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Abstract

We investigate the semiclassical Kepler/Coulomb problem using
the classical constants of the motion in the framework of Nelson’s
stochastic mechanics. This is done by considering the eigenvalue re-
lations for a family of coherent states (known as the atomic elliptic
states) whose wave functions are concentrated on the elliptical orbit
corresponding to the associated classical problem. We show that these
eigenvalue relations lead to identities for the semiclassical energy, an-
gular momentum and Hamilton-Lenz-Runge vectors in the elliptical
case. These identities are then extended to include the cases of cir-
cular, parabolic and hyperbolic motions. We show that in all cases
the semiclassical wave function is determined by our identities and so
our identities can be seen as defining a semiclassical Kepler/Coulomb
problem. The results are interpreted in terms of two dynamical sys-
tems: one a complex valued solution to the classical mechanics for
a Coulomb potential and the other the drift field for a semiclassical
Nelson diffusion.
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1 Introduction

Consider the Hamiltonian for a classical particle of unit mass driven by a
Coulomb potential,

H =
1

2
|p|2 − µ

|x|
,

where µ > 0 and x = (x1, x2, x3), p = (p1, p2, p3) denote respectively the
position and momentum in Cartesian coordinates. The classical motion of
such a system is characterised by seven constants: the energy E, angular
momentum l′ and Hamilton-Lenz-Runge vector a′ given by,

E =
|p|2

2
− µ

|x|
, l′ = x ∧ p, a′ = p ∧ l′ − µx

|x|
, (1)

subject to the constraint l′·a′ = 0. (Note that we use the prime to denote that
these are the classical quantities and reserve l and a for their semiclassical
versions which will be discussed later.) The orbits for such a system are conic
sections with eccentricity e and semilatus rectum Λ determined by Newton’s
famous formulae,

e =

√
1 +

2ΛE

µ
, Λ =

|l′|2

µ
. (2)

Indeed it follows in the bound case (E < 0) that if the axes are aligned so
that the motion takes place in the plane x3 = 0 with the semi-major axis of
the ellipse aligned with the x1 axis then,

a′1 = µe, a′2 = a′3 = 0, l′1 = l′2 = 0, l′3 = µ

√
1− e2
−2E

, (3)

where a′ = (a′1, a
′
2, a
′
3) and l′ = (l′1, l

′
2, l
′
3).

In this paper we will investigate a semiclassical version of this system
which will in particular lead to a natural complex extension of the equations
(3).

Consider the quantum mechanics for a particle of unit mass with the
corresponding Hamiltonian,

H =
1

2
|P |2 − µ

|Q|
,

where Q = (Q1, Q2, Q3) and P = (P1, P2, P3) denote the quantum position
and momentum operators respectively. We will investigate the semiclassical
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mechanics which can be derived from a family of coherent states for this
Hamiltonian. The states in question are the atomic elliptic states [1] with
eccentricity e = sin θ ∈ (0, 1) whose wave functions have the Cartesian rep-
resentation [2],

ψn,θ(x) := C exp
(
−nµ
λ2
|x|
)
Ln−1(nν(x)), (4)

for some suitable normalisation constant C > 0, where Ln is a Laguerre
polynomial and

ν(x) =
µ

λ2

(
|x| − x1

e
− ix2

e

√
1− e2

)
, x = (x1, x2, x3). (5)

For each fixed value of e = sin θ, the wave function ψn,θ defines a stationary
state for H which satisfies,

Hψn,θ = Enψn,θ, En = − µ2

2λ2
, λ = n~,

and also has the best possible localisation on the elliptical orbit from the
corresponding classical problem with energy En and prescribed eccentricity
e = sin θ. That is, the wave function ψn,θ is concentrated on an ellipse (the
Kepler ellipse) with eccentricity e = sin θ, semilatus rectum Λ = λ2(1−e2)/µ
and semimajor axis λ2/µ parallel to the x1 axis in the plane x3 = 0 with one
focus at the origin. The semiclassical behaviour of this state has previously
been analysed [3, 4, 5] in the framework of Nelson’s stochastic mechanics [6].

In Nelson’s theory the state ψn,θ is associated to a diffusion process,

dXt = bn,θ(Xt, t) dt+
√
~ dBt, (6)

where Bt is a three dimensional Brownian motion process and the drift is
given by bn,θ = ReZn,θ − ImZn,θ with Zn,θ = −i~∇ lnψn,θ (there are sin-
gularities here at the nodes of ψn,θ [7]). The Nelson diffusion Xt defined by
(6) can be shown to satisfy the Nelson-Newton law, a stochastic version of
Newton’s second law,

1

2
(D+D− +D−D+)Xt = − µXt

|Xt|3
, (7)

where the left hand side of (7) is thought of as the stochastic acceleration
defined in terms of mean conditioned derivatives,

D±f(Xt) = lim
h→0

E
(
f(Xt±h)− f(Xt)

±h

∣∣∣∣Xt

)
.
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This gives a theory which is mathematically equivalent to the Schrödinger
equation (the diffusion Xt is uniquely determined by the wave function) but
the physical significance of the diffusion process is controversial [8, 9].

