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Abstract.—The amplified fragment length polymorphism (AFLP) technique is an increasingly popular component of the
phylogenetic toolbox, particularly for plant species. Technological advances in capillary electrophoresis now allow very
precise estimates of DNA fragment mobility and amplitude, and current AFLP software allows greater control of data
scoring and the production of the binary character matrix. However, for AFLP to become a useful modern tool for large
data sets, improvements to automated scoring are required. We design a procedure that can be used to optimize AFLP
scoring parameters to improve phylogenetic resolution and demonstrate it for two AFLP scoring programs (GeneMapper
and GeneMarker). In general, we found that there was a trade-off between getting more characters of lower quality and fewer
characters of high quality. Conservative settings that gave the least error did not give the best phylogenetic resolution, as too
many useful characters were discarded. For example, in GeneMapper, we found that bin width was a crucial parameter, and
that although reducing bin width from 1.0 to 0.5 base pairs increased the error rate, it nevertheless improved resolution due
to the increased number of informative characters. For our 30-taxon data sets, moving from default to optimized parameter
settings gave between 3 and 11 extra internal edges with >50% bootstrap support, in the best case increasing the number of
resolved edges from 14 to 25 out of a possible 27. Nevertheless, improvements to current AFLP software packages are needed
to (1) make use of replicate profiles to calibrate the data and perform error calculations and (2) perform tests to optimize
scoring parameters in a rigorous and automated way. This is true not only when AFLP data are used for phylogenetics,
but also for other applications, including linkage mapping and population genetics. [AFLP; amplified fragment length
polymorphism; automated scoring; error rates; phylogenetic resolution; phylogeny; scoring parameters.]

Amplified fragment length polymorphism (AFLP)
DNA fingerprinting (Vos et al., 1995) is a firmly es-
tablished molecular marker technique for evolutionary,
genetic, and ecological studies of plants, animals, and mi-
croorganisms (Mueller and Wolfenbarger, 1999; Meudt
and Clarke, 2007). AFLP has a number of broad ap-
plications, ranging from linkage mapping to analyses
using population-based and phylogenetic methods. Of
particular interest in this study is the use of AFLP to
generate data for phylogenetic studies. Although some
researchers have suggested that AFLP data are inappro-
priate for phylogenetic applications (Hollingsworth and
Ennos, 2004; Kosman and Leonard, 2005), several empir-
ical studies have revealed tree-like properties in AFLP
data sets, and AFLP data are increasingly being used to
estimate phylogenies, including for very shallow radi-
ations (e.g., Marhold et al., 2004; Sullivan et al., 2004;
Koopman, 2005; Mendelson and Shaw, 2005; Spooner
et al., 2005a; Albach, 2007; Kilian et al., 2007). Meudt and
Clarke (2007) reviewed several conditions in which the
AFLP technique can be ideal. For accurate phylogeny
estimation, these conditions include high genomic het-
erogeneity (i.e., when it is necessary to analyze many
loci to ascertain an accurate measure of genomic di-
versity), low genetic variability (generally intraspecific
comparisons of, for example, crop species, and intra-
generic comparisons such as rapid species radiations),
and studies of polyploids where it is very difficult to
use single-locus nuclear sequencing markers because of
problems distinguishing the many alleles that may be
present at each locus. Because AFLPs are predominantly
nuclear markers that are widely distributed throughout
the genome, they are particularly powerful for study-

All authors contributed equally to this work.

ing the phylogeny of organisms such as plants for which
other nuclear and organellar markers are often lacking,
insufficiently variable, or even inappropriate (Després
et al., 2003; Pelser et al., 2003; Marhold et al., 2004; Bensch
and Åkesson, 2005; Tremetsberger et al., 2006; Pellmyr
et al., 2007). AFLPs can also complement other marker
systems (such as DNA sequencing markers) in a phy-
logenetic study by, for example, providing resolution in
different parts of the tree (Després et al., 2003; Pelser et al.,
2003; Marhold et al., 2004; Koopman, 2005; Spooner et al.,
2005b). AFLPs may not be able to provide an accurate es-
timate of the species phylogeny when genetic divergence
is too high (although precisely where this cut-off is has
been the subject of debate; see Meudt and Clarke (2007)
and references therein), or when frequent hybridization
and reticulation have obscured the phylogenetic signal
throughout the phylogeny, but these shortcomings are
not unique to AFLP data.

The AFLP technique is usually applied to sets of or-
ganisms with low genetic divergence (Bonin et al., 2007;
Meudt and Clarke, 2007) and, as such, has similar po-
tential drawbacks to other marker systems. For exam-
ple, when these cases involve large ancestral population
sizes and short times between divergence events, incom-
plete lineage sorting can often result in the phylogeny
of a single locus not matching the species phylogeny
(Degnan and Salter, 2005). For alignments of genes that
have been sequenced and concatenated, new methods
have recently been developed that estimate the species
phylogeny taking into account the probability of gene
trees under a coalescent model (Carstens and Knowles,
2007; Liu and Pearl, 2007). Such methods have not yet
been developed for AFLP. Nevertheless, except in those
hopefully rare cases where the most likely gene tree
does not match the species tree (Degnan and Rosenberg,
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2006), it is expected that phylogenetic analysis of AFLP
data should give a robust estimate of the species phy-
logeny (Sullivan et al., 2004; Koblmüller et al., 2007).
This is essentially an issue of sample size; the hun-
dreds or thousands of concatenated AFLP loci from
a typical AFLP study are more likely, on average, to
approximate the species phylogeny, and, except when
some parametric conditions arise (Kubatko and Deg-
nan, 2007), the individual effects of loci that have evo-
lutionary histories different to that of the species are
more likely to be diminished. And indeed, when phy-
logenies are estimated both from AFLP data and from
robust, independent sources of evidence (e.g., pheno-
typic traits, behavior, and ecology), congruent results
have been obtained (e.g., Marhold et al., 2004; Sullivan
et al., 2004; Koblmüller et al., 2007; Pellmyr et al.,
2007).

Although the appropriateness of AFLP data for phylo-
genetic reconstruction requires further study, it is never-
theless widely employed in phylogenetics and system-
atics (e.g., Marhold et al., 2004; Mendelson and Shaw,
2005; Koblmüller et al., 2007; Pellmyr et al., 2007). It is
essential that we gain a better understanding of the situ-
ations in which AFLP data may be inappropriate (e.g., if
incomplete lineage sorting is occurring), but it is outside
the scope of this paper to address this further; instead,
our focus is on optimizing AFLP scoring parameters to
maximize the phylogenetic signal obtained from the raw
data.

To generate AFLP data, a complete restriction endonu-
clease digestion is performed on total genomic DNA,
followed by two rounds of selective polymerase chain
reaction (PCR) amplification and separation of the frag-
ments by electrophoresis (Vos et al., 1995; Meudt and
Clarke, 2007). In capillary electrophoresis of fluores-
cently labeled AFLP fragments, the end result is the
production of a profile like the ones shown in Figure
1. To convert the data for numerous profiles into a bi-
nary character matrix of 0’s (peak absent; null allele)
and 1’s (peak present; plus allele), two types of deci-
sions have to be made. First, when should a fragment
be called as present (character state 1) versus absent
(character state 0)? Second, when should two fragments
be designated as having the same length (number of
nucleotides) and therefore be treated as identical plus-
alleles of the same locus? The ideal is to have all truly
identical fragments recognized, scored as present, and
assigned to the same column of the character matrix—
and to have no nonidentical fragments assigned to the
same column of the character matrix. In practice, this is
not likely because some nonidentical fragments will have
similar mobility by chance, identical fragments will have
slightly different mobilities and peak heights due to ran-
dom error (Vekemans et al., 2002), and shared absences
(null alleles) may be derived in multiple, independent
ways.

