [] 
  -- after takeWhile 
    3408 : 340 : 34 : 3 : [] 
  -- after iterate 
    3408 : 340 : 34 : 3 : 0 : _ 
 
-- natural 
  { \ 123  -> 1 : 2 : 3 : [] 
  } 
  -- after reverse 
    1 : 2 : 3 : [] 
  -- after map 
    3 : 2 : 1 : [] 
  -- after takeWhile 
    123 : 12 : 1 : [] 
  -- after iterate 
    123 : 12 : 1 : 0 : _ 

This is a more structured record of what happened. 

4.5 Summary of using observe 

We have seen many examples of observe successfully observing 
internal, sometimes intermediate, structures. It is  both general and 
flexible, working in many different practical setti ngs, such as: 
observing how functions are used, observing state i nside monads, 
and observing IO actions. 

5 How does observe work? 
We have demonstrated that observe can be used as a powerful 
debugging tool, but we still need to answer the que stion of how to 
implement observe in a portable way. This section i ntroduces this 
new mechanism. 

Take as an example this Haskell fragment. 

ex12 = let pair = (Just 1,Nothing) 
       in print (fst pair) 

What steps has pair gone through in the Haskell execution? All 
expressions start as unevaluated thunks. 

… pair = <thunk> -- start 

First, print is hyper-strict in its argument, so it  starts the evalua-
tion of the expression "(fst pair)". This causes pa ir to be evaluated 
via fst, returning a tuple with two thunks inside i t. 

… pair = (<thunk>,<thunk>) -- after step 1 

Now the fst function returns the first component of  the tuple, and 
this element is further evaluated by print. 

… pair = (Just <thunk>,<thunk>) -- after step 2 

And finally, the thunk inside the Just constructor is evaluated, 
giving 

… pair = (Just 1,<thunk>) -- after step 3 



 

This evaluation can be illustrated diagrammatically , showing the 
three evaluation steps that this structure went thr ough. 

• � (1)  
( • , • )  
  � (2)  
  Just • 
       � (3)  
       1 

We can now explain the key ideas behind the impleme ntation of 
observe.  

• We automatically insert side-effecting functions in  place of 
the labeled arrows in the diagram above, which both  return 
the correct result on the evaluation to weak head n ormal 
form, and also inform a (potentially offline) agent that the 
reduction has taken place . All thunks (including internal 
thunks) are therefore replaced with functions that,  when 
evaluated, trigger the informative side effect. 

• We use the type class mechanism as a vehicle for th is sys-
tematic (runtime) rewriting. 

Next, we examine the details of both of these ideas . 

5.1 Communicating the Shape of Data 
Structures 

We need to give enough information to our viewer to  allow it to 
rebuild a local copy of our observed structure. Wha t information 
might these side-effecting functions send?  

• What evaluation happened (path location) 

• What the evaluation reduced to ((:), 3, Nothing, et c) 

So, in the example above we would pass the followin g informa-
tion via our side effecting function. 

Name Location Constructor 

<> root tuple constructor with two 
children 

<1> first thunk inside root The Just constructor wi th one 
child 

<1.1> first thunk inside the 
first thunk of the root 

The integer 1 

This information is enough to recreate the observed structure! We 
start with an unevaluated thunk. 

• root 
We then accept the first step (<>), giving 

( •  <1>  , • <2> )  
Here <1> represents the first thunk inside the cons tructor pro-
duced by the first step, and <2> represents the second thunk from 
the same reduction. We then accept the next thunk ( <1>), giving 

( Just • <1.1>, • <2> ) 
Here <1.1> represents the first (and only) thunk of  the constructor 
produced by the thunk labeled <1>. Finally, we acce pt informa-
tion about <1.1>, giving 

( Just 1, • <2> ) 
By default, if we know nothing about a thunk, it’s unevaluated, 
like <2>. We now look at how to insert our message passing func-
tions into our data structures. 

