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Objective: Intraplaque hemorrhage is an increasingly recognized contributor to plaque instability. Neo-
vascularization of plaque is believed to facilitate the entry of inflammatory and red blood cells (RBC).
Under physiological conditions, neovessels are subject to mechanical loading from the deformation of
atherosclerotic plaque by blood pressure and flow. Local mechanical environments around neovessels
and their relevant pathophysiologic significance have not yet been examined.

Methods and results: Four carotid plaque samples removed at endarcterectomy were collected for
histopathological examination. Neovessels and other components were manually segmented to build
numerical models for mechanical analysis. Each component was assumed to be non-linear isotropic,
piecewise homogeneous and incompressible. The results indicated that local maximum principal stress
and stretch and their variations during one cardiac cycle were greatest around neovessels. Neovessels
surrounded by RBC underwent a much larger stretch during systole than those without RBCs present
nearby (median [inter quartile range]; 1.089 [1.056, 1.131] vs. 1.034 [1.020, 1.067]; p < 0.0001) and much
larger stress (5.3 kPa [3.4, 8.3] vs. 3.1 kPa [1.6, 5.5]; p < 0.0001) and stretch (0.0282 [0.0190, 0.0427] vs.
0.0087 [0.0045, 0.0185]; p < 0.0001) variations during the cardiac cycle.

Conclusions: Local critical mechanical conditions may lead to the rupture of neovessels resulting in the
formation and expansion of intraplaque hemorrhage.
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1. Introduction A typical carotid atherosclerotic plaque is composed of lipid-rich

necrotic core (LRNC), calcium and plaque hemorrhage covered by

Stroke is the third leading cause of death and the primary cause
of disability in the world [1]. Carotid atherosclerotic disease is
thought to be the predominant etiology of stroke in Western
society [2]. Nevertheless, clinical assessment of stroke risk has not
progressed beyond the use of luminal stenosis in spite of evidence
to suggest that this is an inadequate predictor of stroke [3]. Recent
imaging studies have suggested plaque composition as an inde-
pendent risk factor for ischemic stroke [4,5].
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a layer of fibrous cap (FC). High risk characteristics include large
LRNC [6], presence of hemorrhage [7], and thin or defective FC [8].
Intraplaque hemorrhage (IPH) may cause complications by
promoting vulnerability, luminal occlusion or downstream emboli.
Long term plaque progression due to IPH can be captured using
high-resolution magnetic resonance imaging (MRI) [9]. It has been
observed that IPH has a much wider prevalence in symptomatic
patients than asymptomatic individuals [5]. Altaf et al. found that
15 out of 66 recurrent events were associated with IPH while only
two recurrent events occurred in its absence in symptomatic
patients with high-grade atherosclerotic lesions [10]. Similar
results were obtained from 39 symptomatic patients with mild to
moderate (30—69%) stenosis [11]. Recently, in a prospective study
of 61 acutely symptomatic patients, Sadat et al. found that the
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presence of plaque hemorrhage was closely associated with the
occurrence of future cerebrovascular events [12]. Even in asymp-
tomatic patients, there is a risk conferred by IPH. Takaya et al. found
that presence of IPH was associated with the incidence of cere-
brovascular events in previously asymptomatic patients (n=154;
stenosis: 50—79%) [13]. Singh et al. confirmed that MR-depicted IPH
was associated with an increased risk of cerebrovascular events
(n=91) in asymptomatic moderate carotid stenosis [14].

Histopathological examinations have revealed the association
between IPH and the presence of neovessels [15,16]. Neo-
vascularization can be considered a compensatory response to
hypoxia present in the deep intimal and medial areas of the artery
[17,18]. Due to poorly developed vessel walls, blood components,
such as red blood cells (RBC), neutrophils and other proin-
flammatory cells, may migrate from the bloodstream into the pla-
que [19,20]. These may release an array of proteases that induce the
death of endothelial cells, thereby generating local disruption of
microvessels [21] and further promoting IPH.