By considering the correspondence limit of the complex vector Zn,θ (n→
∞ and ~→ 0 with λ = n~ fixed) we can define [3],

Z(x) := lim
n→∞, ~→0
n~=λ

Zn,θ(x) =
iµ

2λ
(1 + γ)

x

|x|
+

µ

2λe
(1− γ) (i,−

√
1− e2, 0),

(8)
where

γ(x) = 1− 2 lim
n→∞, ~→0
n~=λ

L′n−1(nν(x))

Ln−1(nν(x))
=

√
1− 4

ν(x)
. (9)

Moreover we can then define a semiclassical elliptic wave function given by
(up to some normalising constant),

ψs.c.(x) = ν(x)λ/~(1 + γ(x))2λ/~ exp
(
− µ
λ~ |x|+

λ
2~(1− γ(x))ν(x)

)
,

which satisfies Z = −i~∇ lnψs.c. We can then write,

ψs.c. = exp
(
~−1(R + iS)

)
for real valued functions R, S : R3 → R giving Z = ∇S − i∇R. In turn,
following Nelson, we can define the Keplerian diffusion Xε

t by,

dXε
t = b(Xε

t ) dt+ ε dBt, b = ReZ − ImZ = ∇R +∇S, (10)

where ε =
√
~. Again there are difficulties associated with the nodal set

of ψn,θ [3, 4]. Nevertheless, this Keplerian diffusion can be viewed as a
semiclassical description of the position of the electron in a hydrogen atom
in the atomic elliptic state.

In this paper we investigate the relation between the semiclassical vector
field Z (which determines both the drift field b and the wave function ψs.c.)
and the constants of the classical motion (1). If we define the corresponding
quantum mechanical angular momentum and Hamilton-Lenz-Runge opera-
tors by,

L = Q ∧ P , A =
1

2
(P ∧L−L ∧ P )− µQ

|Q|
,
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then we can define (avoiding the nodes of ψn,θ) the corresponding semiclas-
sical quantities as functions a, l : R3 → C3 given by the pointwise limits,

l(x) := lim
n→∞, ~→0
n~=λ

Lψn,θ(x)

ψn,θ(x)
, a(x) := lim

n→∞, ~→0
n~=λ

Aψn,θ(x)

ψn,θ(x)
.

It follows that,

l = x ∧Z, a = Z ∧ (x ∧Z)− µx

|x|
.

The operators L and A are generators of SO(4), and using the SO(4)
symmetry ofH to establish the eigenvalue relations of the atomic elliptic state
we show that the semiclassical versions of the identities (3) for an ellipse of
eccentricity e = sin θ are given by the complex equations,

a1 + ia2
√

1− e2 = µe, l1 + il2
√

1− e2 = 0, (11)
µ

λ
l3 − ia2e = µ

√
1− e2, a3 − iµλ l2e = 0, (12)

where a = (a1, a2, a3) and l = (l1, l2, l3). Equations (11) and (12) are thus
identities for a and l in the semiclassical dynamics.

In the case that there exists a region D ⊂ R3 such that ai(x), li(x) ∈ R
for i = 1, 2, 3 for all x ∈ D, then these reduce to the classical identities,

l1(x) = l2(x) = 0, l3(x) = λ
√

1− e2, a1(x) = µe, a2(x) = a3(x) = 0,

which are consistent with (3) so that in this case a(x) and l(x) are the clas-
sical constants describing the elliptical orbit of eccentricity e on the domain
D. That is,

a(x) = a′, l(x) = l′,

for all x ∈ D. This is indeed the case on the Kepler ellipse where |ImZ| =
|∇R| = 0.

Having established equations (11), (12) together with a semiclassical ver-
sion of the energy equation,

1

2
|Z|2 − µ

|x|
= − µ2

2λ2
, (13)

we will consider their natural extension to the circular, parabolic and hy-
perbolic situations and we show that the semiclassical vector Z and hence
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the semiclassical wave functions ψs.c. can be determined solely from these
identities. Thus the equations (11), (12) and (13) and their generalisations
can be viewed as defining a semiclassical version of Keplerian motion. In the
circular case the vector Z is uniquely determined by these equations, but in
all other cases there are two possible solutions. Moreover, for the circular
orbit (e = 0) it should be noted that our identities reduce to,

a1 + ia2 = l1 + il2 = 0, l3 = λ, a3 = 0,

which recapitulate the eigenvalue and ladder identities for the circular wave
function ψn,n−1,n−1 where ψnlm denotes the standard nodal wave function for
the hydrogen atom which satisfies the relations,

L3ψnlm = m~ψnlm, |L|2ψnlm = l(l + 1)~2ψnlm, Hψnlm = Enψnlm,

where n, l,m ∈ Z with −l ≤ m ≤ l and 0 ≤ l ≤ n− 1.
We interpret our results in terms of two classical mechanical systems.

First we consider the deterministic limit of the semiclassical Nelson diffusion
(10),

Ẋ0(t) = b(X0(t)), Ẋ0(0) = b(x0), X0(0) = x0,

which acts as an underlying classical system for the Hamiltonian,

H(x,p) =
|p|2

2
− µ

|x|
− |ImZ(x)|2.

In this system for the bound energy case (elliptic and circular) it has pre-
viously been shown [4] that under natural assumptions on the density the
motion converges towards Keplerian motion on the Kepler ellipse/circle. For
the scattering cases all trajectories are Keplerian parabolas/hyperbolas. In-
terestingly here whilst the two different solutions for Z are physically sig-
nificant in the parabolic and hyperbolic case, only one appears physically
relevant in the elliptic case (see Figure 2). We also consider the classical me-
chanics for the Coulomb potential in the complex phase space C6 and show
that the vector Z determines the momentum field for the system governed
by the Hamiltonian,

H(x,Z) =
|Z|2

2
− µ

|x|
,

under the constraint that the energy of the system is real. Such complex
classical mechanical systems have generated much interest recently through
their relation to PT symmetric quantum mechanics [10, 11, 12].
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Moreover there is a natural relation between these classical mechanical
systems and the Hamilton-Jacobi equations used in Maslov’s approach to the
semiclassical limit of the Schrödinger equation [13, 14].