New capillary-based technologies allow more precise
estimates of AFLP DNA fragment mobility (fragment
length) and fluorescence intensity (amplitude) than tra-

ditional gel-based systems. Furthermore, analysis of cap-
illary profiles with currently available automated scor-
ing software (see table 1 in Meudt and Clarke, 2007)
allows the user to control several parameters that in-
fluence the resulting data matrix. In contrast to manual
scoring, automated scoring is objective, repeatable, and
far less time-consuming. In fact, with increasingly large
data sets, automated scoring is often the only feasible
option, yet to our knowledge no experimental or theo-
retical studies have explored different automated scoring
parameter settings and their effects on downstream anal-
yses. Given that AFLP has many potential applications
and that the automated scoring packages have many ad-
justable parameters, it is natural to ask: how can we mea-
sure the quality of the AFLP character matrix, and what
is the best way to go about optimizing AFLP scoring
parameters for phylogenetic studies? More specifically,
when scoring a particular AFLP data set, which param-
eter settings will give the most accurate phylogenetic es-
timate?

Our aim is to find parameter settings for automated
scoring software that lead to data matrices whose anal-
ysis allows us to accurately recover the true tree (i.e.,
the species phylogeny). However, there are difficulties
in directly measuring the accuracy of phylogenetic esti-
mates. This is because (1) in general the true tree is not
known, and (2) the question is not amenable to study
with a simulation-based approach, such as AFLP in sil-
ico (Qin et al., 2001; Bikandi et al., 2004), because the
factors that influence bin width and peak height are not
currently understood well enough to be simulated ac-
curately. Because we cannot measure accuracy directly
and simulation studies are not applicable, we use the
resolution of the phylogenetic tree resulting from boot-
strap analysis of the data matrices constructed with dif-
ferent parameter settings as a proxy for accuracy. The
higher the resolution, the more information there is about
phylogenetic relationships, and unless there is some sys-
tematic bias, high resolution should be correlated with
accuracy (Hillis and Bull, 1993). For example, Taylor and
Piel (2004) showed empirically that high bootstrap sup-
port was strongly correlated with accuracy in their study
using a genome-scale yeast data set.

We explore the effect of parameter choice using two
commonly available software platforms designed for au-
tomated AFLP scoring: GeneMapper v. 3.7 by Applied
Biosystems and GeneMarker v. 1.51 by SoftGenetics. The
parameters studied include: the minimum peak height
threshold required for a peak to be called as present, the
minimum fragment length at which a marker is scored
and included as a character in the matrix, and the width
of the marker bins in base pairs (bp). Each of these param-
eters influences the number of characters available for
phylogenetic analysis and whether or not these charac-
ters represent homologous fragments (Fig. 2). Introduc-
ing more homologous characters should lead to higher
resolution, but in practice by including more characters
we also risk introducing errors. For each of the main
parameters studied, we expect there to be a trade-off
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FIGURE 2. Theoretical effect of changing specific AFLP scoring pa-
rameter settings; (a) bin width and (b) peak height threshold. The bi-
nary matrix on the right shows the effects of changing the AFLP scoring
parameters in the profiles on the left; correctly scored peaks are repre-
sented in the binary matrix in light grey and incorrectly scored peaks
in dark grey. (a) Bin widths (BW) are shown as grey rectangles under-
neath the profiles; peaks that fall within a given bin width are scored
as 1 (present) and outside as 0 (absent). Using a bin width that is too
wide (1.0 bp) makes it more likely that identical alleles (whose mobili-
ties differ only slightly because of random error) are treated as a single
character, but it can also cause non-identical alleles to be incorrectly
treated as one character. Although this problem is corrected by nar-
rowing the bin width (0.6 bp), if the bin width is too narrow (0.2 bp),
then even the identical alleles will be wrongly split into separate char-
acters. (b) Peak height threshold (PHT) is shown using black dashed
lines; a peak above this line is scored as 1 (present) and below as 0
(absent). If the PHT is set too high (200 rfu), then peaks that are present
will be scored as absent (taxon 2, left peak). Although this is corrected
by lowering the PHT (100 rfu), if the PHT is too low (50 rfu), then
background noise or stutter peaks will be incorrectly scored as present
(taxon 1, right peak). This simplified example shows two hypothetical
taxa and three characters, but real data sets may contain hundreds of
taxa and hundreds of characters; determining the optimum parameter
settings over all taxa and all characters is much more complex.

between getting more characters of lower quality and
fewer characters of high quality.

Specifically, these trade-offs include the following.
First, lowering the minimum fragment length will in-
crease the number of characters, but these characters may
be of lower quality, as previous studies (Vekemans et al.,
2002) indicate that smaller fragments are more likely to

be homoplasious than larger fragments. Second, reduc-
ing the bin width will increase the number of charac-
ters, but as bin width is reduced, single characters may
split into pairs of characters (Fig. 2a), which at the very
least can reduce branch support in the resulting tree but
could also potentially introduce error into the data set.
Conversely, as we increase bin width, separate charac-
ters will be amalgamated. If these characters are not re-
ally identical, this could create character conflict in the
resulting data matrix (Fig. 2a), which may reduce res-
olution. Third, lowering the peak height threshold will
increase the number of characters. If peak height thresh-
old is set too low, we will, by scoring background noise,
call peaks present when they are really absent, and if it
is set too high we will call peaks as absent when they are
really present (Fig. 2b).

To study the effect of different parameter choices on
automated scoring of AFLP data we used two example
data sets with very different levels of divergence—these
data sets represent the extremes of the phylogenetic prob-
lems to which AFLP can be applied. Both the empirical
data sets contained a small number of known replicates
so that the replicate error rate could be calculated. In ad-
dition, we analyzed a much larger data set of 25 replicate
pairs (n = 6110 individual pairwise comparisons) to de-
termine the average sizing error between truly identical
fragments. The aims of the study are to (1) determine if
the parameter settings that maximize phylogenetic res-
olution are the same for both our test data sets or if the
parameters are data dependent; (2) determine how ro-
bust the resulting phylogeny is to changes in automated
scoring parameters; and (3) stimulate more studies of au-
tomated scoring of AFLP data and encourage improve-
ments to available software.

METHODS

Sampling Strategy

Two data sets, each of 30 AFLP profiles, were created:
one from accessions of sweet potato (Ipomoea batatas;
Convolvulaceae) and one from multiple individuals of
several New Zealand species of the plant genus Ourisia
(Plantaginaceae). Sweet potato is a single domesticated
species, and as such it is expected to have relatively little
genetic diversity compared to wild taxa. Because sweet
potato is generally asexually reproducing, it is expected
to evolve in a tree-like way. Conversely, Ourisia is a genus
of 28 species found in high-elevation habitats mostly
in the Southern Hemisphere. Probably the majority of
Ourisia species are outcrossing, and therefore we expect
relatively large amounts of genetic diversity. However,
the New Zealand species of Ourisia exhibit low DNA se-
quence variation (Meudt and Simpson, 2006), and there-
fore AFLP markers might provide a suitable amount of
variation for phylogenetic reconstruction. Putative hy-
brids were excluded from the Ourisia data set, so we ex-
pect the underlying evolutionary history to be at least
approximated by a tree.

