

Debugging Haskell by Observing Intermediate Data St ructures

Andy Gill
Oregon Graduate Institute

andy@cse.ogi.edu
http://www.cse.ogi.edu/~andy

Abstract
Haskell has long needed a debugger. Although there has been
much research into the topic of debugging lazy func tional pro-
grams, no robust tool has yet come from the Haskell community
that can help debug full Haskell - until now. This paper describes
a portable debugger for full Haskell, building only on commonly
implemented extensions. It is based on the concept of observation
of intermediate data structures, rather than the mo re traditional
stepping and variable examination paradigm used by imperative
debuggers.

1 Introduction
Debuggers allow you to see inside your program whil e running,
and help you understand both the flow of control an d the internal
data and structures that are being created, manipul ated and de-
stroyed. The art of debugging is viewing your progr am through
this portal, letting you locate the difference betw een what the
computer has been told to do, and what the programm er thinks the
computer should be doing.

When debugging an imperative program using traditio nal debug-
ging technology (like gdb or Visual Studio) the pro grammer
might step through some suspect code using sample t est data,
stopping and examining internal structures at key p oints. Haskell
programs can have an imperative veneer, using the I O monad, and
it should be possible to use typical debugging tech nology for such
parts of a Haskell program. But when debugging othe r parts of
Haskell, we cannot straightforwardly use the same d ebugging
technology to render internal information, because many of the
hooks that are used to provide the user with debugg ing facilities
do not map neatly across to the lazy functional wor ld.

• There are no variables to observe changing during e xecution.
• The concept of sequences of actions or executing a specific

line number does not exist.
• Any closure has two parents, the static one (that b uild the

closure and give context), and the dynamic one (tha t first
evaluated the closure). A stack trace becomes a par ent tree.

• When a function is called, its arguments might not yet be
evaluated. Should the debugger do extra evaluations ?

In this paper, we argue that the analog to breakpoi nting and exam-
ining variables for a functional program is observi ng intermediate
data structures as they are passed between function s. This argu-
ment can be considered a generalization of the "deb ugging via
dataflow" idea proposed by Sinclair [7].

Consider this Haskell function

natural :: Int -> [Int]
natural
 = reverse
 . map (`mod` 10)
 . takeWhile (/= 0)
 . iterate (`div` 10)

The first step to understanding this listful functi on is to run the
function with some example data.

Main> natural 3408
[3,4,0,8]

This tells us what the function does, but not how t he function
works. To understand this function, we need to visu alize the hid-
den intermediate structures behind the function, an d see inside the
pipeline of (lazy) intermediate lists. ($ is a comb inator for infix
application)

natural 3408 �
 reverse

 . map (`mod` 10)
 . takeWhile (/= 0)
 . iterate (`div` 10)
 $ 3408 �

 reverse
 . map (`mod` 10)
 . takeWhile (/= 0)
 $ (3408 : 340 : 34 : 3 : 0 :_) �

 reverse
 . map (`mod` 10)
 $ (3408 : 340 : 34 : 3 : []) �

 reverse
 $ (8 : 0 : 4 : 3 : []) �

 (3 : 4 : 0 : 8 : [])

Displaying steps like this gets garrulous quickly. Yet the critical
information - the intermediate structures - can be concisely ex-
pressed.

-- after iterate (`div` 10)
 (3408 : 340 : 34 : 3 : 0 : _)
-- after takeWhile (/= 0)
 (3408 : 340 : 34 : 3 : [])
-- after map (`mod` 10)
 (8 : 0 : 4 : 3 : [])
-- after reverse
 (3 : 4 : 0 : 8 : [])

We want to build a portable debugger (in the form o f a Haskell
library) that lets Haskell users get concise data s tructure informa-
tion, like the information displayed above, about t he structures in
their Haskell programs. Even though our debugger an swers only
this one question - what are the contents of specific intermediate
structures, because structures in Haskell are both rich and regular,
even this simple question can be the basis of a pow erful debug-
ging tool.

Our overall debugging system is as follows:

• We provide a Haskell library that contains combinat ors for
debugging. (Taking this form allows the user to deb ug full
Haskell.)

• The frustrated Haskell programmer uses these debugg ing
combinators to annotate their code, and re-runs the ir Haskell
program.

• The execution of the Haskell program runs as normal ; there
are no behavioral changes because of the debugging annota-
tions.

• The structures that have been marked for observatio n are
displayed on the users console on termination of th eir pro-
gram.

Other versions of the debugging library allow for o ther debugging
setups, like offline observations of data-structure s.

2 Debugging Combinators
We introduce our new debugging combinator in terms of an im-
provement of the current state of the art in full H askell debugging,
which is using an unsafe function called trace.

2.1 trace – A Reprise

All current Haskell implementations come with this (non-
standard) function, which has the type:

trace :: String -> a -> a

The semantics of trace is to print (as a side effec t) the first argu-
ment, and return the second argument. There are thr ee main prob-
lems with using trace for debugging.

The first problem with trace is the incomprehensibleness of out-
put. Augustsson and Johnsson had a variation of trace in their
LML compiler [1]. Their conclusion about trace was that it was
generally difficult to understand the "mish-mash" o f output from
different instances of trace. This is partly becaus e the strictness of
the first argument of trace might itself trigger ot her traces, and
partly due to the unintuitive ordering of lazy eval uation. The
"mish-mash" problem could perhaps be tackled using a post-
processor on the output.