The paper is structured as follows:-
In Section 2 we discuss relevant properties of SO(4) and the quantum

Kepler/Coulomb problem. In Section 3 we introduce the atomic elliptic
state and derive the key eigenvalue relations (Theorem 3) and derive their
semiclassical versions (Theorem 4). In Section 4 we take the semi-classical
equations (Table 1) as fundamental and show that they determine the semi-
classical wave functions and Nelson diffusions (Theorem 7). We conclude
with a discussion of the dynamics and Hamilton-Jacobi equations associated
with b and Z.

2 The quantum Kepler/Coulomb problem

Recall that H denotes the Hamiltonian for the quantum Kepler/Coulomb
problem. We define the quantum angular momentum L = (L1, L2, L3) =
Q ∧ P with |L|2 = L2

1 + L2
2 + L2

3 and the quantum Hamilton-Lenz-Runge
vector A = (A1, A2, A3) = 1

2
(P ∧L−L ∧ P ) − µQ

|Q| . As is well known, the
following holds:

Theorem 1. The operators L, A and H satisfy,

[Li, Lj] = i~εijkLk, [Li, Aj] = i~εijkAk, [Ai, Aj] = −2i~εijkHLk, (14)

and,

[H,Lj] = [H,Aj] = 0, |A|2 = 2H(|L|2 + ~2) + µ2, L ·A = A ·L = 0.

If we define,

J± =
1

2

(
L± A√

−2H

)
PH ,

where PH denotes the projection onto the eigenfunctions of the negative spec-
trum of the Hamiltonian H, then,

[J±i , J
±
j ] = i~εijkJ±k , [J±i , J

∓
j ] = 0, |J±|2 = −1

4

(
~2 +

µ2

2H

)
PH . (15)

Proof. See Thirring [15].
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If we define a new observable Ã = (−2H)−1/2APH , then (14) yields,

[Li, Lj] = i~εijkLk, [Li, Ãj] = i~εijkÃk, [Ãi, Ãj] = i~εijkLk, (16)

which are the generators of SO(4). Indeed, borrowing notation from [1], we
can construct a four dimensional angular momentum operator,

Lij = εijkLk, Li4 = −L4i = Ãi, L44 = 0, i, j, k ∈ {1, 2, 3},

which satisfies the commutation relations,

[Lij,Lik] = i~Ljk, i, j, k ∈ {1, 2, 3, 4}, (17)

where [Lij,Lkl] = 0 if i, j, k, l are all distinct. Considering the rotations
generated by these operators gives the following result:

Lemma 1. Define,

Lijk(θ) = exp

(
−iθ

~
Lik
)
Lij exp

(
iθ

~
Lik
)
,

where i, j, k ∈ {1, 2, 3, 4} all distinct. Then,

Lijk(θ) = Lij cos θ − Ljk sin θ.

Proof. It follows from Stone’s Theorem and equation (17) that for suitable
ψ,

d

dθ
Lijk(θ)ψ = i

~ exp
(
− iθ

~ Lik
)

[Lij,Lik] exp
(
iθ
~ Lik

)
ψ = Lkji(−θ)ψ.

Thus,
d2

dθ2
Lijk(θ)ψ = −Lijk(θ)ψ,

giving the result.

More explicitly:-

Corollary 1. For j, k ∈ {1, 2, 3} with j 6= k,

exp

(
−iθ

~
Ãk

)
Ãj exp

(
iθ

~
Ãk

)
= Ãj cos θ − εjklLl sin θ,

exp

(
−iθ

~
Ãk

)
Lj exp

(
iθ

~
Ãk

)
= Lj cos θ − εjklÃl sin θ.
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We now define for each θ ∈ [0, π/2] and j = 1, 2, 3,

Ãj(θ) := exp

(
−iθ

~
Ã2

)
Ãj exp

(
iθ

~
Ã2

)
L̃j(θ) := exp

(
−iθ

~
Ã2

)
Lj exp

(
iθ

~
Ã2

)
.

Corollary 2. For each fixed θ ∈ [0, π/2],

[L̃i(θ), L̃j(θ)] = i~εijkL̃k(θ),

[L̃i(θ), Ãj(θ)] = i~εijkÃk(θ),

[Ãi(θ), Ãj(θ)] = i~εijkL̃k(θ).

That is for each fixed θ ∈ [0, π/2] the operators L̃j(θ), Ãj(θ) with j =
1, 2, 3 are generators for SO(4). These operators are key to the construction
of the atomic elliptic state which we now discuss.

3 The atomic elliptic state

We define |nlm〉 such that,

L3|nlm〉 = m~|nlm〉, (18)

|L|2|nlm〉 = l(l + 1)~2|nlm〉, (19)

H|nlm〉 = En|nlm〉, (20)

|J±|2|nlm〉 = (n2 − 1)~2|nlm〉, (21)

where n, l,m ∈ Z with −l ≤ m ≤ l and 0 ≤ l ≤ n − 1. We also define the
state |jm+m−〉 such that,

|J±|2|jm+m−〉 = j(j + 1)~2|jm+m−〉, (22)

J±3 |jm+m−〉 = m±~|jm+m−〉, (23)

H|jm+m−〉 = − µ2

2~2(1 + 2j)2
|jm+m−〉, (24)

where j,m+,m− ∈ Z/2 with −j ≤ m+,m− ≤ j. These two states are
connected via the Clebsch-Gordon coefficients [16],

|nlm〉 =
∑

m+,m−

〈jm+m−|nlm〉|jm+m−〉, (25)
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where j = 1
2
(n− 1) and m = m+ +m−.