Each of these data sets represents a subset of a
much larger data set produced to answer evolutionary
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questions in sweet potato (A.C.C.) and New Zealand
Ourisia (H.M.M.). We reduced the data sets to 30 AFLP
profiles each to give a representative sample of the larger
data sets, allow comparison of data sets of the same size,
and also decrease the time involved in preparing each of
the character matrices and running the resulting analyses
(see below). For a number of reasons, sampling strategy
is extremely important in any AFLP study, particularly
because it has been suggested that a thorough sampling
strategy (i.e., sampling multiple individuals from mul-
tiple populations for each species under study) can ac-
tually improve the probability of coalescence near the
tips of the tree and thus potentially increase the prob-
ability of capturing the true species tree (Degnan and
Rosenberg, 2006). Especially for recently diverged taxa,
sampling multiple individuals per species can provide
additional information regarding species relationships
(Carstens and Knowles, 2007). We therefore aimed to
include in our respective larger unpublished studies in
Ipomoea and Ourisia (where possible) multiple individu-
als from multiple populations from throughout the geo-
graphic ranges of all taxa involved. Likewise, for the
smaller data sets used in the present study, we chose
30 AFLP profiles from each data set that represent the
taxonomic diversity, genetic diversity, and geographic
ranges of the organisms under study, in addition to
the inclusion of a number of replicates. This sampling
strategy resulted in an Ourisia data set containing 24
unique accessions (of 13 total species) and 6 replicates,
and an Ipomoea data set containing 25 unique acces-
sions (24 accessions of I. batatas and one accession of
the outgroup I. tiliacea) and 5 replicates. For complete
voucher information see Supplementary Table 1 (avail-
able at www.systematicbiology.org). AFLP profiles for
all Ipomoea and three Ourisia replicate pairs were ob-
tained from duplicate DNA extractions of the same leaf
tissue. The three remaining Ourisia replicate pairs were
independent profiles generated from the same DNA
extraction.

Generation of Raw AFLP Data

AFLPs were generated based on the protocol of
Vos et al. (1995) using an updated protocol for cap-
illary detection of fluorescently labeled markers (see
http://awcmee.massey.ac.nz/aflp/AFLP Protocol.pdf).
Briefly, DNA was digested with the restriction enzymes
EcoR I and Mse I. Eco and Mse linkers were ligated to
the restriction fragments and a subset of these were
amplified using Eco+A and Mse+C preselective PCR
primers. Selective amplifications were performed with
four Eco+3/Mse+3 PCR primer combinations. Eco+3
primers were labeled with 6FAM (Sigma-Aldrich),
VIC, NED, or PET (Applied Biosystems) fluorescent
dyes. The fluorescently labeled selective amplification
products were poolplexed, along with a GS-500 LIZ
size standard, on a 3730 Genetic Analyzer (Applied
Biosystems). Capillary electrophoresis was carried out
at the Allan Wilson Centre Genome Service, Massey
University.

Generation of Data Sets Using Different Automated Scoring
Parameter Settings

We designed, and describe below, a procedure to opti-
mize numerous automated scoring parameters. A flow-
chart showing the different methods used to investigate
and optimize parameter settings is shown in Figure 3.
For each of our two example data sets, we created 90
different character matrices in GeneMapper and 36 dif-
ferent character matrices in GeneMarker. Preliminary
testing was performed to determine which parameters
were most important. The most important parameters
to be subsequently tested here were, for GeneMapper,
peak height threshold (PHT), minimum fragment length
(MFL), and bin width (BW); and for GeneMarker, PHT,
MFL, stutter peak filter (SPF), and local and global de-
tection percentages (LGDP). With respect to smoothing,
“heavy” (GeneMapper), “enhanced” (GeneMarker), or
“no smoothing” (both programs) all performed worse
than the middle option of “light smoothing” (GeneMap-
per) or “smoothing” (GeneMarker), which we used here.
In addition, in GeneMarker, the minimum peak score
default of “fail < 1 check < 7 pass” performed worse
than other settings with the second value less than 7. We
therefore set the minimum peak score to “fail < 1 check
< 1 pass” in which peaks below a score of 1 were dis-
carded, and those above the score of 1 were automatically
accepted, thus fully automating the scoring process. All
other parameters, preliminary testing of which showed
negligible effects on scoring, were left at their default
values.

The 90 GeneMapper matrices (3 × 3 × 10) were ob-
tained by setting PHT to 50, 100, or 200 relative fluores-
cence units (rfu), setting MFL to 50, 100, or 150 bp, and
adjusting BW from 0.1 to 1.0 bp in increments of 0.1. (In
GeneMapper, the allele-calling threshold was set to the
same value as the peak height threshold.) The 36 Gene-
Marker matrices (3 × 3 × 2 × 2) were obtained by setting
the PHT to either 50, 100, or 200 rfu, the MFL to either 50,
100, or 150 bp, SPF to either its default of 5% or turned
off, and LGDP to its default of 1% (both local and global)
or turned off. Note that the PHT and MFL parameters
are common to both GeneMapper and GeneMarker. The
algorithms used by GeneMarker automatically allocate
different BW to different characters in the matrix, as op-
posed to setting one BW for all characters in the matrix
in GeneMapper. Although BW in GeneMarker can be
subsequently changed so that all characters have identi-
cal values, doing so does not appear to greatly alter the
number of characters in the matrix or resulting charac-
ter states, and thus we did not consider BW further in
GeneMarker.

It may seem counterintuitive to consider bin widths
less than one base pair. However, both gel- and capillary-
based AFLP systems measure mobility and only estimate
length. Due to differences in strand composition (se-
quence and secondary structure), mobility values, and
thus the estimated length values, effectively vary con-
tinuously. When the mobility difference of nonidentical
DNA fragments differs by 1 bp or less, there can be seri-
ous problems of identity assessment. In such cases, bin
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FIGURE 3. Flowchart showing the steps involved in determining optimal scoring parameters using AFLP automated scoring software (e.g.,
GeneMapper) and methods and scripts described in this paper.



D
ow

nl
oa

de
d 

B
y:

 [M
as

se
y 

U
ni

ve
rs

ity
] A

t: 
03

:5
2 

5 
Ju

ne
 2

00
8 

2008 HOLLAND ET AL.—AFLP SCORING PARAMETERS AND PHYLOGENETIC RESOLUTION 353

width settings <1 bp have the potential to separate non-
identical fragments with similar mobility.

Data matrices were exported from both pro-
grams and converted into NEXUS format files
using the program GenoTyper Rearranger (GTR).
The GTR program, a detailed protocol for us-
ing GTR, and all NEXUS files are available from
http://awcmee.massey.ac.nz/aflp/aflp.html. Creating
126 matrices for each of the two 30-sample data sets via
this streamlined process took approximately 4 hours.