Aside from these inflammatory factors, under physiological
conditions, atherosclerotic plaque is subjected to mechanical
loading due to blood pressure, as are its associated neovessels.
Finite element analysis has been widely used to estimate the stress
concentrated within the fibrous cap as a mechanics-based
vulnerability assessment [22,23]. This is based on the hypothesis
that fibrous cap rupture possibly occurs when the extra loading
due to blood pressure and hemodynamic flow exceed its material
strength. Being embedded in the atherosclerotic plaque, neo-
vessels are also presumably susceptible to mechanical loading
effects from the deformation of entire plaque structure driven by
the dynamic blood pressure. Harsh local mechanical conditions, if
present, may also contribute to the neovessel damage and further
encourage IPH formation. However, this has not yet been exam-
ined in detail. This study, therefore, aims to (1) quantify the critical
mechanical conditions (stress and stretch) around neovessels
based on high-resolution histological images; and (2) characterize
the association between these conditions and plaque’s patholog-
ical features, such as the distribution of red blood cells as a marker
of IPH.

2. Materials and methods

Four carotid plaques with over 70% stenosis were collected en
bloc following carotid endarterectomy. One of the four patients was
male; they were 74.3 +15.2 years old; the blood pressure was
127.5 + 26.8 mmHg for systole and 78.0 & 15.0 mmHg for diastole.
The samples were formalin-saline fixed, decalcified, embedded in
paraffin and stained using hematoxylin and eosin (H&E), Verhoeff’s
Van Gieson (EVG), Nile red and Masson’s trichrome to visualize
various components within plaque. Histopathological slides were
digitalized using NanoZoomer (Hamamatsu, Japan) (Fig. 1).
Considering the computational workload, one slide located at the
most stenotic site was chosen for analysis.

The digitalized image was segmented manually using NDP
Viewer (Hamamatsu, Japan) to identify the lumen contour, fibrous
tissue, lipid and hemorrhage, etc. The contours of lumen and outer
wall of each neovessel were carefully traced at 40x magnification.
About 100 neovessels were identified for each slide. All contours
were exported and processed using an in-house developed package
in Matlab (MathWorks, USA). All components were assumed to be
non-linear hyper-elastic, piecewise homogeneous and incom-
pressible materials governed by the modified Mooney—Rivlin strain
energy density function,

W=cq(I1 —3) + D1exp[Do(I1 —3) — 1]

10 um

Fig. 1. Microscopic slide (H&E) showing plaque structures (A&B: neovessels closed to
the main arterial lumen; C: neovessels located in the middle region with abundant
adjacent red blood cells; and D: neovessels located in a peripheral region; red asterisk
stands for the main arterial lumen and black asterisk for the lumen of neovessel).

where I is the first strain invariant and c;, D1 and D, are material
parameters, derived from earlier studies [24] with the following
details: vessel material: c; =36.8 kPa, D1 =14.4 kPa, D, = 2; fibrous
cap: ¢1=73.6 kPa, D;=28.8 kPa, D, =2.5; lipid core: ¢y =2 kPa,
Di=2KkPa, Dy=1.5: calcification, c¢; =368 kPa, D;=144 kPa,
D, =2.0; fresh IPH: ¢; =1 kPa, D1 =1 kPa, D, = 0.25 and for chronic
IPH: ¢1 =9 kPa, D1 =9 kPa, D, =0.25. The blood pressure of each
patient was used as the loading condition applying on the plaque as
a whole and the pressure in the neovessel was assumed to be
10 mmHg (as it was not directly measurable). This value was chosen
because it approximately reflects blood pressure in the venous
environment. However, our experimental conclusions did not
change when the value was lowered to 5 mmHg. Considering the
small size of an individual neovessel, a very fine mesh was used
around the local region with about 0.5 pm on each element edge.
Each model consists of over 100,000 elements. Maximum principal
stress (Stress-P1) and stretch (Stretch-P1) were computed using
finite element method (FEM) in ADINAS.6.1 (ADINA R&D, Inc., USA).