It is well known that the state |Circ(n)〉 := |n, l = n − 1,m = n − 1〉 is
concentrated on a circle [15] as is encapsulated in the following relations:-

Theorem 2. The circular state satisfies the eigenvalue relations,

H|Circ(n)〉 = En|Circ(n)〉,
L3|Circ(n)〉 = ~(n− 1)|Circ(n)〉,

Ã3|Circ(n)〉 = 0,(
L1 + iL2

)
|Circ(n)〉 = 0,(

Ã1 + iÃ2

)
|Circ(n)〉 = 0.

Proof. These are either obvious or follow from observing that equation (25)
yields,

|Circ(n)〉 = C|j,m+ = j,m− = j〉, j =
1

2
(n− 1), (26)

for some constant phase factor C.

Corollary 3. Let 〈·〉n denote the mean in the circular state. Then,

〈L1〉n = 〈L2〉n = 0, 〈L3〉n = ~(n− 1), 〈Ã1〉n = 〈Ã2〉n = 〈Ã3〉n = 0,

where 〈·〉n denotes the mean value in the state |Circ(n)〉.

In the correspondence limit these relations correspond to equations (3)
and hence characterise circular motion on the classical orbit with eccentricity
e = 0 and energy − µ2

2λ2 .
We now briefly explain the derivation of the atomic elliptic state by con-

sidering the coherent state representation of SO(4) = SO(3) ⊗ SO(3) [1].
Recall that if T (g) is a unitary representation of SO(4) acting on the state
space of our system where g ∈ SO(4) then a generalised coherent state rep-
resentation is given by T (g)|ψ〉 for some fixed initial state |ψ〉 [17]. Consider
an angular momentum operator J with corresponding eigenstate |jm〉 such
that,

J3|jm〉 = ~m|jm〉, |J |2|jm〉 = ~2j(j + 1)|jm〉,

where j = 0, 1
2
, 1, . . . and m = −j,−j + 1, . . . , j. For a fixed j the state |jj〉

has minimal uncertainty for the uncertainty principle ∆J1∆J2 ≥ ~
2
|〈J3〉| and
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so can be used to construct a system of minimal uncertainty coherent states
|ju〉 for SO(3) as,

|ju〉 := exp

(
−iθ

~
(u ∧ k) · J

)
|jj〉,

where u is any unit vector, θ = ∠(u,k) and (i, j,k) are the Cartesian
coordinate axes. If we fix two arbitrary unit vectors u± then we can write
u± = ± sin θi + cos θk for some appropriate choice of axes. Considering
the pair of commuting angular momenta J±, we can form a coherent state
representation for SO(4) as |j+u+〉⊗ |j−u−〉 where it follows from (15) that
j± = 1

2
(n− 1). We can then define,

|Elliptic(n, θ)〉 = |j+u+〉 ⊗ |j−u−〉
= exp

(
iθ
~ (J−2 − J+

2 )
)
|j,m+ = j,m− = j〉

= exp
(
− iθ

~ Ã2

)
|j,m+ = j,m− = j〉,

where j = 1
2
(n − 1). It follows from (26) that up to some phase factor, we

can define the atomic elliptic wave function as,

ψn,θ(x) := exp
(
− iθ

~ Ã2

)
ψn,n−1,n−1(x)

= C exp
(
−nµ
λ2 |x|

)
Ln−1(nν(x)), (27)

where ψnlm(x) = 〈x|nlm〉. The Cartesian representation for this state was
first derived in [2] using the Kustaanheimo-Stiefel transformation.

As is well known the states ψnlm form a complete orthonormal family of
eigenfunctions and so any wave function of the form,

exp

(
−iθ

~
Ã2

)
ψn′,l′,m′

for some n′, l′,m′ is orthogonal to the atomic elliptic state ψn,θ as long as
(n′, l′,m′) 6= (n, n−1, n−1). Thus the atomic elliptic states are not complete
in L2(R3).

Theorem 3. The elliptic state ψn,θ satisfies:-

Hψn,θ = Enψn,θ,
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L̃3(θ)ψn,θ =
(
L3 cos θ + Ã1 sin θ

)
ψn,θ = ~(n− 1)ψn,θ,

Ã3(θ)ψn,θ =
(
Ã3 cos θ + L1 sin θ

)
ψn,θ = 0,(

L̃1(θ) + iL̃2(θ)
)
ψn,θ =

(
L1 cos θ + iL2 − Ã3 sin θ

)
ψn,θ = 0,(

Ã1(θ) + iÃ2(θ)
)
ψn,θ =

(
Ã1 cos θ + iÃ2 − L3 sin θ

)
ψn,θ = 0.

Proof. Follows from Theorem 2 and Corollary 1.

The eigenvalue relations here should be compared with those for the circu-
lar state given in Corollary 2. We note that this theorem gives the following
result from [1]:-

Corollary 4. Let 〈·〉n,θ denote the mean in the state ψn,θ. Then,

〈L1〉n,θ = 〈L2〉n,θ = 0,

〈L3〉n,θ = ~(n− 1) cos θ,

〈Ã2〉n,θ = 〈Ã3〉n,θ = 0,

〈Ã1〉n,θ = ~(n− 1) sin θ.