Comparison of Data Sets to Determine Optimal
Parameter Settings

Measures of accuracy.—For each character matrix
we recorded the resolution score and the number
of parsimony-informative characters. All phylogenetic
analyses were carried out in PAUP* version 4.0b10 (Swof-
ford, 2003) using both neighbor-joining (NJ) on uncor-
rected distances (dset dist = p) and with heuristic search
using the parsimony optimality criterion (retaining all
default settings in PAUP*). Both methods gave congru-
ent trees with some local differences, but NJ gave higher
resolution scores for all but 6 of the 252 parameter setting
combinations tested (resolution was an average of 11.5%
higher). For simplicity, we report only the NJ resolution
scores. To calculate the resolution score for each charac-
ter matrix, we performed 100 repetitions of 100 bootstrap
replicates. For each replicate, all the bootstrap scores over
50% were summed and this number was divided by 27
(each data set had 30 samples so there were a maximum
of 27 internal edges in each tree) to give a value between
0% and 100%. We then calculated the mean and standard
deviation of the resolution score over the 100 repetitions.

We expect that both the quality of characters and the
number of characters will have an effect on resolution
and accuracy. If two data sets contain characters of
the same quality, the data set with the most characters
should give a more accurate phylogenetic estimate; if
two data sets contain the same number of characters, the
data set with the highest quality characters should give
a more accurate phylogenetic estimate. To try and disen-
tangle these two effects and get a measure of character
quality independent of sequence length, we defined a
normalized resolution score. We recorded the number of
characters cmin in the smallest character matrix for each of
the Ourisia and Ipomoea data sets (the data sets with PHT
200, MFL 150 bp, SPF 5%, LGDP 1% from GeneMarker).
For each of the data sets and combination of parameter
settings we created 100 new character matrices by
sampling cmin columns of the original character matrix
without replacement, thus creating many data sets of the
same length. For each of these character matrices, we cal-
culated the resolution score as outlined above. We then
calculated the mean and standard deviation of this
normalized resolution score over the 100 resampled
alignments.

As another measure of accuracy, for each character ma-
trix, we calculated the number of replicate pairs that were
correctly assigned (i.e., as sister to one another).

For each character matrix, we calculated the replicate
error rate (Bonin et al., 2004; Pompanon et al., 2005) as

N(0,1) + N(1,0)

N(0,0) + N(1,0) + N(0,1) + N(1,1)
,

where N(0,0) and N(1,1) represent the number of correct
calls where a replicate pair both have no peak or both
have a peak respectively; and N(0,1) and N(1,0) represent
the number of incorrect calls where one half of the
replicate pair has a peak and the other half does not.
Each category is summed over all the replicate pairs in
the data. This error rate is effectively the average Eu-
clidean distance between replicate pairs. In the handful
of animal and plant AFLP studies that have published
them (see Bonin et al., 2004, and references therein),
error rates have been calculated to be 2% to 5% using
the above equation. However, the way in which this
error rate is calculated makes interstudy comparisons
very difficult. First, the formula includes a term for (0,0)
calls in the denominator, which means that if the data
set contains many plus alleles that are not present in a
given replicate pair (i.e., scored as (0,0) in the replicates),
then the error rate will appear to be lower. Thus, as more
data are added to the data set or very divergent taxa
are included, new, unique characters will be introduced
and the apparent error rate will decrease. Second, the
error rate includes both errors in the raw AFLP profiles
themselves (e.g., PCR errors) as well as scoring errors.
The number of scoring errors will vary widely between
AFLP studies, depending on whether a manual, semiau-
tomated, or automated scoring procedure is employed
and which scoring software is used.

To check whether the size of our data sets changed
the error rates, we recalculated the error rates for ex-
tended versions of both the Ipomoea and Ourisia data sets,
containing 313 and 217 samples, respectively, using opti-
mized parameter settings. To check if an increased num-
ber of (0,0) calls was masking an increased rate of (1,0) or
(0,1) calls, we also defined an alternative error rate (ef-
fectively the average Jaccard distance between replicate
pairs),

N(0,1) + N(1,0)

N(1,0) + N(0,1) + N(1,1)
.

Comparison of the standard (Euclidean distance) and
alternative (Jaccard distance) error rates also allows us to
test our prediction that a data set composed of divergent
taxa will yield a lower standard error rate than a data set
composed of the same number of closely related taxa.

To determine the relative contributions to the er-
ror rate of (1) errors in the raw AFLP profiles and
(2) errors introduced during the automated scoring
process, we used the program ReplicateError (which
is available, along with a detailed protocol, from
http://awcmee.massey.ac.nz/aflp/aflp.html). Replica-
teError approximates the manual editing process by lo-
cating errors in a replicate pair (i.e., (0,1) or (1,0)) and test-
ing to see if they can be corrected to (1,1) or (0,0) according
to a set of predefined rules. ReplicateError detects three
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common types of (0,1) and (1,0) scoring errors: first, if a
peak is detected but, because it falls below the PHT, it is
scored as 0; second, if a peak is detected and is above the
PHT, but because it does not meet all required quality
criteria (e.g., peak shape), it is scored as 0; and third, if
(0,1) and (1,0) errors comprise adjacent characters that
are less than 0.5 bp apart. This third error type is caused
by identical fragments that are only slightly different in
length (due to random error) being binned as separate
characters. See below for justification of why 0.5 bp is an
appropriate range over which to amalgamate characters.

A number of scripts were written in Python to stream-
line the process of analyzing the PAUP* output and
producing resolution scores and normalized resolution
scores. All of these scripts along with detailed instruc-
tions on how to apply them to other data sets are avail-
able from http://awcmee.massey.ac.nz/aflp/aflp.html.
The script to calculate error rates requires the set of
NEXUS files created by GenoTyper Rearranger, a text
file with a list of the file-names, and a text file with the
list of replicate pairs. There are two scripts to calculate
the resolution scores, the first uses the files that result
from GenoTyper Rearranger and creates a NEXUS file
to be processed by PAUP*. After PAUP* has been run,
the second script reads in the resulting bootstrap trees
and calculates the resolution scores. A similar process is
used to calculate the normalized resolution scores. For
each 30-sample data set, the NEXUS file used to com-
pute the bootstrap trees for calculating the normalized
resolution scores for 126 character matrices took approx-
imately 3 hours to execute in PAUP* and the Python
script took a further 30 min (on a Pentium 4). The res-
olution scores took less than an hour to compute in
total.

Optimal parameter settings.—For each program, we de-
termined optimal parameter settings based on the above
analyses of our two data sets. For GeneMapper, to vi-
sualize how the error rate, resolution, and normalized
resolution change with increasing bin width, we aver-
aged over the nine possible parameter settings for MFL
and PHT and plotted them for each bin width. For both
programs, we also considered the results from the larger
replicate study (see below) and trends in each of the mea-
sures of accuracy to find the optimal settings for each of
PHT, MFL, and BW (GeneMapper) and PHT, MFL, SPF,
and LGDP (GeneMarker).