The second problem with trace is that inserting it into Haskell
code tends to be invasive , changing the structure of code, For
example, consider a variant of sum, which displays its own execu-
tion using trace.

tracing_sum xs = trace message res
 where
 res = sum xs
 message = "sum " ++ show xs ++
 " = " ++ show res

Running tracing_sum using Hugs gives:

Main> tracing_sum [1,2,3]
sum [1,2,3] = 66
Main>

We have observed the behavior of sum, but needed to make non-
trivial code changes to do so.

The third problem is trace changes the strictness of the things it is
observing because trace it is hyper-strict in its first argu ment.
Consider a tracing version of fst.

tracing_fst pair = trace message res
 where
 res = fst pair
 message = "fst " ++ show pair ++
 " = " ++ show res

Using this version of fst is problematic, because o f the strictness
of tracing_fst.

Main> tracing_fst (99,undefined :: Int)
fst (99,
Program error: {undefined}
Main>

2.2 Introducing observe

The function trace can be really useful for debuggi ng Haskell, but
the bona fide shortcoming is that trace is at too l ow a level. Build-
ing combinator libraries is a common way to build i n low-level
primitives, giving interfaces that are both friendl ier and more
intuitive.

What form could a higher level debugging combinator take? Us-
ing the example in the introduction as evidence, we argue that it
should take the form of a function that allows us t o observe data
structures in a transparent way. As a way of achiev ing this, con-
sider the Haskell fragment:

consumer . producer

Imagine if the Prelude function id remembered its argument. We
could insert strategically placed id’s, and id woul d tell us what got
passed from the producer to the consumer.

consumer . id . producer

We argue that a higher level combinator for debuggi ng should
take this form, and both passing an argument transp arently, and
observing and remembering it. To facilitate multipl e observations
in one program, we use a string argument, which is a label used
only for identification purposes. The type of our p rincipal debug-
ging combinator is

observe :: (Observable a) => String -> a -> a

In the above (point-free) example, we could write:

consumer . observe "intermediate" . producer

This has identical semantics to consumer . producer , but the
observe squirrels away the data structure that gets drawn through
it, putting it into some persistent structure for l ater perusal. As far
as the execution of Haskell program is concerned, o bserve (with a
label) is just a version of id. Notice that observe can be used to
observe any expression, not just the intermediate values insid e a
point-free pipeline; we will see examples of both s tyles later.

observe has a type class restriction on the object being observed.
This does not turn out to be as big a problem as mi ght be thought.

We provide instances for all the Haskell98 base typ es (Int, Bool,
Float, etc), as well as many containers (List, Arra y, Maybe, Tu-
ples, etc). We will return to the specifics of this restriction in Sec-
tion 5.2, because the type class mechanism provided the frame-
work that enables observe to work.

How does observe compare with respect to the three weakness of
trace?

• trace sometimes produced a "mish-mash" of output. I n our
system, we provide renderings, using a pretty print er, of the
specific observations made by observe. This is poss ible be-
cause observe provides a structured way of looking at
Haskell objects.

• Unlike advanced uses of trace, minimal code changes are
required to observe an intermediate structure.

• Finally and critically, the strictness of the obser ved structure
is not changed, because observe does not do any eva luation
of the object it is observing. Observation of an in finite list, or
a list full of � is perfectly valid, as we shall see shortly.

3 Examples of using observe
Now we look at several examples of observe being used, before
explaining how to implement observe in Section 5.

3.1 Observing a finite list

As a first example consider:

ex1 :: IO ()
ex1 = print
 ((observe "list" :: Observing [Int]) [0..9])

If we run this IO action inside the debugging conte xt (explained in
Section 6.1), we would make the observation

-- list
 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : []

We have successfully observed an intermediate data structure,
without changing the value or semantics of the fina l Haskell pro-
gram.

We use the observe type synonym to allow us to be explicit abo ut
what type we think we are observing.

type Observing a = a -> a

However, using this explicit typing is optional. We could have
equally well written

ex1 = print (observe "list" [0..9])

This definition however relies on the default mecha nism choosing
an Int or Integer list. Typically the type of obser ve is fully deter-
mined by its context, but we sometimes include the type signature
with our examples to make explicit to the reader wh at type is be-
ing observed.

3.2 Observing an intermediate list

observe can be used partially applied, which is the typical use
scenario when observing inside a point-free pipelin e.

ex2 = print
 . reverse
 . (observe "intermediate" :: Observing [Int])
 . reverse
 $ [0..9]

This observe makes the following observation

-- intermediate
 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 : []

3.3 Observing a infinite list

Both the lists we have observed so far were finite. As an example
of an observation on an infinite list, consider:

ex3 :: IO ()
ex3 = print
 (take 10
 (observe "infinite list" [0..])
)

Here we observe an infinite list, starting at 0, wh ich has the first
10 elements taken from it, and is then printed. Run ning this ex-
ample allows us to make the observation

-- infinite list
 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : _

We can see that 0 to 9 have been evaluated, but the tail of the 10 th
cons has not been evaluated, rendered using the not ation " _". If
more of the list were extracted, we would see more cons cells, etc.