5.2 Inserting intermediate observations 

We use a worker function, observer, to both tell ou r (potentially 
offline) agent about reductions happening, and plac e further calls 
to new instances of observer on all the sub-thunks.  One possible 
type for such a function is: 

observer  
  :: (Observable a) => [Int] -> String -> a -> a 

The [Int] is used to represent the path from the ro ot, as seen in the 
above example. observe can be defined in terms of t his function. 

observe = observer [] 

Let us consider the generic case for observer, over  a pseudo-
constructor. This also acts as an informal semantic s for observe. 

data Cons = Cons ty 1 … ty n 

 
observer path label (Cons v 1 … v n) 
  = unsafePerformIO  
    { send "Cons" path label 
    ; return ( 
        let y 1 = observer (1:path) label v n 
          … 
            y n = observer (n:path) label v n 
        in Cons y 1 … y n) 
    } 

We can notice a number of things about the function  from this 
pseudo code.  

• observer is strict in its constructor argument. Thi s is not a 
contradiction from the clam that observe does not e ffect 
strictness of what it is observing, in the same way  that 

forall xs :: [a] . foldr (:) [] xs = xs 

For observer to look at its constructor argument, i t must itself 
be in the process of being evaluated to WHNF. 

• The only place observer can get stuck (evaluate to � ) is 

when invoking send. There is a (reasonable) presump tion 
that this will not block or fail. 

• The path is used in a strict fashion (assuming send  is strict).  

• observe can change the space behavior of programs, because 
it loses any sharing in its replication. 



 

If we assume that the path is a constant string, an d send does not 
get stuck, simple equational reasoning can show tha t  

forall (cons :: Cons) . cons = observe "lab" cons 

for any cons of the above form.  

• Strict fields just re-trigger evaluation of already  evaluated 
things. 

• We can consider base types (Int, Integer, etc) to b e large 
enumerated types, and capture them by the above cla im 
about constructors in general. 

Functions are captured by a different instance: 

observer path label fn arg 
 = unsafePerformIO $ do 
  { send "->" path label 
  ; return ( 
     let arg' = observer (1:path) label arg 
         res' = observer (2:path) label (fn arg’) 
       in res') 
  } 

This is a simplification (because observer actually  needs to gener-
ate a unique reference for each function invocation ) but does cap-
ture the behavior as far as the Haskell evaluation is concerned. 
Again, we use reasoning like that above to claim th at 

forall fn arg . fn arg = observe "lab" fn arg 

5.3 The Observable Class 

We use the type class mechanism to implement the va rious re-
peated calls to the worker function, observer, as a nd when a struc-
ture gets evaluated. We have a class Observable, an d for each 
observable Haskell object, we have an instance of t his class. 

class Observable a where 
    observer :: a -> ObserveContext -> a 

Reusing our diagram from Section 5.1 above, we have 3 calls to 
observer. 

• � observer [] “ label ” (<…>,<…>)  
( • , • ) 
  � observer [1] “ label ”(Just <…>)  
  Just • 
       � observe [1,1] “ label ” 1  
       1 

The first call uses the 2-tuple instance of Observa ble, the second 
uses the Maybe instance, and the third uses the Int  instance. Each 
call also given a context, which contains informati on about where 
this thunk is in relation to its parent node. 

In our implementation, we use a combinator, send, t o capture the 
common idioms used when writing instances of observ er. The 
Observable instance for 2-tuples is: 

instance (Observable a,Observable b)  
          => Observable (a,b) where 
  observer (a,b) = send ","  
                       (return (,) << a << b) 

If observer is called at the 2-tuple type, it sends  a packet of infor-
mation, saying it has found a tuple, and sets up two new thunks 
that are the components of the tuple. The type of s end is 

send :: String  
     -> MonadObserver a  
     -> Parent  
     -> a 

MonadObserver is a lazy state monad that both count s the total 
number of sub-thunks this constructor has, and prov ides a unique 
context for the sub-thunks. Parent is simply a name  for the con-
text.  

Several examples of real instances are included in the Appendix. 

6 The Haskell Object Observation 
Debugger 

We have implemented these ideas, incorporating them  into a full-
scale debugging tool we call the Haskell Object Obs ervation De-
bugger. We give a short overview of the tool here. A user manual 
is available online. In essence, HOOD is used as fo llows: 

• The user is responsible for importing the Observe l ibrary, 
which exports several debugging functions, includin g ob-
serve, and adding strategic observes to their code.  

• Using the Observe library produces an internal trac e of what 
was observed.  

• At the termination of the running the code being de bugging, 
some code in the Observe library recreates the stru ctures, 
much like was done in Section 5.1, and the structures are 
displayed to the user. 