In addition to the phylogenetic-based methods de-
scribed above, the optimum bin width was indepen-
dently investigated by analyzing a set of 25 pairs of
replicate AFLP profiles composed of 6110 pairs of iden-
tical fragments from Ipomoea and Ourisia and measur-
ing the average size difference (random error) between
the peaks of identical fragments (raw data not shown).
These peaks are known to represent identical fragments
because they are from the same or replicate DNA ex-
tractions of the same tissue sample from the same
individual.

Robustness of the phylogenies to changes in parameter
settings.—To assess the robustness of the resulting tree to
different parameter settings we constructed the majority-

rule consensus tree of the bootstrap trees for each param-
eter setting. The sets of 90 trees from the GeneMapper
character matrices and the sets of 36 trees generated from
the GeneMarker character matrices for both the Ourisia
and Ipomoea data sets were analyzed using consensus net-
works (Holland et al., 2005) as implemented in Splits-
Tree 4 (Huson and Bryant, 2006). For the GeneMapper
data sets, we also made consensus networks of the 63
majority-rule bootstrap trees corresponding to bin width
settings of 0.4 and above. Consensus networks also facil-
itated topological comparison of trees constructed using
data sets scored with the software’s default vs. optimized
parameter settings and comparison of trees constructed
using optimal parameter settings in GeneMarker versus
GeneMapper.

RESULTS AND DISCUSSION

Measures of Accuracy

Phylogenetic resolution.—There is a wide variation in
phylogenetic resolution depending on choice of param-
eters. Resolution scores range from 37% to 83% for Ipo-
moea and 36% to 83% for Ourisia (see supplementary
data; available at www.systematicbiology.org for com-
plete results; Table 1 compares the resolution scores
for selected parameter settings). Importantly, in both

TABLE 1. Resolution scores and numbers of parsimony informa-
tive characters. Representative data from two different bin width set-
tings in GeneMapper and two different detection percentage settings
in GeneMarker are shown for all three minimum fragment length
and peak height threshold settings for both Ipomoea and Ourisia data
sets (see supplementary data for complete results; available online
at www.systematicbiology.org). The maximum standard deviation for
any of the resolution scores was 2.91 corresponding to a standard error
of 0.29. MFL, minimum fragment length; PHT, peak height thresh-
old; 1%, 5%, default values for local and global detection percentages
(LGDP, 1%), and stutter peak filter (SPF, 5%); off,off, LGDP and SPF
turned off; BW, bin width. Values for the software default settings are
underlined, whereas the values we suggest are most appropriate (i.e.,
the overall optimal parameter settings) are indicated with an asterisk.

GeneMarker GeneMapper

MFL PHT 1%,5% off,off BW 0.5 BW 1.0

Ipomoea
50 50 54% (301) 62% (284)∗ 77% (803)∗ 64% (572)

100 56% (302) 58% (289) 66% (576) 56% (430)
200 48% (275) 55% (267) 63% (365) 59% (293)

100 50 50% (237) 57% (220) 62% (634) 60% (463)
100 49% (238) 47% (226) 53% (436) 45% (336)
200 46% (212) 49% (204) 51% (264) 44% (216)

150 50 56% (160) 55% (150) 67% (459) 61% (349)
100 49% (160) 40% (153) 49% (291) 45% (240)
200 38% (136) 37% (132) 41% (163) 44% (141)

Ourisia
50 50 64% (552) 70% (543) 73% (1548) 63% (1030)

100 59% (534) 62% (528) 76% (1194) 68% (842)
200 56% (483) 63% (485) 70% (840) 66% (627)

100 50 60% (449) 71% (442) 79% (1256)∗ 66% (855)
100 56% (432) 62% (428) 77% (933) 68% (676)
200 53% (384) 56% (387) 68% (640) 60% (485)

150 50 62% (328) 72% (328)∗ 74% (948) 59% (671)
100 59% (312) 61% (313) 66% (662) 67% (498)
200 50% (266) 54% (272) 54% (431) 56% (338)
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programs, default settings are not optimal with respect
to phylogenetic resolution. The highest (and the lowest)
resolution scores were found by tuning scoring param-
eters away from the default settings. Default settings in
GeneMapper (PHT 100, MFL 100, BW 1.0; shown in Ta-
ble 1) give resolution scores of 45% (Ipomoea) and 68%
(Ourisia). The highest resolution scores for GeneMapper
are 83% for both data sets with parameter settings PHT
50, MFL 50, BW 0.4 (Ipomoea) and MFL 50, PHT 50, BW
0.2 (Ourisia). Default settings in GeneMarker (MFL 100,
PHT 100, LGDP 1%, SPF 5%; shown in Table 1) give res-
olution scores of 49% (Ipomoea) and 56% (Ourisia). The
highest resolution scores for GeneMarker are 62% (Ipo-
moea) and 72% (Ourisia), which occur with parameter
settings PHT 50, MFL 50, LGDP off, SPF off (Ipomoea)
and PHT 50, MFL 150, LGDP 1%, SPF off (Ourisia).

The normalized resolution scores did not vary as
widely as the non-normalized resolution scores (Table
1; see supplementary data for complete results; Table 2
compares scores from selected parameter settings). This
result indicates that most of the differences in resolution
could be explained by a difference in the number of char-
acters; i.e., as expected the presence of more characters
leads to higher resolution. Assuming that higher resolu-
tion is correlated with higher accuracy, this means it is
not always best to strive for error-free data sets at the ex-
pense of throwing away many characters. The approach
of Althoff et al. (2007) that advocates eliminating all er-

TABLE 2. Normalized resolution scores. Representative data from
two different bin width settings in GeneMapper and two different de-
tection percentage settings in GeneMarker are shown for all three min-
imum fragment length and peak height threshold settings for both
Ipomoea and Ourisia data sets (see supplementary data for complete
results). The maximum standard deviation for any of these values was
6.05 corresponding to a standard error of 0.61. For abbreviations, see
Table 1. Values for the software default settings are underlined, whereas
the values we suggest are most appropriate (i.e., the overall optimal
parameter settings) are indicated with an asterisk.

GeneMarker GeneMapper

MFL PHT 1%,5% off,off BW 0.5 BW 1.0

Ipomoea
50 50 46% 49%∗ 46%∗ 43%

100 46% 46% 44% 42%
200 40% 41% 44% 45%

100 50 47% 50% 44% 42%
100 43% 43% 41% 39%
200 40% 41% 40% 39%

150 50 55% 53% 45% 43%
100 46% 38% 39% 41%
200 39% 37% 35% 41%

Ourisia
50 50 51% 55% 45% 46%

100 49% 50% 48% 49%
200 45% 48% 49% 50%

100 50 55% 62% 48%∗ 47%
100 52% 56% 52% 52%
200 47% 49% 48% 50%

150 50 60% 70%∗ 47% 47%
100 58% 60% 50% 54%
200 50% 53% 48% 51%

ror may actually be counterproductive for phylogenetic
applications of AFLP.

One interesting aside is that, in general, GeneMap-
per gives better non-normalized phylogenetic resolu-
tion than GeneMarker but worse normalized resolution.
Thus, comparing data matrices from the two programs
with identical MFL and PHT settings (and using the de-
fault settings for SPF and LGDP in GeneMarker, and BW
0.5 in GeneMapper) shows that GeneMapper data ma-
trices contain from 1.2 to 2.9 times as many parsimony-
informative characters as the equivalent GeneMarker
data set. This implies that GeneMarker creates character
matrices with higher quality characters than GeneMap-
per, but because the GeneMapper data sets contain more
characters they give more highly resolved trees.

