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SUMMARY

Background: Converging evidence points to the involvement of c-amino-butyric acid B

receptors (GABABRs) in the regulation of information processing. We previously showed

that GABABR agonists exhibit antipsychotic-like properties in rodent models of sensorimo-

tor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex.

The therapeutic potential of these agents, however, is limited by their neuromuscular side

effects; thus, in this study, we analyzed whether rac-BHFF, a potent GABABR-positive allo-

steric modulator (PAM), could counter spontaneous and pharmacologically induced PPI

deficits across various rodent models. Methods: We tested the antipsychotic effects of rac-

BHFF on the PPI deficits caused by the N-methyl-D-aspartate glutamate receptor antagonist

dizocilpine, in Sprague-Dawley rats and C57BL/6 mice. Furthermore, we verified whether

rac-BHFF ameliorated the spontaneous PPI impairments in DBA/2J mice. Results: rac-

BHFF dose-dependently countered the PPI deficits across all three models, in a fashion akin

to the GABABR agonist baclofen and the atypical antipsychotic clozapine; in contrast with

these compounds, however, rac-BHFF did not affect startle magnitude. Conclusions: The

present data further support the implication of GABABRs in the modulation of sensorimotor

gating and point to their PAMs as a novel promising tool for antipsychotic treatment, with

fewer side effects than GABABR agonists.

Introduction

Ample evidence shows that c-amino-butyric acid (GABA), the

main inhibitory neurotransmitter in the CNS, is implicated in

schizophrenia pathogenesis [1–3]. In particular, several clinical

investigations have documented deficits in the expression of the

metabotropic GABAB receptors (GABABRs) in the cortex and hip-

pocampus of schizophrenia patients [4–6]. The mechanisms sup-

porting the involvement of GABABRs in psychotic disorders

remain elusive; however, recent findings suggest that the dysfunc-

tion of this receptors in the cortex leads to alterations of glutamate

signaling and excitatory/inhibitory imbalances [7,8], which con-

tribute to the aberrant information processing and cognitive defi-

cits in schizophrenia [9,10].

In keeping with this background, our group and others showed

that the prototypical GABABR agonist baclofen (BAC) countered

the disruption of prepulse inhibition (PPI) of the acoustic startle

reflex produced by the blockade of N-methyl-D-aspartate gluta-

mate receptors (NMDARs) in rats [11,12] and mice [13]. This end-

ophenotype is widely regarded as a heuristic index of

sensorimotor gating. This cognitive function governs the detection

of perceptual salience by enabling pre-attentional information

filtering [14,15]; notably, PPI deficits are featured in schizophre-

nia and related neuropsychiatric disorders [15,16].

In subsequent studies, we found that BAC rescued the marked

deficits in sensorimotor gating present in DBA/2J mice [17], a

strain that features antipsychotic-sensitive PPI deficits [18].

These findings collectively highlight GABABR as a highly

promising target for antipsychotic treatment. Indeed, Daskala-

kis and George [19] hypothesized that GABABR activation may

be the mechanism underlying the unique ability of the anti-

psychotic agent clozapine (CLO) in reducing the severity of
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negative symptoms in schizophrenia. While BAC monotherapy

does not elicit significant antipsychotic effects [20], preliminary

studies have documented its therapeutic effectiveness as an

adjunctive treatment [21,22]. The therapeutic employment of

BAC in schizophrenia is limited by several factors, including

its poor ability to cross the blood–brain barrier, its short

latency of action [23], as well as its potentially severe side

effects, including muscle flaccidity, sedation, loss of reflexes,

and, at higher dosages, bradycardia, respiratory depression,

hypothermia and coma [24]. A new class of GABABR-positive

allosteric modulators (PAMs) has been recently developed [25]

to harness the therapeutic potential of GABABR activation

without eliciting the side effects of BAC. The mechanism of

these compounds is based on the enhancement of the effects

of GABA on GABABRs [26,27]. One of the most potent drugs

in this family, rac-BHFF [(R,S)-5,7-di-tert-butyl-3-hydroxy-3-tri-

fluoromethyl-3H-benzofuran-2-one] [25], has been shown to

produce behavioral effects without altering motor coordination

and nervous reflexes, and with a better safety index than

GABABR agonists [25,28–31]. Here, we show that rac-BHFF

elicited antipsychotic-like effects on the pharmacologically

induced and spontaneous gating deficits in rodent models, as

assessed through the paradigm of the prepulse inhibition (PPI)

of the acoustic startle reflex; although these effects were com-

parable with those of BAC and CLO, rac-BHFF did not induce

the same alterations of startle reflex associated with these

drugs.