The region of interest (ROI) for each neovessel was defined as
the region within four times of the corresponding lumen area (The
number could be changed to 2.5, 6 and 8 and the results and
conclusions remained the same). The maximum value of Stress-P;
and Stretch-P; within ROI was extracted from the simulation. The
value at systole and the difference across the cardiac cycle were
used to quantify the critical mechanical condition. The change of
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lumen area of the neovessel during the cardiac cycle was also
computed to quantify the deformation. The locations of red blood
cells were recorded to quantify their distribution. Therefore, the
neovessels were divided into two groups (without-RBC and with-
RBC) depending on the presence of red blood cell within the ROIL
The association between this distribution and critical mechanical
condition was further analyzed.

The statistical analysis was performed in Instat3.06 (GraphPad
Software Inc., USA). A two-tailed Mann—Whitney test was used for
the statistical analysis if the data did not pass the normality test
(Shapiro—Wilk test); otherwise, two-tailed student t test was used.
A significant difference was assumed with a p-value <0.05.

3. Results

In total, 379 neovessels were identified in four histological
slides. Red blood cells were found within the region of interest of

B 311

v
O

146 of them (38.5%). As it can be seen from Fig. 1, neovessels
appeared throughout the plaque structure and many were adjacent
to the lumen (Fig. 1A&B), some were located in the middle of the
plaque (Fig. 1C) surrounded by a cluster of red blood cells and some
were located in the periphery of the plaque (Fig. 1D) with various
lumen sizes and wall thicknesses. The corresponding band plot of
Stretch-P; was shown in Fig. 2. As depicted in the amplified
thumbnails, large deformations were found around the neovessel
when it was close to the lumen (Fig. 2A, B & C). Fig.3 visualizes the
location-dependent mechanical parameters, stress concentration
at systole (Stress-Pq; Fig.3A), stress variation during one cardiac
cycle (Diff-Stress-P;; Fig.3B), large local deformation at systole
(Stretch-Pq; Fig.3C) and the stretch variation (Diff-Stretch-Pi;
Fig.3D), in the ROI of each neovessel. These parameters decrease
greatly when the neovessel is located away from the carotid lumen.

The harsh mechanical environment around neovessels may be
associated with the leak of red blood cells, which were found
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Fig. 2. The band plot of maximum principal stretch (Stretch-P;) at systole (the insets showing the local deformation around the corresponding neovessel amplified in Fig. 1).
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Fig. 3. The relationship between critical mechanical conditions around the neovessel and its distance from the main arterial lumen (A: Stress-P;; B: variation of Stress-P; during one

cardiac cycle; C: Stretch-P; and D: variation of Stress-P; during one cardiac cycle).

around those neovessels that had undergone a large deformation,
shown in Fig. 4. Further analysis indicated that there was no
significant difference (p =0.087) in terms of Stress-P; at systole
between the groups without (without-RBC) and with (with-RBC)
red blood cells (Table 1); however, during one cardiac cycle, with-
RBC underwent greater Stress-P; variation (Diff-Stress-P;) than
without-RBC (p < 0.0001). The deformation of neovessels in with-
RBC group at systole was about 8.9% which was much greater
than the one in the without-RBC group (3.4%; p < 0.0001). During
one cardiac cycle, the stretch variation (Diff-Stretch-P;) of with-
RBC was about 2.82%, while the value of without-RBC was only
0.87% (p <0.0001). Furthermore, the lumen contour deformed
(Diff-Area) much less in the without-RBC group than that in the
with-RBC group (0.565% vs. 2.024%; p < 0.0001).

4. Discussion

To our knowledge, this is the first study to quantify the
mechanical conditions around neovessels within atherosclerosis

(Fig. 2). We highlight possible associations between intraplaque
hemorrhage and these mechanical conditions (Fig. 4 and Table 1).
We found first, that mechanical stress and stretch decreased
significantly as the distance between the neovessel and the main
arterial lumen increased (Fig. 3). Second, those neovessels with
surrounding red blood cells, presumably evidence of fresh hemor-
rhage, underwent much larger deformation at systole and stress
and stretch variations during one cardiac cycle than those without
red blood cells close by (Table 1).