Correct assignment of replicates.—For both data sets, the
number of replicate pairs that were correctly grouped as
sister taxa (see supplementary data) provide evidence
that BW values below 0.4 are not optimal. In addition,
in GeneMapper using a PHT of 100 always gave more
correctly assigned replicate pairs than PHT 50 or 200,
although PHT 50 was almost as good. For the Ourisia
data set all six replicate pairs were correctly grouped in
all data sets from both programs except for GeneMapper
data sets with bin width settings of 0.1 to 0.3 where one or
two of the six replicate pairs were sometimes not grouped
together. For the Ipomoea data set using GeneMapper,
bin widths of 0.4 or 0.5 gave the most correct replicate
pairs—3.33 (out of 5) on average. For the Ipomoea data
set, using GeneMarker, all settings with PHT 100 or 200
gave only two correct replicates out of five, and settings
with PHT 50 gave three correct replicate pairs (9 times)
or two correct replicate pairs (3 times).

For the Ipomoea data, many settings incorrectly group
the three replicate pairs 157 cv. Toka Toka Gold A/B,
Y-622 Peru A/B, and Y-680 Colombia A/B. In fact, the
replicate pair 157 cv. Toka Toka Gold A/B was never cor-
rectly recovered by either program for any parameter
settings—one or other of the pair always grouped more
closely with “158 cv. Mary Anne.” The cultivar “Mary
Anne” is a recently derived vegetative mutant of “Toka
Toka Gold” so it is perhaps not surprising that these two
cultivars are indistinguishable based on AFLP. Analysis
of the distance matrices (data not shown) shows that for
each of the three replicate pairs that sometimes group in-
correctly there is a third taxon that is also genetically very
close. In contrast, in the Ourisia data, where the replicates
are usually all correctly assigned, the distance between
replicates is in the same range as in the Ipomoea data, but
there are no other taxa that are genetically very close to
the replicates. This is also seen in the Ipomoea data set
in replicates of the outgroup, I. tiliacea K233-1 A and B,
which are always grouped correctly in all analyses. The
Ipomoea data set comprises cultivars of a single species
plus the outgroup, and it appears that there is insufficient
signal in the AFLP data to distinguish some ingroup ac-
cessions. In Ipomoea (for the optimal GeneMarker data
set) the distances between replicates were 0.07, 0.08, 0.09,
0.10, and 0.20; the distances between a replicate and its
closest nonreplicate ranged from 0.08 to 0.33 with a me-
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TABLE 3. Replicate error rates for representative data sets. Rep-
resentative data from two different bin width settings in GeneMap-
per and two different detection percentage settings in GeneMarker are
shown for all three minimum fragment length and peak height thresh-
old settings for both Ipomoea and Ourisia data sets (see supplementary
data for complete results). For abbreviations, see Table 1. Values for the
software default settings are underlined, whereas the values we sug-
gest are most appropriate (i.e., the overall optimal parameter settings)
are indicated with an asterisk.

GeneMarker GeneMapper

MFL PHT 1%,5% off,off BW 0.5 BW 1.0

Ipomoea
50 50 12% 11%∗ 15%∗ 14%

100 13% 13% 14% 13%
200 14% 13% 15% 14%

100 50 11% 10% 15% 13%
100 13% 13% 14% 12%
200 14% 14% 16% 15%

150 50 11% 9% 15% 13%
100 13% 13% 16% 13%
200 15% 15% 18% 16%

Ourisia
50 50 12% 13% 11% 13%

100 12% 13% 9% 10%
200 10% 11% 8% 8%

100 50 11% 13% 11%∗ 12%
100 11% 12% 9% 9%
200 10% 10% 7% 7%

150 50 10% 11%∗ 9% 11%
100 9% 10% 7% 7%
200 8% 8% 6% 6%

dian of 0.11. Similarly, in Ourisia the distances between
replicates were 0.07, 0.07, 0.09, 0.11, 0.12, and 0.23; but
in contrast to Ipomoea, the distances between a replicate
and its closest nonreplicate tended to be larger, ranging
from 0.13 to 0.34 with a median of 0.22.

Error rates.—The error rates range from 9% to 18% (Ipo-
moea) and 6% to 13% (Ourisia); see supplementary data
for complete results (Table 3 shows the replicate pair er-
ror rates for both programs at selected parameter set-
tings). The observed error rates are higher than those
previously reported for AFLP data sets of (2% to 5%; see
Bonin et al., 2004, and references therein). However, as
discussed above (see Methods), we should be cautious
regarding interstudy comparisons of error rates because
the error rates may be affected by the level of divergence
among the individuals included in the study, the number
of individuals in the data set, and both errors resulting
from the raw AFLP profiles themselves (e.g., PCR er-
rors) and those resulting from the scoring process (and
the type of procedure and software employed).

We found that all of these factors have affected the error
rates in our data sets, some to a greater degree than oth-
ers. First, the largely intraspecific Ipomoea data sets give
higher error rates overall than the interspecific Ourisia
data sets, which suggests that lower divergence among
samples results in higher error rates. We tested this fur-
ther by comparing the standard (Euclidean) and alterna-
tive (Jaccard) error rates. For the GeneMapper data sets,
standard error rates are almost constant in the Ourisia
data sets, whereas error rates are higher for smaller BW

than larger BW in the Ipomoea data set as would be pre-
dicted (Fig. 4). To check if the difference in error rates and
the difference in this trend in error rates in the Ourisia
and Ipomoea data sets were due to an increased number
of (0,0) calls masking an increased rate of erroneous (1,0)
or (0,1) calls, we calculated the alternative (Jaccard) error
rate. As shown in Figures 4a and b, this alternative error
rate decreases sharply from a bin width of 0.1 to 0.5, af-
ter which it flattens off at around 30% for both data sets.
The Ipomoea data set has an average standard error rate of
15% compared to 10% for the Ourisia data set. However,
when the alternative error rate is used, the average error
rate for Ipomoea is 38% compared to 40% for Ourisia, sug-
gesting that the apparently higher standard error rate in
Ipomoea may not be “real,” but is instead a result of fewer
(0,0) calls in the denominator.

Secondly, the higher error rates found in our study
are also partly due to the small size (30 individuals) of
our data sets. The recalculated error rates for the larger
data sets of both Ipomoea and Ourisia scored with optimal
parameter settings were indeed lower compared to the
30-taxon data sets. For the Ipomoea data set, the error rate
dropped from 15% to 9% (GeneMapper) and from 10%
to 9% (GeneMarker). For the Ourisia data set, the error
rate dropped from 11% to 8% (GeneMapper) and from
12% to 11% (GeneMarker). Nevertheless, even though
the error rates are lower when many more individuals
are included, they are still not within the range reported
in Bonin et al. (2004), which suggests that the nature of
the errors is also an important factor. Finally, using the
program ReplicateError, we were able to lower the error
rate in the optimized GeneMapper data sets of Ipomoea
and Ourisia from 15% (uncorrected) to 5% (corrected) and
11% (uncorrected) to 4% (corrected), respectively. This
suggests that the majority of errors (the difference be-
tween the corrected and uncorrected rates) in our data set
are scoring errors, whereas the resulting corrected error
rates approximate the number of PCR errors. Because
ReplicateError only locates errors between replicates, it
is not possible to use this program to reduce errors in
the data set as a whole, but it does indicate that there
is significant potential to improve the accuracy of auto-
mated scoring so that error rates are comparable to those
derived from manually scored data.