Materials and methods

Animals

We used behaviorally na€ıve male Sprague-Dawley rats weighing

between 250 and 300 g and male DBA/2J and C57BL/6J between

18 and 24 g. Animals were housed 4/cage in a room maintained

at a temperature of 22°C and kept under an artificial 12/12-h

light/dark cycle. Animals were given ad libitum access to food and

water and handled for 5 min daily to minimize experimental

stress. All experimental procedures were approved by the ethical

committee of the University of Cagliari and carried out in strict

accordance with the guidelines for experimental animals care

(European Economic Community [86/609; DL 27/01/92, number

110]).

Drugs

rac-BHFF (Hoffmann-La Roche, Basel, Switzerland) was sus-

pended in a mixture containing Cremophor EL, 1,2-propanediol

and distilled water (4:1:30 ratio) and administered intragastrically

(per os, PO) at an injection volume of 10 mL/kg. The NMDAR

antagonist dizocilpine (DIZ; Sigma-Aldrich, Milan, Italy) was dis-

solved in 0.9% saline and administered subcutaneously (SC).

BAC (Tocris Cookson, Bristol, UK) was dissolved in saline and

administered intraperitoneally (IP). CLO (Sigma-Aldrich) was dis-

solved in a single drop of 1 N HCl and diluted with saline; the pH

was adjusted to 7 with NaHCO3. Parenteral injections were

administered in injection volumes of 1 mL/kg for rats and 10 mL/

kg for mice.

Experimental Procedures

Acoustic startle reflex and PPI were measured in 4 sound-attenu-

ated chambers (Med Associates, St Albans, VT, USA) with fan ven-

tilation. Each chamber consisted of a Plexiglas cylinder (9 cm

diameter for rats and 3.2 cm diameter for mice) mounted on a

piezoelectric accelerometric platform and connected to an

analogue–digital converter. Background noise and acoustic bursts

were conveyed by two separate speakers, properly spaced from

the cylinder so as to produce a variation of sound within 1 dB

across it. Both speakers and startle cylinders were connected to a

main PC computer, which detected and analyzed all chamber

variables by means of specific software. Before every testing ses-

sion, acoustic stimuli and mechanical responses were calibrated

via specific devices supplied by Med Associates.

The experimental procedure was based on the protocols

described in Frau et al. [32]. Briefly, 3 days before the experi-

ment, animals went through a brief baseline startle session. Ani-

mals were exposed to 70 dB background white noise for a 5 min

acclimation, followed by presentation to a randomized sequence

of twelve 40 ms acoustic pulses of 115 dB, interposed with three

trials in which an 82 dB prepulse preceded the 115 dB pulse by

100 ms. Subsequently, treatment groups were established so that

average startle responses and % PPI {calculated as: 100 � ([mean

startle amplitude for prepulse + pulse trials/mean startle ampli-

tude for pulse-alone trials] 9 100)} were equivalent across

groups. On the testing day, each animal was placed in the cylinder

for a 5-min acclimation to 70 dB background white noise, which

continued for the remainder of the entire session. The session con-

sisted of three consecutive blocks of trials. Unlike the first and the

third block, during which animals were presented with only five

pulse-alone trials of 115 dB, the second block displayed a pseudo-

random sequence of 50 trials, including 12 pulse-alone trials, 30

trials of pulse preceded by 74, 78 or 86 dB prepulses (ten for each

level of prepulse loudness) and eight no stimulus trials, where

only background noise was delivered. Intertrial intervals (ITI)

were selected randomly between 10 and 15 seconds. The duration

of pulses and prepulses was 40 and 20 ms, respectively. Prepulse–

pulse delay amounted to 100 ms.