Several studies have shown a pathological effect of vessel
stretch on the cellular and genetic environment of the plaque. The
large cycle deformation may impede endothelial cell survival and
tubulogenesis through the NAD(P)H subunit p22phox pathway
[25]. Pathological stretch can dysregulate cytoskeletal gene
expression, such as filamin A [26], affecting cell attachment and
encouraging programmed cell death [27] and therefore preventing
healing in the carotid plaque following acute events [28]. On
a tissue level, the risk of elevated strain/deformation on plaque
destabilization has been also recognized by various computational

Fig. 4. Representative histology slide depicting a neovessel surrounded by red blood cells and the corresponding large local Stretch-P; during systole.
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Table 1

Comparison of local maximum principal stress (Stress-P;) and stretch (Stretch-P;) and their variations (Diff-Stress-P, and Diff-Stretch-P;) and change of lumen area (Diff-Area)
during one cardiac cycle between neovessels with and without red blood cells (RBC) surrounded (the results were presented in Median [inter quartile range]).

Stress-P; (kPa) Diff-Stress-P; (kPa)

Stretch-P;

Diff-Stretch-P; Diff-Area (%)

Without-RBC (n = 233) 12.8 7.5, 25.1] 3.1[1.6,5.5]
With-RBC (n = 146) 163103, 27.1] 5.3 [3.4,83]
p-Value 0.087 <0.0001

1.034 [1.020, 1.067]
1.089 [1.056, 1.131]
<0.0001

0.0087 [0.0045, 0.0185]
0.0282 [0.0190, 0.0427]
<0.0001

0.565 [0.220, 1.049]
2.024 [1.208, 3.763]
<0.0001

and clinical studies [28—30]. Although there are likely several
biological processes at work in the promotion of intraplaque
hemorrhage, here we suggest a possible contribution from the
mechanical conditions around the neovessel.

The association between alterations in mechanical stress and
plaque hemorrhage was suspected by Lusby et al. in early 1980s
[31]. Recently, intraplaque hemorrhage has been recognized as one
trigger of plaque vulnerability [32]. Monitoring the development of
neovascularization within plaque might be important clinically.
Non-invasive imaging techniques [33] such as contrast-enhanced
magnetic resonance imaging (MRI) [34] and microbubble-
targeted ultrasound [35], have been developed to quantify it.
In vivo high-resolution elastography approaches, such as intravas-
cular ultrasound [36], optical coherence tomography [37] and B-
mode ultrasound elastography [38], have shown the capacity in
quantifying the local tissues deformation in the atherosclerotic
plaque. Further development of these techniques could lead to
a more accurate plaque vulnerability assessment by integrating
plaque compositional features and critical mechanical conditions.

Despite the interesting findings reported in our paper, some
limitations exist: (1) the small number of plaques analysed (n=4)
means the pathological conclusions, such as the distribution
pattern of neovessels and extravasated red blood cells ought to be
repeated. However, this limitation does not completely negate our
conclusion that large deformations around the neovessel might
promote hemorrhage, because those four plaques yielded approx-
imately 400 neovessels for analysis; (2) the origin of neovessel
could be various. It may be from the vasa vasorum in the adventitia
or due to the thrombus healing [39]. They are not differentiated in
this study; another consideration is that (3) this study was a two-
dimensional simulation, and the effect of the blood flow was not
taken into account in this model. Since the neovessels were located
within the plaque structure, high velocity blood flow in the main
arterial lumen should have minimal impact on the prediction of
critical mechanical conditions around the neovessel; lastly, (4)
despite rigorous attention to detail, some distortion of the plaque
samples may have occurred during processing for histopathological
examination. Our segmentation, therefore might not represent the
true in vivo configuration of the plaque.

In conclusion, we suggest that there are large degrees of
deformation and high variation in the mechanical loading around
plaque neovessels during the cardiac cycle. These factors might
damage the vessel walls and, in conjunction with inflammatory and
other factors, promote intraplaque hemorrhage.
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