3.4 Observing lists with unevaluated
elements

So what about unevaluated elements of the list? Wha t if we were
to take the length of a finite list?

ex4 :: IO ()
ex4 = print
 (length
 (observe "finite list" [1..10])
)

This gives the observation as

-- finite list
_ : _ : _ : _ : _ : _ : _ : _ : _ : _ : []

What if the elements were � ?

ex5 :: IO ()
ex5 = print
 (length
 ((observe "finite list" :: Observing [()])
 [error "oops!" | _ <- [0..9]]
)
)

This gives exactly the same debugging output as ex4 . Because we
never evaluate the elements, it did not matter what they were,
even if the elements were bottom. We needed to give them some
non-polymorphic type, so we can actually observe th em, though.

What about if only some elements are observed?

ex6 :: IO ()
ex6 = let xs = observe "list" [0..9]
 in print (xs !! 2 + xs !! 4)

This example gives

-- list
 _ : _ : 2 : _ : 4 : _

We can use observe to both see date inside intermed iate struc-
tures, and also as a tool to see how much of a lazy structure is
actually evaluated, without fear of changing the evaluation order.
This is where the power of observe lies.

3.5 Using more than one observe

One program can contain many specific instances of observe. We
might rewrite the natural example from the introduc tion. ("…"
refers to more text, as shown in output comments)

natural :: Int -> [Int]
natural
 = (observe "after reverse" :: Observing [Int])
 . reverse
 . (observe "after map …" :: Observing [Int])
 . map (`mod` 10)
 . (observe "after takeWhi …" :: Observing [Int])
 . takeWhile (/= 0)
 . (observe "after iterate …" :: Observing [Int])
 . iterate (`div` 10)

Running this on the example data, 3408, gives:

-- after iterate (`div` 10)
 (3408 : 340 : 34 : 3 : 0 : _)
-- after takeWhile (/= 0)
 (3408 : 340 : 34 : 3 : [])
-- after map (`mod` 10)
 (8 : 0 : 4 : 3 : [])
-- after reverse
 (3 : 4 : 0 : 8 : [])

This is exactly what we were looking for in our int roduction!

4 Advanced uses of observe
We have seen how observe is a powerful tool for see ing what
before was hidden. We now look at a number of other ways of
using observe for debugging, beyond simply looking inside pipe-
lines.

4.1 Observing Functions

If we can observe base types (like Int and Bool), a nd can observe
containers (like tuples and lists), can we also obs erve Haskell
functions?

What does it mean to observe a function? We argue t hat to ob-
serve a function is to observe a finite mapping fro m (observable)
arguments to (observable) results. So, for our obse rvational pur-
poses, functions are just a bag of argument-result pairs, one for
each time the observed function is invoked.

Functions are observed only in the specific ways th ey are used.
Function arguments (or results) might contain uneva luated as-
pects, like several of the examples in Section 2.1.

What does this mean in practical terms? Let's look at an example:

ex7 = print
 ((observe "length" :: Observing ([Int] -> Int))
 length [1..3]
)

This allows the following observation

-- length
 { \ (_ : _ : _ : []) -> 3
 }

We notice a number of things about this example.

• observe now takes three arguments, the label, the o bserved
entity (the length function), and the argument to l ength. Re-
member that "observe <label>" is a style of id, and id just re-
turns its argument. The effect on the Haskell progr am can be
explained using simple rewriting

 (observe "length" :: Observing ([Int] ->Int))
 length [1..3]
 -- remove the type annotation
= observe "length" length [1..3]
 -- turn observe into id
= id length [1..3]
 -- id takes one argument
= (id length) [1..3]
 -- which is simply returned
= (length) [1..3]

This line of reasoning also works with further argu ments, and
observe can successfully observe multiple argument func-
tions.

• Rather than render functions as a bag of pairs, we take liber-
ties and use a more Haskell like syntax when printi ng debug-
ging output.

• The length function did not look at part of its arg ument, spe-
cifically the elements of the list. This is in no w ay reflecting
the state of the list itself. Someone else might ha ve evaluated
the elements, but we will never see this by observi ng length,
because the observation on length is only concerned with th e
way the argument and result is used specifically by length in
that context.

Observing functions is general and powerful! We pla ce observe at
the caller site, and can see the effect that a spec ific function has
from this context, including higher order functions .

ex8 = print
 ((observe "foldl (+) 0 [1..4]"
 :: Observing ((Int -> Int -> Int)
 -> Int -> [Int] -> Int)
) foldl (+) 0 [1..4]
)

-- foldl (+) 0 [1..4]
 { \ { \ 6 4 -> 10
 , \ 3 3 -> 6
 , \ 1 2 -> 3
 , \ 0 1 -> 1
 }
 0
 (1 : 2 : 3 : 4 : [])
 -> 10
 }

Notice by observing foldl, we have also observed its arguments,
including a functional one. We can see exactly how higher-
orderness in this example is used.

We can make great use of observing functions when e xamining
pipelines. Returning to our natural example, we can now observe
the individual transformers, rather than the struct ures between
them.

natural :: Int -> [Int]
natural
 = observe "reverse" reverse
 . observe "map (`mod` 10)" map (`mod` 10)
 . observe "takeWhile (/= 0)" takeWhile (/= 0)
 . observe "iterate (`div` …)" iterate (`div` 10)

Notice there is no " . " between the observes and the original code.
We give the output from "iterate …" and "takeWhile …"; the
others are similar in style.