In the correspondence limit these relations again correspond to equations
(3) and hence characterise motion on the classical elliptic orbit of eccentricity

e and energy − µ2

2λ2 whose semi-major axis is aligned with the x1 axis.
We can now determine identities to be satisfied by semiclassical versions

of L and A.

Lemma 2. Let Nn,θ denote the nodal set of the wave function ψn,θ and define,

Σθ =
{
x ∈ R3 : x2 = 0, 0 ≤ µ

λ2

(
|x| − x1

sin θ

)
< 4
}
.

Then for a fixed θ, the set Σθ is the smallest connected set such that

Nθ :=
⋃
n∈N

Nn,θ ⊂ Σθ.

Moreover, Nθ is dense in Σθ.

Proof. The Laguerre polynomial Ln−1 has (n−1) zeros which are all positive.
Thus, if zj with j = 1, . . . n − 1 denote the n − 1 zeros of the Laguerre
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Figure 1: The surface Σθ for sin θ = 0.5 with λ = µ = 1 together with the
corresponding Kepler ellipse (based on Figure 5 in [3]).

polynomial Ln−1 arranged in increasing order then the nodal set is defined
by the equations,

zj =
nµ

λ2

(
|x| − x1

sin θ

)
, x2 = 0.

Moreover, [18] Theorem 6.31.2 gives,

0 < zj < 2n− 1 +
(
(2n− 1)2 + 1/4

)1/2
< 4n,

and so we find that the nodal set for a fixed n is contained within the region
Σθ. Finally [18] Theorem 6.31.3 gives the bound z1 ≤ 3

2n−1 and [19] gives

the bound 4n − 16
√

2n < zn−1 so that Σθ is the smallest connected set
containing the entire nodal set for all n ∈ Z. Finally in the limit n→∞ the
set {zj/n : j = 1, . . . , n} is dense in (0, 4) giving the result.

The surface Σθ is illustrated in Figure 1.

Theorem 4. Define ãi, li : R3\Σθ → C for i = 1, 2, 3 as the pointwise limits,

ãi(x) := lim
n→∞, ~→0
n~=λ

Ãiψn,θ(x)

ψn,θ(x)
, li(x) := lim

n→∞, ~→0
n~=λ

Liψn,θ(x)

ψn,θ(x)
. (28)

Then, for all x ∈ R3 \ Σθ,

l3 cos θ + ã1 sin θ = λ, (29)
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l1 cos θ + il2 − ã3 sin θ = 0, (30)

ã3 cos θ + l1 sin θ = 0, (31)

ã1 cos θ + iã2 − l3 sin θ = 0. (32)

Proof. The existence of the limits and the equations (29) - (32) follow from
Theorem 3 provided ψn,θ(x) 6= 0.

4 The semiclassical Kepler/Coulomb problem

In previous papers [3, 4] we have investigated the semiclassical limit of the
atomic elliptic state by considering directly the correspondence limit of Zn,θ

where Zn,θ(x) = −i~∇ lnψn,θ(x) and ψn,θ is as in equation (27). This limit
can be explicitly computed but leads to complicated expressions for Z and
the semiclassical Nelson drift field b. We now consider this problem from
a different perspective by considering the identities in Theorem 4 together
with the properties of the underlying classical system.

4.1 Semiclassical mechanics

For x ∈ R3 \ Σθ we define Zn,θ(x) = −i~∇ lnψn,θ(x) which satisfies,

En = −~
2
∇ ·Zn,θ +

1

2
|Zn,θ|2 − µ

|x|
,

and we define its semiclassical limit (pointwise limit),

Z(x) := lim
n→∞, ~→0
n~=λ

Zn,θ(x).

If we can determine the vector Z then we have determined (up to a constant)
the semiclassical quantum state ψs.c. and hence the drift of the associated
semiclassical Nelson diffusion process b = ImZ − ReZ. Assuming that the
limit Z exists we must demand that Z satisfies,

1

2
|Z|2 − µ

|x|
= − µ2

2λ2
=: E, ∇∧Z = 0. (33)

Indeed it can be easily verified that Z as defined in (8) has these properties.
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We introduce the trajectory X0(t) defined as the solution for the differ-
ential equation,

Ẋ0(t) = b(X0(t)), Ẋ0(0) = b(x0), X0(0) = x0,

where we assume that Z is suitably well behaved that X0(t) exists for t ∈
[0, T ] for some (possibly infinite) T > 0. This corresponds to the formal
deterministic limit (ε→ 0) of the semiclassical Nelson diffusionXε as defined
in (10).

Theorem 5. Suppose that (33) holds and that Ẋ0(t) is well defined for all
t ∈ [0, T ] for some T > 0. Then,

Ẍ0(t) = −∇
(
− µ

|X0(t)|
− |ImZ(X0(t))|2

)
.

Proof. Since b is a gradient it follows that Ẍ0(t) = −∇ (−2−1|b|2) which
gives the result.

Thus we can view X0
t as the trajectory of a semiclassical particle acted

on by a Coulomb potential with a quantum effect given by the potential
−|ImZ|2. Indeed it follows from (33) that b can be written in the form,

b = ∇S

for some function S = S(x) and S will satisfy the stationary Hamilton-Jacobi
equation,

1

2
|∇S|2 − µ

|x|
− |ImZ(x)|2 =

−µ2

2λ2
.