6.1 The Observe library 

The Observe library is an implementation of the obs erve combina-
tor, some supporting combinators, and many instance s for various 
Haskell types. Observe provides:  

Base Types: Int, Bool, Float, Double, Integer, Char, () 

(Observable a) => [a]  and (Maybe a) 

(Observable a, Observable b)  

               => (a,b) and (Array a b) and (Either  a b) 

Constructors: 

(...) => 3-tuple, 4-tuple, 5-tuple 

Functions:  (Observable a, Observable b) => (a -> b) 

IO Monad:  (Observable a) => IO a 

Extensions: Exceptions (error, etc)   -- with GHC and STG Hugs 



 

In order to do debugging, you need to be inside a d ebugging 
mode. When this mode is turned on, the trace logfil e is created, 
and the system is ready for receiving observations.  When the 
mode is turned off, the trace logfile is closed. We  provide a com-
binator that helps with these operations. 

runO :: IO a -> IO () 

This turns on observations, runs the provided IO ac tion, turns off 
observations, and returns. In a Haskell program wit h main, you 
might write 

main = runO $ do  
   .. rest of program .. 

To help with interactive use, we provide two extra combinators. 

printO :: (Show a) => a -> IO () 
printO expr = runO (print expr) 
 
putStrO :: String -> IO () 
putStrO expr = runO (putStr expr) 

These are provided for convenience. For example, in  Hugs you 
might write 

Module> printO (observe "list" [0..9]) 

Because this version of print starts the observatio ns, you can use it 
at the Hugs prompt, and make observations on things  at the com-
mand line level. 

Though Observe.lhs is itself fairly portable (needi ng only un-
safePerformIO and IORef) we also provide versions o f Ob-
serve.lhs for specific compilers. Classic Hugs98 us es rank-2 
polymorphism in one place of the implementation, an d uses 
MVars to allow debugging of concurrent programs. GH C and 
STG Hugs also use extended versions that provide ex tra function-
ality for observing Exceptions and handling threade d execution. 
Catching, observing and rethrowing exceptions allow s you to 
observe exactly where in your data structures an er ror is raised, 
and perhaps later can also be used for debugging pr ograms that 
blackhole. 

In the Appendix we give code fragments from the Obs erve li-
brary, which include many more examples of instance s for the 
Observable class. If a user wants to observe their own structures, 
then they need to provide their own instances. Howe ver, as can be 
seen, this is quite straightforward. 

There are a couple of important caveats about havin g observe as a 
function provided by a library, rather than a separ ate compila-
tion/interpretation mode. 

• observe is referentially transparent with regard to  the execu-
tion of the Haskell program, but observe is not ref erentially 
transparent with regard to possible observations it  might 
make. Compiler optimizations might move observe aro und, 
changing what is observed. Here is an example probl em 

  let v = observe “label” <expr> 
  in … v … v … 

This might be transformed into 

 
    … observe “label” <expr>  
           … observe “label” <expr> … 

This does not turn out to be a problem in practice.  This trans-
formation and other problematic transformations, th ough 
technically valid, change the sharing behavior of t he pro-
gram. Compilers do not like to change these sorts o f proper-
ties without fully understanding the ramifications of doing 
so. Furthermore, the worst that can happen is a sin gle struc-
ture is observed a number of times. If this occurre d, it should 
be obvious what is happening. 

This glitch with observe turns out not to be a prob lem in 
GHC, Classic Hugs and STG Hugs. If any other Haskel l 
compiler has a problem with inappropriate sharing o f ob-
serve, this can be fixed, even by adding a special case to the 
sharing optimization. It is a lot easier to add spe cial cases 
than a whole debugger! 

• Hugs does not re-evaluate top level updatable value s, called 
Constant Applicative Forms (CAFs), between specific  invo-
cations of expressions at the command line prompt. This is a 
good thing in general, but it also means that if yo u want to 
observe a structure inside a CAF, you need to reloa d the of-
fending CAF each time you want to observe it. This is a just 
minor annoyance in practice; perhaps a Hugs flag tu rning off 
caching of CAF's between expression evaluations cou ld be 
added.  

6.2 Using the HOOD browser 

We have an extension to the released version of HOO D, that in-
cludes a browser that allows dynamic viewing of str uctures. 