In summary, it is likely that our higher error rates
are due in large part to the combined effects of smaller
data sets and a fully automated scoring procedure. In-
cluding the (0,0) term in the denominator has a signifi-
cant effect on error rates and makes comparison of error
rates between data sets unreliable, especially if they con-
tain different numbers of taxa and/or taxa with varying
amounts of genetic diversity. The analyses using Repli-
cateError revealed that the error rate was significantly
increased by errors introduced during the automated
scoring process. Although it could be argued that this
result supports manual scoring (or at least manual edit-
ing of automatically scored data), we still think that
automated scoring is preferable because it is more time
efficient, it makes it easier to maintain consistency in
large data sets, and it removes both subjectivity and



D
ow

nl
oa

de
d 

B
y:

 [M
as

se
y 

U
ni

ve
rs

ity
] A

t: 
03

:5
2 

5 
Ju

ne
 2

00
8 

2008 HOLLAND ET AL.—AFLP SCORING PARAMETERS AND PHYLOGENETIC RESOLUTION 357

b) Ourisia

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bin width (bp)

P
er

ce
nt

(%
)

Resolution

Normalized
resolution

Jaccard error rate
(no 00)

Euclidean error rate
(with 00)

FIGURE 4. Resolution, normalized resolution, and error rate versus bin width for the GeneMapper analysis of the (a) Ipomoea data and (b)
Ourisia data. All measures have been averaged over the nine possible settings for minimum fragment length (MFL) and peak height threshold
(PHT).
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FIGURE 5. Size difference between identical alleles of replicate pairs. The size difference between 6110 pairs of identical alleles (fragments)
from 25 replicate AFLP profiles was measured to determine the average sizing error between truly identical fragments. Together with error rates
and resolution measures, these results help to determine the optimum bin width. The mean size difference between identical alleles was 0.08 bp
with 99% of values falling within 0.42 bp and 99.9% falling within 0.66 bp. These results suggest that bin width can be set to less than 1.0 bp,
without greatly increasing the risk of splitting identical alleles into separate characters. These values are for the experimental setup we used (see
Methods) and may need to be determined empirically for other capillary instruments.

the potential to introduce bias into data sets (although
there are also methods to remove bias when scoring
manually).

Finally, Figure 5 shows the results of the larger repli-
cate study, which demonstrates that almost all identical
fragments fall within 0.4 bp of each other. This suggests
that lowering the bin width setting below 1 bp could
be beneficial as it would introduce only a small num-
ber of extra errors in the character matrix and may help
distinguish between nonidentical fragments that differ
in mobility by less than 1 bp. There is some measurable
distance even between identical fragments, which means
it is always possible for truly homologous fragments to
fall into different bins. Using the empirical distribution
of observed distance between identical fragments (Fig.
5), we did a simulation to estimate how many errors of
this kind we would expect for different bin width set-
tings. For each simulated pair of identical fragments, it
was assumed that the position of the leftmost fragment
of the pair was uniformly distributed within the bin; the
distance to the rightmost fragment of the pair was then
sampled from the empirical distribution (Fig. 5). We then
recorded if the rightmost fragment was still in the same
bin. This was repeated for 1,000,000 simulated fragments
for each bin width between 0.1 and 1 (in steps of 0.1). The
proportion of expected errors of this kind is shown in

Table 4. Table 4 shows that if the bin width drops below
0.5 bp, the error rate starts to rise steeply.

Optimal Parameter Settings

GeneMapper.—In general, optimal parameter settings
in GeneMapper for the two data sets were PHT 50, MFL
50 (Ipomoea) or 100 (Ourisia), and BW 0.5. For the Ipomoea
and Ourisia data sets generated using GeneMapper, we
can see how the error rate, resolution, and normalized

TABLE 4. The empirical distribution of differences between iden-
tical fragments (Fig. 5) was used to simulate the expected number of
errors where identical fragments are allocated to different bins for a
range bin widths. Each error value is a proportion based on 1,000,000
random fragment pairs.

Bin width (bp) Errors

0.1 0.59
0.2 0.37
0.3 0.26
0.4 0.20
0.5 0.16
0.6 0.14
0.7 0.12
0.8 0.10
0.9 0.09
1.0 0.08
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resolution change with increasing bin width (Fig. 4). The
values in these figures have been averaged over the nine
possible parameter settings for MFL and PHT. For the
Ourisia data, resolution peaks at a bin width of 0.4 bp,
with a smaller peak at 0.2 bp. The Ipomoea data has a
peak at 0.2 with a smaller peak at 0.4.

We propose that a BW of 0.5 is optimal for both data
sets, for the following reasons. The normalized resolu-
tion scores show that the phylogenetic quality of the
characters is increasing up to a bin width of 0.5, after
which it is fairly stable. Taken together, the results from
the larger replicate study (Fig. 5), the assignment of repli-
cate pairs, and the trend in the normalized resolution and
alternative error rate (Fig. 4) suggest that when scoring
ABI 3730-derived AFLP data using GeneMapper, low-
ering the BW setting to 0.5 bp is beneficial. Although
some errors are introduced, this is outweighed by the
positive effect of having more characters. Decreasing the
bin width below 0.5 bp results in even more characters
but splits apart too many characters that are identical
plus-alleles of the same locus.

A PHT setting of 50 appears to be optimal in both data
sets. Although PHT 50 gives slightly higher replicate er-
ror rates in GeneMapper than the higher settings (Table
3), in most cases the resolution scores (Table 1) and nor-
malized resolution scores (Table 2) are better for both
data sets at this setting—especially at a bin width setting
of 0.5. In contrast, the optimal setting for MFL appears to
differ between the two data sets. The highest resolution
(Table 1) and normalized resolution (Table 2) scores are
found at MFL 50 for Ipomoea and MFL 100 for Ourisia. The
error rate (Table 3) is not greatly affected by the choice of
MFL, especially for Ipomoea.

GeneMarker.—Optimal parameter settings in Gene-
Marker for the two data sets were PHT 50, MFL 50
(Ipomoea) or 150 (Ourisia), and SPF off. Resolution, nor-
malized resolution, and number of parsimony informa-
tive characters mostly increase with decreasing PHT (Ta-
bles 1 and 2). In most cases, for both data sets, setting the
PHT at 50 gives better resolution than setting it at 100 or
200 (Table 1). Error rates decrease with decreasing PHT
for Ipomoea, but the opposite trend is seen for Ourisia (Ta-
ble 3). General trends regarding MFL are not as clear; for
the Ipomoea data set, the highest resolution was found at
a setting of 50, but for the Ourisia data set, the highest
resolution was found at a setting of 150. Error rates were
not affected by MFL for Ipomoea but decreased slightly
with increasing MFL for Ourisia (Table 3). Turning off
the stutter peak filter (SPF) caused a marked increase in
resolution, but this could be artefactual. For instance, by
including all the stutter peaks, support for some splits
could be inflated. In contrast, LGDP had only a small
effect on the resolution of the resulting trees.