-- iterate (`div` 10)
 { \ { \ 3 -> 0
 , \ 34 -> 3
 , \ 340 -> 34
 , \ 3408 -> 340
 } 3408
 -> 3408 : 340 : 34 : 3 : 0 : _
 }
-- takeWhile (/= 0)
 { \ { \ 0 -> False
 , \ 3 -> True
 , \ 34 -> True
 , \ 340 -> True
 , \ 3408 -> True
 } (3408 : 340 : 34 : 3 : 0 : _)
 -> 3408 : 340 : 34 : 3 : []
 }

This is a clear summary of what the transformers we re doing.
iterate took an integer (3408), and produced a stre am of decreas-
ing numbers, of which the first 5 were evaluated. W e also see how
the functional argument to iterate was used. takeWh ile turned an
infinite list into a finite list, when it found the element 0.

4.2 Observing the State Monad

We can use observe to look at the state inside the state monad.
State monads typically have a state transformer fun ction that takes
a complete state, and returns a new state. Let’s ca ll this function
modify.

modify :: (State -> State) -> M ()

We can observe the state at a specific point using the function
observeM.

observeM :: String -> M ()
observeM label
 = modify (observe label :: Observing State)

By placing observeM at appropriate places, we can take snapshots
of the state. Other combinators can be built to loo k inside other
monads, like the reader monad and writer monad.

observeM was instrumental to the debugging of a Has kell model
of a pretty printer used in the Java based data str ucture browser
presented in Section 6.2. Quickcheck [2] was used to find prob-
lematic counter examples, and observeM opened up th e inner
working of the faulty Haskell model. One problem wi th the origi-
nal Haskell model was that an update of the state i n the monad
was not being done correctly, and this manifested i tself in the
form of unevaluated components inside the state tha t were ex-
pected to contain evaluated data-structures.

4.3 Observing the IO Monad

Can we observe an IO action? An IO action has two parts, the
action (which is opaque), and the result of the act ion, which we
can observe. We render an IO action using the pseudo-constructor
<IO> , followed by an observation on the returned object . Consider
this example:

ex9 :: IO Int
ex9 = print
 ((observe "getChar" :: Observing (IO Char))
 getChar
)

It would render as

-- getChar
<IO> 'x'

We read this as "some side effect happened, resulti ng in the value
'x' being returned". As another example, consider:

ex10 :: Char -> IO ()
ex10 ch
 = print
 (observe "putChar"
 :: Observing (Char -> IO ()))
 putChar ch
)

-- putChar
let fn 'x' = <IO> ()

We read this as "we have a function that takes 'x', does some side-
effect stuff, and returns unit".

One great possible use of observing the IO monad is for remem-
bering reads and writes to mutable variables (IORef s and MVars).
In this way, functional programs written in an impe rative manner
can be debugged using observe.

4.4 Multiple Observations

One weakness of observe is that there is no way of tying together
the different observation inside one function. Two invocations of
natural would result in each observation being reco rded, giving a
set containing two structures for each label.

So, if we call natural with 3408, and later with 12 3, we have two
observations for each label. We return to the list of Int observa-
tions example for brevity; the problem (and solutio n) carries over
to functions trivially.

-- after iterate (`div` 10)
 { (3408 : 340 : 34 : 3 : 0 : _)
 , (123 : 12 :1 : 0 : _) }
-- after takeWhile (/= 0)
 { (3408 : 340 : 34 : 3 : [])
 , (123 : 12 :1 : []) }
-- after map (`mod` 10)
 { (8 : 0 : 4 : 3 : [])
 , (3 : 2 :1 : []) }
-- after reverse
 { (3 : 4 : 0 : 8 : [])
 , (1 : 2 :3 : []) }

Now there is nothing tying together the data that s hare the same
pipeline, apart from manual observations. There is no guarantee
(because of lazy evaluation) that the data will be ordered like this
example. In order to allow individual pipelines to have a way of
tying observation together, we provide another comb inator.

observations :: (Observable a)
 => String -> (Observer -> a) -> a
data Observer
 = Observer (forall a .(Observable a)
 => String -> a -> a)

We have now left the Haskell98 camp, because we are using rank-
2 polymorphism. observations passes a local version of observe,
allowing a scoped version of be used when debugging . An exam-
ple use of this combinator is

natural :: Observer -> Int -> [Int]
natural = observations "natural" natural'
 $ \ (Observer observe) ->
 (observe "after reverse" :: Observing [Int])
 . reverse
 . (observe "after map …" :: Observing [Int])
 . map (`mod` 10)
 . (observe "after takeWhi …":: Observing [Int])
 . takeWhile (/= 0)
 . (observe "after iterate …":: Observing [Int])
 . iterate (`div` 10)

At this point, we are getting diminishing returns b ecause we have
made a number of changes to the code to get use the se combina-
tors. Notice we can't just return a local observe b ut need to wrap
in inside the constructor, Observer, because observ e must have a
fully polymorphic type.

The example outputs…

-- natural
 { \ 3408 -> 3 : 4 : 0 : 8 : []
 }
 -- after reverse
 3 : 4 : 0 : 8 : []
 -- after map
 8 : 0 : 4 : 3 : []
 -- after takeWhile
 3408 : 340 : 34 : 3 : []
 -- after iterate
 3408 : 340 : 34 : 3 : 0 : _

-- natural
 { \ 123 -> 1 : 2 : 3 : []
 }
 -- after reverse
 1 : 2 : 3 : []
 -- after map
 3 : 2 : 1 : []
 -- after takeWhile
 123 : 12 : 1 : []
 -- after iterate
 123 : 12 : 1 : 0 : _

This is a more structured record of what happened.