In this new version, a modified version of the Obse rve library puts 
the tracing information into a file called observe. xml. Though it 
might seem that XML is a poor choice for an interme diate format, 
off the shelf compression tools result in a surpris ingly good qual-
ity of compression (around 90%), which gives signif icantly better 
foot print size than straightforward binary format,  and we have 
plans for a future version that uses a pre-compress ed trace, or pipe 
the trace directly between program and browser. 

The browser reads the XML file, and allows the user  to browse 
the structures that were observed. To demonstrate o ur browser 
tool, take the example observation on foldl, from S ection 4.1. We 
use runO inside main to turn on and off the observa tion machin-
ery. 

main :: IO () 
main = runO ex9 
ex9 :: IO () 
ex9 = print 
      ((observe "foldl (+) 0 [1..4]"  
         :: Observing ((Int -> Int -> Int)  
                    -> Int -> [Int] -> Int) 
       ) foldl (+) 0 [1..4] 
      ) 

This produces the file called observe.xml. We now s tart our 
browser - the details are implementation dependent, but thi s can 
be done directly using a JVM, or from inside Netsca pe or Internet 



 

Explorer. After the browser is started, it offers t he user a list of 
possible observations to look at. 

  

This shows us we have loads 65 "events" (observatio n steps). We 
only have one observation ("foldl (+) 0"), and we c hoose to dis-
play it after evaluation, giving 

 

This display uses colors to give information beside  the raw text. 
We use purple for base types, blue for constructors , black for 
syntax, and yellow highlighting for the last expres sion changed. 
(Note: this picture showing an alternative possible  syntax for ren-
dering functional values.) 

This viewer has the ability to step forwards and ba ckwards 
through the observation, seeing what part of the ob servation was 
evaluated (demanded) in what order. Though in many cases we 
are not interested in this information, it sometime s is invaluable. 
For example, if we step back a few steps during our  perusal of the 
foldl example, and we see a strange thing. 

 

We use a (red) '?' to signify an expression that ha s been entered 
(someone has requested its evaluation), but has not  yet reached 
weak head normal form. We can see we have a number of ques-
tion marks, which correspond to a rather nasty chai n of enters as a 
consequence of a lazy accumulating parameter, a wel l-known 
strictness bug.  

This dynamic viewing of how structure and functions  are used 
inside real contexts can bring a whole new level of  understanding 
of what goes on when we evaluate functional program s, and could 
serve as a useful pedagogical tool. 

7 Related Work 
There are two previous pieces of work that use the explicit 
observing intermediate structures in a debugging ai d. 

• Hawk, a microprocessor architecture specification e mbedded 
language has a function called probe [4].  

probe :: Filename -> Signal a -> Signal a 

probe  works exactly like observe on the Signal level, wh ere 
Signals are just lazy lists. However,  probe  is strict in the 
contents of the signal, so it can change the semant ics of a 
signal.  Encouragingly, probe  has turned out to be extremely 
useful in practice. 

• The stream-based debugger in [9] let the user observe lazy 
streams as they are evaluated. The information gath ering 
mechanism was completely different. Their stream-ba sed de-
bugger used a primitive (isWHNF :: a -> Bool) to make sure 
that they never cause extra evaluation when display ing struc-
tures. We expect that we could emulate all the beha vior of 
this debugger (and more) in our new browser.  

The work in this paper was undertaken because of th e success 
stories told by both these projects, and the hope t hat our generali-
zation of both will be useful in practice when debu gging Haskell 
programs. 



 

A complete description of other attempts to build d ebugging tools 
for lazy functional language is not possible due to  side limitations. 
Here is a short summary of the techniques; for more  details about 
writing debuggers for Haskell, Watson’s thesis [10] is a great 
starting point. 

There are two basic approaches to instrumenting Has kell code: 

• The first is where code is transformed to insert ex tra (side-
effecting) functions that record specific actions, like entering 
functions and evaluating structures. The transforma tion can 
be done inside the compiler (and therefore compiler  specific) 
or done as a preprocessing pass (complicating the c ompila-
tion mechanism.) In practice, such transformations turn out 
to be tied to specific compilers. One example of tr acing via 
transformations is the work by Sparud [8], in his trace option 
for the nhc compiler. 

• The second approach to gathering debugging informat ion is 
augmenting a reduction engine to gather the relevan t infor-
mation, and is completely compiler specific. One ex ample of 
such a reduction engine is the work by Nilsson [5], who 
modified the G-machine reduction engine. 