Data Analysis

Normality and homoscedasticity of data were verified by Kol-

mogorov–Smirnov and Bartlett’s tests. Data were compared across

groups by one-way or two-way ANOVAs, as appropriate. As no

interaction between prepulse levels and treatment were found in

the statistical analysis, %PPI values were collapsed across prepulse

intensity to represent average %PPI. Post hoc analyses were per-

formed using Tukey’s test with Spjøtvoll–Stoline correction. Sig-

nificance threshold was set at 0.05.

Results

Effects of rac-BHFF on the PPI Deficits Induced
by DIZ in Sprague-Dawley Rats

In the first experiment, we investigated whether rac-BHFF pre-

treatment could prevent the PPI disruption induced by the
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NMDAR antagonist DIZ in Sprague-Dawley rats. Animals were

pretreated with either rac-BHFF (25–50 mg/kg, PO) or vehicle

(control) and 60 min later were given an injection of either DIZ

(0.1 mg/kg, SC) or saline (control). Animals were subjected to PPI

testing 5 min after the last treatment.

No significant differences in startle amplitude were found

between pretreatment and treatment groups (Figure 1A)

[interaction: F2,47 = 0.10; NS]. Conversely, we found a signifi-

cant pretreatment 9 treatment interaction (Figure 1B) [inter-

action: F2,47 = 4.62, P < 0.05] between groups. Post hoc

analyses revealed that the highest dose of rac-BHFF signifi-

cantly reversed DIZ-induced PPI deficits (P < 0.05; Tukey’s

test).

In contrast, BAC (5 mg/kg, IP) produced a significant reduc-

tion in startle amplitude [main effect: F1,37 = 9.44; P < 0.01]

(Figure 1A); furthermore, it significantly prevented the PPI

impairments caused by DIZ [interaction: F1,37 = 4.89; P < 0.05;

P < 0.05 for vehicle-DIZ vs. BAC-DIZ comparisons] (Fig-

ure 1B). As expected, CLO (5 mg/kg, IP) elicited similar

effects, with a general reduction in startle magnitude [main

effect: F1,37 = 7.17; P < 0.05] (Figure 1A) and a significant

reversal of DIZ-mediated PPI deficits [interaction: F1,37 = 5.27;

P < 0.05; P < 0.05 for vehicle-DIZ vs. CLO-DIZ comparisons]

(Figure 1B).

Effects of rac-BHFF on the PPI Deficits Induced
by DIZ in C57BL/6J mice

Next, we studied whether rac-BHFF (6.25–12.5 mg/kg, PO)

exhibited antipsychotic-like effects in C57BL/6J mice treated

with DIZ (0.3 mg/kg, IP). In parallel with our results on rats,

no differences were found between groups for startle amplitude

(Figure 2A) [Interaction: F2,59 = 1.99, NS]; however, we

detected a marked pretreatment 9 treatment interaction (Fig-

ure 2B) [F2,52 = 5.32, P < 0.01]. Specifically, the PPI-disruptive

effects of DIZ (P < 0.01) were prevented by rac-BHFF treatment

at a dose of 12.5 mg/kg (P < 0.001; Tukey’s test). As previously

shown [17], BAC (5 mg/kg, IP) did not affect startle amplitude

in C57BL/6J mice (Figure 2A); notably, the PPI analysis indi-

cated main effects for both pretreatment (BAC) [F1,41 = 7.00;

P < 0.05] and treatment (DIZ) [F1,41 = 8.13; P < 0.01], but no

significant interactions [F1,41 = 2.32; NS] (Figure 2B). Con-

versely, CLO (5 mg/kg, IP) reduced startle magnitude [main

effect: F1,41 = 7.84; P < 0.01] (Figure 2A) and significantly

countered the PPI disruption induced by DIZ [interaction:

F1,41 = 4.81; P < 0.05; P < 0.05 for vehicle-DIZ vs. CLO-DIZ

comparisons] (Figure 2B).

(A)

(B)

Figure 1 Effects of rac-BHFF on the mean startle amplitude (A) and

prepulse inhibition deficits (B) induced by dizocilpine (DIZ, 0.1 mg/kg, SC)

in Sprague-Dawley rats, compared with baclofen and clozapine. All doses

are given in milligrams per kilogram and are indicated below the

horizontal axis. Values represent mean � SEM for each treatment.