4.5 Summary of using observe

We have seen many examples of observe successfully observing
internal, sometimes intermediate, structures. It is both general and
flexible, working in many different practical setti ngs, such as:
observing how functions are used, observing state i nside monads,
and observing IO actions.

5 How does observe work?
We have demonstrated that observe can be used as a powerful
debugging tool, but we still need to answer the que stion of how to
implement observe in a portable way. This section i ntroduces this
new mechanism.

Take as an example this Haskell fragment.

ex12 = let pair = (Just 1,Nothing)
 in print (fst pair)

What steps has pair gone through in the Haskell execution? All
expressions start as unevaluated thunks.

… pair = <thunk> -- start

First, print is hyper-strict in its argument, so it starts the evalua-
tion of the expression "(fst pair)". This causes pa ir to be evaluated
via fst, returning a tuple with two thunks inside i t.

… pair = (<thunk>,<thunk>) -- after step 1

Now the fst function returns the first component of the tuple, and
this element is further evaluated by print.

… pair = (Just <thunk>,<thunk>) -- after step 2

And finally, the thunk inside the Just constructor is evaluated,
giving

… pair = (Just 1,<thunk>) -- after step 3

This evaluation can be illustrated diagrammatically , showing the
three evaluation steps that this structure went thr ough.

• � (1)
(• , •)
 � (2)
 Just •
 � (3)
 1

We can now explain the key ideas behind the impleme ntation of
observe.

• We automatically insert side-effecting functions in place of
the labeled arrows in the diagram above, which both return
the correct result on the evaluation to weak head n ormal
form, and also inform a (potentially offline) agent that the
reduction has taken place . All thunks (including internal
thunks) are therefore replaced with functions that, when
evaluated, trigger the informative side effect.

• We use the type class mechanism as a vehicle for th is sys-
tematic (runtime) rewriting.

Next, we examine the details of both of these ideas .

5.1 Communicating the Shape of Data
Structures

We need to give enough information to our viewer to allow it to
rebuild a local copy of our observed structure. Wha t information
might these side-effecting functions send?

• What evaluation happened (path location)

• What the evaluation reduced to ((:), 3, Nothing, et c)

So, in the example above we would pass the followin g informa-
tion via our side effecting function.

Name Location Constructor

<> root tuple constructor with two
children

<1> first thunk inside root The Just constructor wi th one
child

<1.1> first thunk inside the
first thunk of the root

The integer 1

This information is enough to recreate the observed structure! We
start with an unevaluated thunk.

• root
We then accept the first step (<>), giving

(• <1> , • <2>)
Here <1> represents the first thunk inside the cons tructor pro-
duced by the first step, and <2> represents the second thunk from
the same reduction. We then accept the next thunk (<1>), giving

(Just • <1.1>, • <2>)
Here <1.1> represents the first (and only) thunk of the constructor
produced by the thunk labeled <1>. Finally, we acce pt informa-
tion about <1.1>, giving

(Just 1, • <2>)
By default, if we know nothing about a thunk, it’s unevaluated,
like <2>. We now look at how to insert our message passing func-
tions into our data structures.

5.2 Inserting intermediate observations

We use a worker function, observer, to both tell ou r (potentially
offline) agent about reductions happening, and plac e further calls
to new instances of observer on all the sub-thunks. One possible
type for such a function is:

observer
 :: (Observable a) => [Int] -> String -> a -> a

The [Int] is used to represent the path from the ro ot, as seen in the
above example. observe can be defined in terms of t his function.

observe = observer []

Let us consider the generic case for observer, over a pseudo-
constructor. This also acts as an informal semantic s for observe.

data Cons = Cons ty 1 … ty n

observer path label (Cons v 1 … v n)
 = unsafePerformIO
 { send "Cons" path label
 ; return (
 let y 1 = observer (1:path) label v n
 …
 y n = observer (n:path) label v n
 in Cons y 1 … y n)
 }

We can notice a number of things about the function from this
pseudo code.

• observer is strict in its constructor argument. Thi s is not a
contradiction from the clam that observe does not e ffect
strictness of what it is observing, in the same way that

forall xs :: [a] . foldr (:) [] xs = xs

For observer to look at its constructor argument, i t must itself
be in the process of being evaluated to WHNF.

• The only place observer can get stuck (evaluate to �) is

when invoking send. There is a (reasonable) presump tion
that this will not block or fail.

• The path is used in a strict fashion (assuming send is strict).

• observe can change the space behavior of programs, because
it loses any sharing in its replication.

If we assume that the path is a constant string, an d send does not
get stuck, simple equational reasoning can show tha t

forall (cons :: Cons) . cons = observe "lab" cons

for any cons of the above form.

• Strict fields just re-trigger evaluation of already evaluated
things.

• We can consider base types (Int, Integer, etc) to b e large
enumerated types, and capture them by the above cla im
about constructors in general.

Functions are captured by a different instance:

observer path label fn arg
 = unsafePerformIO $ do
 { send "->" path label
 ; return (
 let arg' = observer (1:path) label arg
 res' = observer (2:path) label (fn arg’)
 in res')
 }

This is a simplification (because observer actually needs to gener-
ate a unique reference for each function invocation) but does cap-
ture the behavior as far as the Haskell evaluation is concerned.
Again, we use reasoning like that above to claim th at

forall fn arg . fn arg = observe "lab" fn arg

5.3 The Observable Class

We use the type class mechanism to implement the va rious re-
peated calls to the worker function, observer, as a nd when a struc-
ture gets evaluated. We have a class Observable, an d for each
observable Haskell object, we have an instance of t his class.

class Observable a where
 observer :: a -> ObserveContext -> a

Reusing our diagram from Section 5.1 above, we have 3 calls to
observer.