Thus the drift field b is a perturbation of the velocity field for a Coulomb
potential, but it is no longer necessarily even a central force so we cannot
expect either the angular momentum l′ or the Hamilton-Lenz-Runge vector
a′ to be constants of the motion. This dynamical system has been extensively
examined in [3, 4] but the identities (29) - (32) and the underlying structure
they reveal are new.

In fact we actually have two dynamical systems. We can define a second
classical mechanical system this time with a complex trajectory ξ(t) defined
as the solution for the differential equation,

ξ̇(t) = Z(ξ(t)), ξ̇(0) = Z(x0), ξ(0) = x0,

where we assume that Z is suitably well behaved that ξ(t) exists for t ∈ [0, τ ]
for some (possibly infinite) τ > 0.

15



Theorem 6. Suppose that (33) holds and that ξ̇(t) is well defined for all
t ∈ [0, τ ] for some τ > 0. Then,

ξ̈(t) = −∇
(
− µ

|ξ(t)|

)
.

Proof. Follows as for Theorem 5.

We note here that |ξ(t)| is not the absolute value of the complex number
ξ(t) but is defined by,

|ξ(t)|2 = ξ1(t)
2 + ξ2(t)

2 + ξ3(t)
2

where ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) ∈ C3.
Thus we can also view Z as defining the velocity field for a classical

Coulomb potential but acting on a complex phase space under the constraint
that the energy must be real. It follows again that we can find a complex
valued function S which satisfies the Hamilton-Jacobi equation,

1

2
|∇S|2 − µ

|x|
=
−µ2

2λ2
.

We now look at how Theorem 4 can illuminate the semiclassical mechan-
ics.

4.2 The Semiclassical Identities

Consider the equations (29) - (32) which hold for the semiclassical limit of
the atomic elliptic state with eccentricity e = sin θ. To allow us to consider
these equations in the positive and zero energy case we unscale the Hamilton-
Lenz-Runge vector by defining,

ai(x) =
√
−2Eãi(x) =

µ

λ
ãi(x),

giving,

µ

λ
l3 cos θ + a1 sin θ = µ, (34)

µ

λ
l1 cos θ + i

µ

λ
l2 − a3 sin θ = 0, (35)

a3 cos θ +
µ

λ
l1 sin θ = 0, (36)

a1 cos θ + ia2 −
µ

λ
l3 sin θ = 0, (37)

16



Table 1: Summary of semiclassical equations.

Parameters Conic Identities Energy Equation
& Group

e = 0 Circle a1 + ia2 = 0 1
2
|Z|2 − µ

|x| = − µ2

2λ2

SO(4) l1 + il2 = 0
l3 = λ
a3 = 0

0 < e < 1, Ellipse a1 + ia2
√

1− e2 = µe 1
2
|Z|2 − µ

|x| = − µ2

2λ2

0 < λ <∞ SO(4) l1 + il2
√

1− e2 = 0
µ
λ
l3 − ia2e = µ

√
1− e2

a3 − iµλ l2e = 0

e = 1, Parabola a1 = µ 1
2
|Z|2 − µ

|x| = 0

λ =∞ ISO(3) l1 = 0
a2 = 0
a3 = 0

e > 1 Hyperbola a1 + a2
√
e2 − 1 = µe 1

2
|Z|2 − µ

|x| = µ2

2λ2

λ 7→ iλ SO(3, 1) l1 + l2
√
e2 − 1 = 0

µ
λ
l3 + a2e = −µ

√
e2 − 1

a3 − µ
λ
l2e = 0

which hold for the elliptical case.
By writing the eccentricity as e where e = sin θ we can then extend

these equations to include the circular/elliptic, parabolic and hyperbolic cases
subject to suitable substitutions for λ corresponding to negative, zero and
positive energy E respectively. These four cases are listed in Table 1 giving
the equations (34) - (37) (in a rearranged form) together with the ‘energy’
equation (33) in each case.

A simple calculation working from the definition (28) gives,

l = x ∧Z, a = Z ∧ (x ∧Z)− µx

|x|
, (38)

and so the equations in Table 1 can be viewed as polynomial equations for
the components of Z.
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Suppose that we take the equations in Table 1 as defining the vector field
Z. We have the following result:-

Theorem 7. The equations listed in Table 1 have:-

1. in the circular case, a unique solution (which is complex) given by,

Z = ZC :=
iµ

λ

x

|x|
+
µ

λ

λ2

µ(x1 + ix2)
(−i, 1, 0) .

2. in the elliptic case, two solutions (both complex) one of which is given
by,

Z = ZE :=
iµ

λ

(
1 + γE

)
2

x

|x|
+
µ

λ

(
γE − 1

)
2e

(−i,
√

1− e2, 0),

where,

γE =

√
1− 4

νE
, νE(x) =

µ

λ2

(
|x| − x1

e
− ix2

e

√
1− e2

)
.

3. in the parabolic case, two solutions (both real) given by,

Z = ZP± := ±√µ sgn (x2)√
|x| − x1

x

|x|
± √µ sgn (x2)√

|x| − x1
(−1, 0, 0) .

4. in the hyperbolic case, two solutions (both real) one of which is given
by,

Z = ZH :=
µ

λ

(
1 + γH

)
2

x

|x|
+
µ

λ

(
γH − 1

)
2e

(−1,
√
e2 − 1, 0),

where,

γH = sgn
(
x2 + x1

√
e2 − 1

)√
1− 4

νH
,

νH(x) = − µ
λ2

(
|x| − x1

e
+ x2

e

√
e2 − 1

)
.