Percent prepulse inhibition (PPI) values were collapsed across all three

prepulse intensities (4, 8, and 16 dB above 70 dB background noise). For

all experimental groups, n = 8–12. SAL, saline. ***P < 0.001, compared

with VEH + SAL group; #P < 0.05, compared with VEH + DIZ group. For

further details, see text.

(A)

(B)

Figure 2 Effects of rac-BHFF on the mean startle amplitude (A) and

spontaneously low prepulse inhibition deficits (B) induced by dizocilpine

(DIZ, 0.3 mg/kg, IP) in C57BL/6J mice, compared with baclofen and

clozapine. All doses are given in milligrams per kilogram and are indicated

below the horizontal axis. Values represent mean � SEM for each

treatment. Percent prepulse inhibition (PPI) values were collapsed across

all three prepulse intensities (4, 8, and 16 dB above 70 dB background

noise). For all experimental groups, n = 8–12. SAL, saline. **P < 0.01,

compared with VEH + SAL group; #P < 0.05, ###P < 0.001, compared with

VEH + DIZ group. For further details, see text.
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Effects of rac-BHFF on the Spontaneous PPI
Deficit Displayed by DBA/2J Strain of Mice

In the last experiment, we evaluated the intrinsic effects of rac-

BHFF on the spontaneous low PPI baseline displayed by DBA/2J

mice. Animals were treated with VEH or rac-BHFF (6.25–

12.5 mg/kg, PO) and subjected to PPI sessions 60 min later. The

GABABR PAM did not elicit any changes in startle amplitude at

any dose (Figure 3A) [F2,35 = 0.99, NS]. In contrast, low PPI in

DBA mice was countered by rac-BHFF [F2,35 = 4.63 P < 0.05)],

specifically at the dose of 12.5 mg/kg (P < 0.05; Tukey’s test) (Fig-

ure 3B). BAC and CLO failed to affect startle amplitude, but signif-

icantly countered DIZ-induced PPI deficits [BAC: F1,20 = 10.28;

P < 0.01; CLO: F1,20 = 12.36; P < 0.01] (Figure 3B).

Discussion

The results of this study showed that rac-BHFF, a potent GABABR

PAM, dose-dependently reversed DIZ-induced PPI deficits in both

SD rats and C57BL/6J mice and rescued the PPI impairments dis-

played by DBA/2J mice. Overall, these effects were akin to those

elicited by the GABABR agonist BAC and the atypical antipsy-

chotic CLO and substantially confirm previous findings by our

group and others [11–13,18] on the therapeutic potential of

GABABR activators on sensorimotor gating deficits induced by

NMDAR blockade. Notably, in contrast to BAC and CLO, rac-BHFF

did not significantly reduce the magnitude of startle reflex, irre-

spective of the animal model and dose. It is also worth mentioning

that the same doses of rac-BHFF that elicited antipsychotic-like

effects in our models also failed to affect locomotor responses or

other spontaneous behavioral manifestations in the home cage

[R. Frau and V. Bini, unpublished observations]. Taken together,

our findings complement previous preclinical data on the benefi-

cial effects of GABABR PAMs [33,34] and highlight this class of

compound as a novel putative avenue for antipsychotic therapy

with fewer side effects than GABABR antagonists.

One of the key problems in the potential employment of BAC

as an add-on treatment lies in the exacerbation of locomotor

impairments and sedative effects caused by dopamine D2 receptor

antagonism; indeed, in preliminary studies, we observed that the

association of BAC and antipsychotic drugs, such as CLO and hal-

operidol, was not suitable for behavioral studies in rodents, in

view of the serious impairments in neuromuscular coordination

produced by such combinations. From this perspective, GABABR

PAMs may afford a safer and tolerable alternative as antipsychotic

adjunctive therapies for schizophrenia or related disorders. Future

clinical and preclinical studies are warranted to evaluate this inter-

esting perspective and validate the potential usefulness of rac-

BHFF and similar agents in the treatment of psychoses.