• � observer [] “ label ” (<…>,<…>)
(• , •)
 � observer [1] “ label ”(Just <…>)
 Just •
 � observe [1,1] “ label ” 1
 1

The first call uses the 2-tuple instance of Observa ble, the second
uses the Maybe instance, and the third uses the Int instance. Each
call also given a context, which contains informati on about where
this thunk is in relation to its parent node.

In our implementation, we use a combinator, send, t o capture the
common idioms used when writing instances of observ er. The
Observable instance for 2-tuples is:

instance (Observable a,Observable b)
 => Observable (a,b) where
 observer (a,b) = send ","
 (return (,) << a << b)

If observer is called at the 2-tuple type, it sends a packet of infor-
mation, saying it has found a tuple, and sets up two new thunks
that are the components of the tuple. The type of s end is

send :: String
 -> MonadObserver a
 -> Parent
 -> a

MonadObserver is a lazy state monad that both count s the total
number of sub-thunks this constructor has, and prov ides a unique
context for the sub-thunks. Parent is simply a name for the con-
text.

Several examples of real instances are included in the Appendix.

6 The Haskell Object Observation
Debugger

We have implemented these ideas, incorporating them into a full-
scale debugging tool we call the Haskell Object Obs ervation De-
bugger. We give a short overview of the tool here. A user manual
is available online. In essence, HOOD is used as fo llows:

• The user is responsible for importing the Observe l ibrary,
which exports several debugging functions, includin g ob-
serve, and adding strategic observes to their code.

• Using the Observe library produces an internal trac e of what
was observed.

• At the termination of the running the code being de bugging,
some code in the Observe library recreates the stru ctures,
much like was done in Section 5.1, and the structures are
displayed to the user.

6.1 The Observe library

The Observe library is an implementation of the obs erve combina-
tor, some supporting combinators, and many instance s for various
Haskell types. Observe provides:

Base Types: Int, Bool, Float, Double, Integer, Char, ()

(Observable a) => [a] and (Maybe a)

(Observable a, Observable b)

 => (a,b) and (Array a b) and (Either a b)

Constructors:

(...) => 3-tuple, 4-tuple, 5-tuple

Functions: (Observable a, Observable b) => (a -> b)

IO Monad: (Observable a) => IO a

Extensions: Exceptions (error, etc) -- with GHC and STG Hugs

In order to do debugging, you need to be inside a d ebugging
mode. When this mode is turned on, the trace logfil e is created,
and the system is ready for receiving observations. When the
mode is turned off, the trace logfile is closed. We provide a com-
binator that helps with these operations.

runO :: IO a -> IO ()

This turns on observations, runs the provided IO ac tion, turns off
observations, and returns. In a Haskell program wit h main, you
might write

main = runO $ do
 .. rest of program ..

To help with interactive use, we provide two extra combinators.

printO :: (Show a) => a -> IO ()
printO expr = runO (print expr)

putStrO :: String -> IO ()
putStrO expr = runO (putStr expr)

These are provided for convenience. For example, in Hugs you
might write

Module> printO (observe "list" [0..9])

Because this version of print starts the observatio ns, you can use it
at the Hugs prompt, and make observations on things at the com-
mand line level.

Though Observe.lhs is itself fairly portable (needi ng only un-
safePerformIO and IORef) we also provide versions o f Ob-
serve.lhs for specific compilers. Classic Hugs98 us es rank-2
polymorphism in one place of the implementation, an d uses
MVars to allow debugging of concurrent programs. GH C and
STG Hugs also use extended versions that provide ex tra function-
ality for observing Exceptions and handling threade d execution.
Catching, observing and rethrowing exceptions allow s you to
observe exactly where in your data structures an er ror is raised,
and perhaps later can also be used for debugging pr ograms that
blackhole.

In the Appendix we give code fragments from the Obs erve li-
brary, which include many more examples of instance s for the
Observable class. If a user wants to observe their own structures,
then they need to provide their own instances. Howe ver, as can be
seen, this is quite straightforward.

There are a couple of important caveats about havin g observe as a
function provided by a library, rather than a separ ate compila-
tion/interpretation mode.

• observe is referentially transparent with regard to the execu-
tion of the Haskell program, but observe is not ref erentially
transparent with regard to possible observations it might
make. Compiler optimizations might move observe aro und,
changing what is observed. Here is an example probl em

 let v = observe “label” <expr>
 in … v … v …

This might be transformed into

 … observe “label” <expr>
 … observe “label” <expr> …

This does not turn out to be a problem in practice. This trans-
formation and other problematic transformations, th ough
technically valid, change the sharing behavior of t he pro-
gram. Compilers do not like to change these sorts o f proper-
ties without fully understanding the ramifications of doing
so. Furthermore, the worst that can happen is a sin gle struc-
ture is observed a number of times. If this occurre d, it should
be obvious what is happening.