Proof. Noting that each li is linear in the components of Z it it possible to
eliminate two of the Zis between the five equations in each case. This reduces
the problem to:-
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1. (circular case) a pair of quadratic equations which have a single com-
mon root,

(ii)-(iv) (other cases) a cubic and quartic equation which have a pair of common
roots.

Identifying these common roots gives the result.

The root ZE corresponds to the known solution given in (8) and ZH

corresponds to the natural extension of this solution to the hyperbolic case.
It is important to note that we are free to choose the two sgn terms in the
parabolic and hyperbolic cases. For instance showing that ZH is a solution in
the hyperbolic case relies only on the fact that (γH)2 = 1− 4

νH
. The choices

made here are natural in the sense that with this choice in the parabolic case,

ZP+ = lim
λ→∞,e→1

Λ=λ2
µ (1−e2)

ZE,

where the semi-latus rectum Λ is held fixed and the complex square root in
the definition of γE is taken as in [3]. These choices will be discussed in more
detail later. We do not give an explicit expression for the second solution
in the hyperbolic/elliptic cases due to restrictions of space. They can easily
be calculated by factoring out the given root from the polynomials. The
semiclassical Nelson drift field b for each Z is shown in Figure 2 in the plane
z = 0.

Before we move on to a detailed discussion of the dynamical systems
defined by these vectors, we highlight that we can also find the semiclassical
wave functions corresponding to these values of Z:-

Theorem 8. The vectors Z(?) correspond to the following semiclassical wave
functions in the sense that Z(?) = −i~∇ lnψ(?):-

ψC = (x1 + ix2)
λ/~ exp

(
− µ
λ~ |x|

)
,

ψE = νE(x)λ/~(1 + γE(x))2λ/~ exp
(
− µ
λ~ |x|+

λ
2~(1− γE(x))νE(x)

)
,

ψP = exp
(
i
2
√
µ

~ sgn (x2)
√
|x| − x1

)
,

ψH = νH(x)iλ/~(1 + γH(x))2iλ/~ exp

(
− µ

iλ~
|x|+ iλ

2~
(1− γH(x))νH(x)

)
.
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Figure 2: The drift fields b in the elliptic, parabolic and hyperbolic cases in
the plane x3 = 0. 20



4.3 Discussion

We have identified semiclassical quantities a = (a1, a2, a3) and l = (l1, l2, l3)
which are complex valued functions of the variables x and Z satisfying the
equations listed in Table 1. These quantities are the semiclassical analogues
to the Hamilton-Lenz-Runge vector a′ and the angular momentum l′ which
are the constants of the classical motion. We have then used the identities
contained in Table 1 to find complex valued vector fields Z = Z(x) for
which there are 9 possible solutions (1 circular, 2 each elliptical, parabolic
and hyperbolic), four of which are listed in Theorem 7. These vector fields
Z(x) can be used to determine two classical mechanical systems X0(t) (the
deterministic limit of the semiclassical Nelson diffusion) and ξ(t) (a complex
valued solution to the Coulomb/Kepler problem) where,

Ẋ0(t) = b(X0(t)), ξ̇(t) = Z(ξ(t)),

and b(x) = ReZ(x)− ImZ(x).
Firstly let us consider the system given by ξ(t). It follows from The-

orem 6 that this system is simply the classical mechanics governed by the
Hamiltonian,

H(x,Z) =
|Z|2

2
− µ

|x|
,

on the phase space C6 with coordinates (x,Z) where |x|2 = x21 +x22 +x23. We
note that the energy equation in Table 1 imposes the constraint in each case
that the energy is real valued for the path ξ(t). Indeed the path ξ(t) is such
that the vectors a and l will be complex valued constants corresponding to
the Lenz-Runge vector and angular momentum. Moreover, we can define the
natural Poisson bracket,

{f, g} =
3∑
j=1

(
∂f

∂xi

∂g

∂Zj
− ∂g

∂xi

∂f

∂Zj

)
,

and it follows immediately that a and l are then generators of SO(4), ISO(3)
or SO(3, 1) depending on the case considered.

If we instead consider the system X0(t) then it follows from Theorem
5 that we have a real valued classical mechanical system governed by the
Hamiltonian,

H(x,p) =
|p|2

2
− µ

|x|
− |ImZ(x)|2,
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on the phase space R6 with coordinates (x,p). As we noted previously, if the
vector field Z(x) is non-real for x ∈ R3 then this system is no longer even a
central force. The angular monentum and Lenz-Runge vector are therefore
not constants of the motion but instead the equations in Table 1 hold.

It is interesting to note that ZP± and ZH are real valued for all x ∈ R3.
It follows that the corresponding drift fields coincide:

bP± = ZP±, bH = ZH .

Thus we can conclude from Theorems 5 and 6 that in the parabolic and
hyperbolic cases that our two dynamical systems X0(t) and ζ(t) coincide
and give a solution for the classical Coulomb problem. Thus we see that in
both parabolic and hyperbolic cases that a and l are constants of the motion
determined by the initial conditions with the additional constraint that the
equations in Table 1 must hold.

Let us consider in some detail the classical mechanics determined by the
vector field bP+ = ZP+. We know that the solution to the initial value
problem,

Ẋ0(t) = bP+(X0(t)), Ẋ0(0) = bP+(x0), X0(0) = x0,

corresponds to the classical mechanics for the Coulomb potential with zero
energy and so all trajectories are parabolas contained in the plane,

x3 =

(
x0,3
x0,2

)
x2, x0 = (x0,1, x0,2, x0,3),

with semimajor axis coinciding with the x1 axis, focus at the origin and

semilatus rectum |l|2
µ

=
l22+l

2
3

µ
.