The PPI of the acoustic response refers to the reduction in

the response amplitude to a sudden and intense startling stimu-

lus [pulse], when it is immediately preceded by a weaker non-

startling prestimulus [35]. This phenomenon is widely regarded

as a dependable index of sensorimotor gating integrity and is

typically impaired in schizophrenia [17]. In rodents, DIZ and

other NMDAR antagonists produce marked PPI deficits, which

are sensitive to CLO and other atypical, but not typical, antipsy-

chotics [36–38]. The effects of NMDAR antagonists on sensori-

motor gating are in line with the well-known psychotomimetic

effects of these drugs [39] and other alterations of informational

processing [40].

Although the mechanisms by which DIZ and other NMDAR

blockers impair PPI remain unclear, several studies point to a key

role of the prefrontal cortex (PFC) and hippocampal regions in

these phenomena [12,41]. These areas are characterized by a large

density of pre- and postsynaptic GABABRs, which finely regulate

basal glutamatergic and dopaminergic functions [42]. Accord-

ingly, disturbances in GABABR expression or function may affect

informational salience by altering the inhibitory/excitatory bal-

ance of several neurotransmitter systems in corticolimbic regions.

It has been reported that MK-801 and PCP stimulate cortical

glutamate release in PFC and hippocampus [43]. In this scenario,

rac-BHFF could counteract the disinhibition of neuronal activity

produced by exaggerated NMDAR stimulation in these areas or,

alternatively, modulate distinct forebrain pathways under the

control of non-NMDA glutamatergic receptors, such as AMPA and

kainate [44]. Alternatively, rac-BHFF may counter DIZ-mediated

PPI deficits by acting on the pallidotegmental nucleus (PTn). This

predominant GABAergic area exhibits high levels of GABABRs

and acts as an interface between the brainstem and forebrain

regions implicated in PPI regulation regions [45]. Accordingly, DIZ

has been recently shown to induce PPI deficits through alterations

of the giant neurons of this region; notably, GABABR activation

reversed these impairments by stabilizing the hyperactivation of

these nuclei [13].

(A)

(B)

Figure 3 Effects of rac-BHFF on the mean startle amplitude (A) and

spontaneous prepulse inhibition deficits (B) displayed by DBA/2J mice,

compared with baclofen and clozapine. All doses are given in milligrams

per kilogram and are indicated below the horizontal axis. Values

represent mean � SEM for each treatment. Percent prepulse inhibition

(PPI) values were collapsed across all three prepulse intensities (4, 8, and

16 dB above 70 dB background noise). For all experimental groups,

n = 8–10. *P < 0.05, **P < 0.01, compared with VEH group. For further

details, see text.
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rac-BHFF also significantly ameliorated the PPI deficits on DBA/

2J mice, a strain characterized by spontaneous gating impairments

sensitive to antipsychotics [19], as well as other phenotypes remi-

niscent of schizophrenia symptoms, such as poor exploration as

well as high aggression and social avoidance [46–49].

The antipsychotic-like actions of rac-BHFF in this murine strain

may be related to their reduced expression of GABABRs and

NMDARs across the cortex and hippocampus, in comparison with

C57BL/6J mice [18,50].

Several limitations in this study should be acknowledged. First,

our analysis was limited to the behavioral analysis of startle reflex

and PPI, but did not include the testing of other paradigms with

great relevance to the negative and cognitive symptoms of schizo-

phrenia-spectrum disorders, such as object recognition and social

interaction test [51,52]. Second, we did not evaluate the effects of

rac-BHFF in animal models with high translational validity with

respect to schizophrenia, such as DISC1- and neuregulin1-defi-

cient mice, or rodents subjected to chronic administration of DIZ

or other NMDAR antagonists, which may have better simulated

the neurobiological impairments associated with schizophrenia

[53–58]. Third, our research did not encompass testing of GABAB

negative allosteric modulators or antagonists, which may be

essential for a full definition of the role of these receptors in

schizophrenia-related endophenotypes.

Although further investigations are needed to address these lim-

itations, our findings extend and support for the role of GABABRs

in the pathophysiology of psychiatric disorders associated with

sensorimotor gating disturbances and point to PAMs of these tar-

gets as interesting therapeutic tools to treat cognitive deficits and

negative symptoms in schizophrenia.
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