This glitch with observe turns out not to be a prob lem in
GHC, Classic Hugs and STG Hugs. If any other Haskel l
compiler has a problem with inappropriate sharing o f ob-
serve, this can be fixed, even by adding a special case to the
sharing optimization. It is a lot easier to add spe cial cases
than a whole debugger!

• Hugs does not re-evaluate top level updatable value s, called
Constant Applicative Forms (CAFs), between specific invo-
cations of expressions at the command line prompt. This is a
good thing in general, but it also means that if yo u want to
observe a structure inside a CAF, you need to reloa d the of-
fending CAF each time you want to observe it. This is a just
minor annoyance in practice; perhaps a Hugs flag tu rning off
caching of CAF's between expression evaluations cou ld be
added.

6.2 Using the HOOD browser

We have an extension to the released version of HOO D, that in-
cludes a browser that allows dynamic viewing of str uctures.

In this new version, a modified version of the Obse rve library puts
the tracing information into a file called observe. xml. Though it
might seem that XML is a poor choice for an interme diate format,
off the shelf compression tools result in a surpris ingly good qual-
ity of compression (around 90%), which gives signif icantly better
foot print size than straightforward binary format, and we have
plans for a future version that uses a pre-compress ed trace, or pipe
the trace directly between program and browser.

The browser reads the XML file, and allows the user to browse
the structures that were observed. To demonstrate o ur browser
tool, take the example observation on foldl, from S ection 4.1. We
use runO inside main to turn on and off the observa tion machin-
ery.

main :: IO ()
main = runO ex9
ex9 :: IO ()
ex9 = print
 ((observe "foldl (+) 0 [1..4]"
 :: Observing ((Int -> Int -> Int)
 -> Int -> [Int] -> Int)
) foldl (+) 0 [1..4]
)

This produces the file called observe.xml. We now s tart our
browser - the details are implementation dependent, but thi s can
be done directly using a JVM, or from inside Netsca pe or Internet

Explorer. After the browser is started, it offers t he user a list of
possible observations to look at.

This shows us we have loads 65 "events" (observatio n steps). We
only have one observation ("foldl (+) 0"), and we c hoose to dis-
play it after evaluation, giving

This display uses colors to give information beside the raw text.
We use purple for base types, blue for constructors , black for
syntax, and yellow highlighting for the last expres sion changed.
(Note: this picture showing an alternative possible syntax for ren-
dering functional values.)

This viewer has the ability to step forwards and ba ckwards
through the observation, seeing what part of the ob servation was
evaluated (demanded) in what order. Though in many cases we
are not interested in this information, it sometime s is invaluable.
For example, if we step back a few steps during our perusal of the
foldl example, and we see a strange thing.

We use a (red) '?' to signify an expression that ha s been entered
(someone has requested its evaluation), but has not yet reached
weak head normal form. We can see we have a number of ques-
tion marks, which correspond to a rather nasty chai n of enters as a
consequence of a lazy accumulating parameter, a wel l-known
strictness bug.

This dynamic viewing of how structure and functions are used
inside real contexts can bring a whole new level of understanding
of what goes on when we evaluate functional program s, and could
serve as a useful pedagogical tool.

7 Related Work
There are two previous pieces of work that use the explicit
observing intermediate structures in a debugging ai d.

• Hawk, a microprocessor architecture specification e mbedded
language has a function called probe [4].

probe :: Filename -> Signal a -> Signal a

probe works exactly like observe on the Signal level, wh ere
Signals are just lazy lists. However, probe is strict in the
contents of the signal, so it can change the semant ics of a
signal. Encouragingly, probe has turned out to be extremely
useful in practice.

• The stream-based debugger in [9] let the user observe lazy
streams as they are evaluated. The information gath ering
mechanism was completely different. Their stream-ba sed de-
bugger used a primitive (isWHNF :: a -> Bool) to make sure
that they never cause extra evaluation when display ing struc-
tures. We expect that we could emulate all the beha vior of
this debugger (and more) in our new browser.

The work in this paper was undertaken because of th e success
stories told by both these projects, and the hope t hat our generali-
zation of both will be useful in practice when debu gging Haskell
programs.

A complete description of other attempts to build d ebugging tools
for lazy functional language is not possible due to side limitations.
Here is a short summary of the techniques; for more details about
writing debuggers for Haskell, Watson’s thesis [10] is a great
starting point.

There are two basic approaches to instrumenting Has kell code:

• The first is where code is transformed to insert ex tra (side-
effecting) functions that record specific actions, like entering
functions and evaluating structures. The transforma tion can
be done inside the compiler (and therefore compiler specific)
or done as a preprocessing pass (complicating the c ompila-
tion mechanism.) In practice, such transformations turn out
to be tied to specific compilers. One example of tr acing via
transformations is the work by Sparud [8], in his trace option
for the nhc compiler.

• The second approach to gathering debugging informat ion is
augmenting a reduction engine to gather the relevan t infor-
mation, and is completely compiler specific. One ex ample of
such a reduction engine is the work by Nilsson [5], who
modified the G-machine reduction engine.

Using the raw debugging information gathered to hel p debug
Haskell programs is a difficult problem, partly for the reasons
already mentioned in the introduction. One importan t debugging
strategy is algorithmic (or declarative) debugging [6]. Algo-
rithmic debuggers compare the result of specific ch unks of com-
putations (like function calls) with what the progr ammer intended.
By asking the programmer (or an oracle) about expec tations, the
debugger can home in on a bug’s location. observe c an be used to
perform a manual version of algorithmic debugging.