However the field ZP+ is singular not just at the origin but also across
the positive x1 axis where |x| − x1 = 0. Indeed as our equations in Table
1 determining the field ZP+ are a limit of the elliptical equations it follows
from Lemma 2 that they cannot be expected to hold in the plane x2 = 0.
However this can be overcome by using the constants of the motion. A simple
calculation gives the drift field along a fixed trajectory as,

ZP+ =

(√
|x| − x1 sgn (x2)

|x|
,
l3
|x|

,− l2
|x|

)
. (39)

22



The appropriate value of ZP+ across the positive x1 axis is thus determined
by the initial condition which fixes the values of l2 and l3. Clearly the tra-
jectories of the classical system are focussed into the positive x1 axis forming
a caustic as shown in Figure 3 (a).

The role of the sgn function in the definition of ZP± can now be seen by
considering the vector field,

Z̃P+ :=
√
µ

1√
|x| − x1

x

|x|
+
√
µ

1√
|x| − x1

(−1, 0, 0) .

For this field every trajectory is directed towards the positive x1 axis where
they terminate (in the first parabolic solution shown in Figure 2 the arrows in
the upper half plane are reversed; in Figure 3 all trajectories move towards
the caustic). This forms a caustic for the corresponding Hamilton-Jacobi
equation,

1

2
|∇S|2 − µ

|x|
= 0,

with solution S = S̃P+ where from Theorem 8,

S̃P+(x) = 2
√
µ
√
|x| − x1, Z̃P+ = ∇S̃P+(x).

Clearly the solution S = S̃P+ is differentiable except on the positive x1 axis
where |x| − x1 = 0. Alternatively the solution S = SP+ defined by,

SP+(x) = 2
√
µ sgn (x2)

√
|x| − x1, ZP+ = ∇SP+(x),

when restricted to one of the classical planes of motion given by x3 =
(x0,3/x0,2)x2, is C1 across the positive x1 axis with the corresponding trajec-
tories passing through the caustic however now SP+ is discontinuous across
the rest of the surface x2 = 0 (see Figure 4). Thus we see that our choice of
sgn functions in the definition of ZP± corresponds to a choice of boundary
conditions for the Hamilton-Jacobi equation across the caustic. Indeed, we
can calculate the derivatives on the positive x1 axis explicitly to give,

∂

∂x2
SP+(x1, x2, (x0,3/x0,2)x2)

∣∣∣∣
x2=0

=
√

2

√√√√ 1

x1

(
1 +

(
x0,3
x0,2

)2
)
.

We note that it follows from (39) that any parabola crosses the positive x1
axis at the point,

x1 =
(l3x0,2 − l2x0,3)2

2(x20,2 + x20,3)
.
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(a)

(b)

Figure 3: Some trajectories for the classical dynamical systems in (a) the
parabolic case (µ = 1) and (b) the hyperbolic case (µ = 1, λ = 1 and e = 2)
with the caustic highlighted (red).
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(a) (b)

Figure 4: The functions (a) S̃P+ and (b) SP+ with µ = 1 plotted in the plane
z = 0 showing the caustic in (a) and its smoothing in (b).

A similar analysis holds for the hyperbolic case. The system now corre-
sponds to solutions to the classical Coulomb problem with positive energy so
all trajectories are hyperbolas contained in the plane,

x3 =

(
x0,3

x0,2 + x0,1
√
e2 − 1

)(
x2 + x1

√
e2 − 1

)
, x0 = (x0,1, x0,2, x0,3),

with eccentricity |a|
µ

=

√
(e2l22+λ2+l23)

λ
, semilatus rectum |l2|

µ
=

e2l22+l
2
3

µ
and semi-

major axis λ2/µ with focus at the origin whose axis is given by,

1

e
√
e2l22 + λ2 + l23

(
λ− l3

√
e2 − 1,−λ

√
e2 − 1− l3, e2l2

)
.

Again we note that the field ZH is not defined everywhere, here the
caustic being given by the line,

νH = 0 ⇔ x3 = 0, x2 + x1
√
e2 − 1 = 0, x1 > 0.

This problem can again be overcome by utilising the constants of the motion
to rewrite ZH along a fixed trajectory as,

ZH =
(
−a2λ|x|+e

√
e2−1λl22+

√
e2−1l2x3+λx2

λl3|x| ,

a1λ|x|−eλl22−l2x3+λx1

λl3|x| ,− eλl2+x3

λ|x|

)
.
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Thus we see that ZH assumes values on the caustic determined by the initial
condition. This again explains the sgn term in ZH which allows the trajec-
tories to pass through the caustic shown in Figure 3 (b). Again the function
S = SH where,

SH(x) := λ ln |νH(x)|+ 2λ ln |1 + γH(x)|+ µ

λ
|x|+ λ

2
(1− γH(x))νH(x)

and ZH = ∇SH is the solution to our Hamilton Jacobi equation with appro-
priate boundary condition across the caustic.

For the circular and elliptic cases our vector fieldsZC andZE are complex
valued and so the two dynamical systems X0(t) and ζ(t) are distinct. Indeed
ZC and ZE are only real valued on the corresponding Kepler circle/ellipse
thus we have Keplerian motion on the classical orbits corresponding to the
correct energy and given eccentricity.

It is also interesting that there is no obvious physical significance to the
second solution in the elliptical case for the Nelson diffusion system.
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