Using the raw debugging information gathered to hel p debug 
Haskell programs is a difficult problem, partly for  the reasons 
already mentioned in the introduction. One importan t debugging 
strategy is algorithmic (or declarative) debugging [6].  Algo-
rithmic debuggers compare the result of specific ch unks of com-
putations (like function calls) with what the progr ammer intended. 
By asking the programmer (or an oracle) about expec tations, the 
debugger can home in on a bug’s location. observe c an be used to 
perform a manual version of algorithmic debugging. 

8 Conclusions & Future Work 
All previous work on debuggers for Haskell have onl y been im-
plemented for subsets of Haskell, and are therefore  of limited use 
for debugging real Haskell programs. This paper com bats the need 
for debugging real Haskell by using a portable libr ary of debug-
ging combinators, and develops a surprisingly rich debugging 
system using them.  

There is work to be done with building semantics fo r observe. The 
semantics given in [3] would be a good place to start. 

 This debugging system could be made even more usef ul if the 
Observable class restriction was removed. It would be conceiv-
able to have a compiler flag where Observable is pa ssed silently 
everywhere, and therefore can be used without type restrictions, 
provided we supply a default instance for Observabl e. Alterna-
tively, a reflection interface might be used to loo k at constructors 
in a polymorphic way, allowing the type class restr iction to be 
totally eliminated. 

HOOD has a web page: http://www.haskell.org /hood  

The first version of Hood has been released, and is  available from 
the web page. A future version will include the gra phical browser. 
The source code (including a copy of the graphical browser) is 
available from the same CVS repository as GHC and H ugs.  
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Appendix A – Haskell Code from Observe.lhs 
 
 
class Observable a where 
  observer  :: a -> Parent -> a  
 
type Observing a = a -> a 
 
-- The base types 
 
instance Observable Int         where { observer = observeBase } 
instance Observable Bool        where { observer = observeBase } 
instance Observable Integer     where { observer = observeBase } 
instance Observable Float       where { observer = observeBase } 
instance Observable Double      where { observer = observeBase } 
instance Observable Char        where { observer = observeBase } 
 
instance Observable ()          where { observer = observeOpaque "()" } 
 
observeBase :: (Show a) => a -> Parent -> a 
observeBase lit cxt = seq lit $ send (show lit) (re turn lit) cxt 
 
observeOpaque :: String -> a -> Parent -> a 
observeOpaque str val cxt = seq val $ send str (ret urn val) cxt 
 
-- The constructors 
 
instance (Observable a,Observable b) => Observable (a,b) where 
  observer (a,b) = send "," (return (,) << a << b) 
 
instance (Observable a,Observable b,Observable c) = > Observable (a,b,c) where 
  observer (a,b,c) = send "," (return (,,) << a << b << c) 
 
instance (Observable a,Observable b,Observable c,Ob servable d)  
          => Observable (a,b,c,d) where 
  observer (a,b,c,d) = send "," (return (,,,) << a << b << c << d) 
 
instance (Observable a,Observable b,Observable c,Ob servable d,Observable e)  
         => Observable (a,b,c,d,e) where 
  observer (a,b,c,d,e) = send "," (return (,,,,) <<  a << b << c << d << e) 
 
instance (Observable a) => Observable [a] where 
  observer (a:as) = send ":"  (return (:) << a << a s) 
  observer []     = send "[]" (return []) 
 
instance (Observable a) => Observable (Maybe a) whe re 
  observer (Just a) = send "Just"    (return Just < < a) 
  observer Nothing  = send "Nothing" (return Nothin g) 
 
instance (Observable a,Observable b) => Observable (Either a b) where 
  observer (Left a)  = send "Left"  (return Left  < < a) 
  observer (Right a) = send "Right" (return Right < < a) 
 
-- arrays 
 
instance (Ix a,Observable a,Observable b) => Observ able (Array.Array a b) where 
  observer arr = send "array" (return Array.array < < Array.bounds arr  
                                                  < < Array.assocs arr 
                              ) 
-- IO monad 
 
instance (Observable a) => Observable (IO a) where 
  observer fn cxt =  
        do res <- fn 
           send "<IO>" (return return << res) cxt  
 
 