8 Conclusions & Future Work
All previous work on debuggers for Haskell have onl y been im-
plemented for subsets of Haskell, and are therefore of limited use
for debugging real Haskell programs. This paper com bats the need
for debugging real Haskell by using a portable libr ary of debug-
ging combinators, and develops a surprisingly rich debugging
system using them.

There is work to be done with building semantics fo r observe. The
semantics given in [3] would be a good place to start.

 This debugging system could be made even more usef ul if the
Observable class restriction was removed. It would be conceiv-
able to have a compiler flag where Observable is pa ssed silently
everywhere, and therefore can be used without type restrictions,
provided we supply a default instance for Observabl e. Alterna-
tively, a reflection interface might be used to loo k at constructors
in a polymorphic way, allowing the type class restr iction to be
totally eliminated.

HOOD has a web page: http://www.haskell.org /hood

The first version of Hood has been released, and is available from
the web page. A future version will include the gra phical browser.
The source code (including a copy of the graphical browser) is
available from the same CVS repository as GHC and H ugs.

Acknowledgements
The idea for using Haskell type classes and unsafe operations to
observe intermediate data structures arose from a c onversation
between Simon Marlow and the author in 1992, when w e were
both graduate students at Glasgow. Thanks Simon! Th ank you
also Magnus Carlsson, Tim Sheard, Richard Watson, a nd the
anonymous referees, all of whom gave useful comment s and sug-
gestions.

References
[1] Augustsson, L., Johnsson, T. (1989) The Chalmer s Lazy-

ML Compiler. The Computing Journal. 32(2): 127-139.

[2] Claessen, K and Hughes, J (2000) QuickCheck: A Light-
weight Tool for Random Testing of Haskell Programs In
ICFP 2000, Montreal, Canada.

[3] Launchbury, J (1993) A Static Semantics for Lazy Func-
tional Programs. Proc ACM Principles of Programming
Languages, Charleston.

[4] Launchbury, J., Lewis, J. and Cook, B. (1999) On embed-
ding a microarchitectureal design language within H as-
kell. In ICFP 99

[5] Nilsson, H. (1998) Declarative Debugging for Lazy Func-
tional Languages. PhD thesis. Department of Computer
and Information Science, Linköping University, Sweden.

[6] Shapiro, E. (1982) Algorithmic Program Debugging. MIT
Press.

[7] Sinclair, D. (1991) Debugging by Dataflow - Summary. In
Proceedings of the 1991 Glasgow Workshop on Functio nal
Programming, Portree, Isle of Skye. pp 347-351.

[8] Sparud, J. (1995) A Transformational Approach to Debug-
ging Lazy Functional Programs. PhD thesis. Department
of Computer Science, Chalmers University of Technol ogy,
Goteborg, Sweden.

[9] Sparud, J. and Sabry, A(1997) Debugging Reactiv e Sys-
tems in Haskell, Haskell Workshop, Amsterdam.

[10] Watson, R. (1997) Tracing Lazy Evaluation Program
Transformation. PhD thesis. School of Multimedia and In-
formation Technology, Southern Cross University, Au stra-
lia.

Appendix A – Haskell Code from Observe.lhs

class Observable a where
 observer :: a -> Parent -> a

type Observing a = a -> a

-- The base types

instance Observable Int where { observer = observeBase }
instance Observable Bool where { observer = observeBase }
instance Observable Integer where { observer = observeBase }
instance Observable Float where { observer = observeBase }
instance Observable Double where { observer = observeBase }
instance Observable Char where { observer = observeBase }

instance Observable () where { observer = observeOpaque "()" }

observeBase :: (Show a) => a -> Parent -> a
observeBase lit cxt = seq lit $ send (show lit) (re turn lit) cxt

observeOpaque :: String -> a -> Parent -> a
observeOpaque str val cxt = seq val $ send str (ret urn val) cxt

-- The constructors

instance (Observable a,Observable b) => Observable (a,b) where
 observer (a,b) = send "," (return (,) << a << b)

instance (Observable a,Observable b,Observable c) = > Observable (a,b,c) where
 observer (a,b,c) = send "," (return (,,) << a << b << c)

instance (Observable a,Observable b,Observable c,Ob servable d)
 => Observable (a,b,c,d) where
 observer (a,b,c,d) = send "," (return (,,,) << a << b << c << d)

instance (Observable a,Observable b,Observable c,Ob servable d,Observable e)
 => Observable (a,b,c,d,e) where
 observer (a,b,c,d,e) = send "," (return (,,,,) << a << b << c << d << e)

instance (Observable a) => Observable [a] where
 observer (a:as) = send ":" (return (:) << a << a s)
 observer [] = send "[]" (return [])

instance (Observable a) => Observable (Maybe a) whe re
 observer (Just a) = send "Just" (return Just < < a)
 observer Nothing = send "Nothing" (return Nothin g)

instance (Observable a,Observable b) => Observable (Either a b) where
 observer (Left a) = send "Left" (return Left < < a)
 observer (Right a) = send "Right" (return Right < < a)

-- arrays

instance (Ix a,Observable a,Observable b) => Observ able (Array.Array a b) where
 observer arr = send "array" (return Array.array < < Array.bounds arr
 < < Array.assocs arr
)
-- IO monad

instance (Observable a) => Observable (IO a) where
 observer fn cxt =
 do res <- fn
 send "<IO>" (return return << res) cxt