Robustness of the Phylogenies to Changes
in Parameter Settings

Consensus networks are a very useful way to visu-
alize the robustness of the phylogenies to AFLP scor-
ing parameter settings and to different software (in this
case, GeneMapper and GeneMarker; see Supplementary

Figs. 2 and 3, available at www.systematicbiology.org),
and specifically examine the difference in phylogeny re-
construction of default versus optimized settings. Figure
6 shows the consensus network of the 63 GeneMapper
majority-rule bootstrap consensus trees corresponding
to bin width settings of 0.4 and above, and Figure 7 shows
the consensus network of all 36 GeneMarker majority-
rule bootstrap consensus trees. Significantly, many parts
of the phylogenies in both Figures 6 and 7 are robust
to parameter choice, and where the trees do differ the
boxes in the consensus networks indicate specific ar-
eas of conflict due to local rearrangements rather than
taxa shifting their position in the tree dramatically. One
exception to this is the data sets from GeneMapper with
low bin width settings. As indicated by Figure 4 and dis-
cussed above, setting the bin width lower than 0.4 prob-
ably creates many errors in the character matrix and may
lead to the reconstruction of inaccurate trees. Indeed, this
appears to be the case in our data sets, as the consen-
sus networks constructed for the majority-rule bootstrap
trees for all 90 GeneMapper data sets including those
with BW below 0.4 (Supplementary Fig. 1; available at
www.systematicbiology.org) show much more conflict
than Figures 6 and 7. In spite of this, the consensus net-
works encouragingly show that regardless of parame-
ter settings, the data sets are converging on very similar
topologies whose accuracy is corroborated by indepen-
dent sources of data (see below).

To investigate whether the two programs are con-
verging on similar topologies, consensus networks com-
paring the majority-rule consensus trees using default
parameter settings and using optimized parameter set-
tings for GeneMapper versus GeneMarker were con-
structed (Supplementary Figs. 2 and 3). We emphasize
that the intention of this exercise is not to compare the
performance of GeneMapper versus GeneMarker per se,
but to show the degree of topological congruence. For
default settings (Supplementary Fig. 3), there are two
conflicting edges in the Ipomoea data set and three con-
flicting edges in the Ourisia data set. For optimized set-
tings (Supplementary Fig. 2) there are six areas of conflict
in the Ipomoea data set (five affecting just single edges and
one more complex area of conflict) and three conflicting
edges in the Ourisia data set. In all cases, the conflict
is confined to a few, local areas of the tree and does not
represent large differences between the topologies recov-
ered using the two programs. Therefore, in addition to
differing parameter settings, topologies are also robust
to software choice. Because very similar topologies were
recovered using different software packages that use di-
verse algorithms and methods, this result provides fur-
ther evidence that automated scoring of AFLP profiles
results in accurate and robust phylogenies.

Finally, consensus networks also show that optimized
parameter settings consistently show an increase in the
number of edges with >50% bootstrap support relative
to default settings. Figure 8 illustrates the difference in
the majority-rule consensus tree between default param-
eter settings in GeneMapper (PHT 100, MFL 100, BW 1.0)
versus optimized settings (PHT 50, MFL 50 or 100, BW
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FIGURE 6. Consensus network of the 63 GeneMapper majority-rule bootstrap consensus trees that correspond to parameter settings with bin
width >0.3 (i.e., 0.4 to 1.0) for (a) Ipomoea data and (b) Ourisia data. The consensus networks show all splits (edges) that appear in any of the 63
trees. Parallel edges represent the same split, and edge length is proportional to the number of trees that split appears in. Boxes represent areas
of conflict among the trees generated using different parameter settings.
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FIGURE 7. Consensus network of the 36 GeneMarker majority-rule bootstrap consensus trees for (a) Ipomoea data and (b) Ourisia data showing
all splits (edges) that appear in any of the 36 trees. Parallel edges represent the same split, and edge length is proportional to the number of trees
that split appears in. Boxes represent areas of conflict among the trees generated using different parameter settings.
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FIGURE 8. Majority-rule consensus networks of the default and optimized GeneMapper trees for (a) Ipomoea data and (b) Ourisia data. Parallel
edges represent the same split, and edge length is proportional to the number of trees that split appears in. The dashed edges indicate splits
that only appear in the optimized GeneMapper trees. Boxes represent areas of conflict between the trees generated using default vs. optimized
parameter settings.
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FIGURE 9. Majority-rule consensus networks of the default and optimized GeneMarker trees for (a) Ipomoea data and (b) Ourisia data. Parallel
edges represent the same split, and edge length is proportional to the number of trees in which that split appears. The dashed edges indicate
splits that only appear in the optimized GeneMarker trees. Boxes represent areas of conflict between the trees.



D
ow

nl
oa

de
d 

B
y:

 [M
as

se
y 

U
ni

ve
rs

ity
] A

t: 
03

:5
2 

5 
Ju

ne
 2

00
8 

364 SYSTEMATIC BIOLOGY VOL. 57

0.5). Edges shown with dashed lines appear only in the
trees built with optimized parameter settings. Optimiza-
tion of scoring parameters had the greatest effect in the
Ipomoea GeneMapper data set, where the number of in-
ternal edges with >50% bootstrap increased from 14 to 25
(out of a possible maximum of 27) by optimizing scoring
parameters. Along with these 11 new edges—that impor-
tantly do not conflict with the default setting tree—four
additional edges are changed. For the Ourisia data, using
optimized settings gives three new edges with bootstrap
support above 50% that do not conflict with the default
setting tree; it does not change any edges. The same plot
was done for GeneMarker default (MFL 100, PHT 100,
LGDP 1%, SPF 5%) versus optimized (MFL 50 or 150,
PHT 50, LGDP off, SPF off) parameter settings (Fig. 9).
For the Ipomoea data, using optimized settings gives five
new edges with bootstrap support above 50% that do
not conflict with the default setting tree; it also changes
four edges. For the Ourisia data, using optimized settings
gives four new edges with bootstrap support above 50%
that do not conflict with the default setting tree; it also
changes two edges. Thus, even though the topologies are
largely robust to scoring parameter settings and choice of
software, these consensus networks show that optimized
parameter settings can improve resolution and increase
support for the resulting phylogenetic trees relative to
default parameter settings.

Additional Independent Evidence

In addition to resolution scores, another way to investi-
gate the accuracy of trees constructed using the optimum
parameter settings is to compare the tree topologies to
other sources of data, such as morphological, ecological,
or other characters. In the case of Ourisia, phylogenetic
analyses of the AFLP data regardless of parameter set-
tings are congruent with morphological, distributional,
and taxonomic information (see Meudt, 2006; Meudt and
Simpson, 2006). The optimal parameter settings, how-
ever, provide more resolution and more accuracy regard-
ing species relationships than trees built with default
settings, especially for data sets reconstructed in Gene-
Marker (Fig. 9b). In the case of Ipomoea, the AFLP-derived
phylogenies are also congruent with other sources of in-
formation, in this case primarily morphological, horticul-
tural, and anthropological evidence (see Green, 2005).

CONCLUSIONS

In any phylogenetic study using AFLP data, the main
aim is to recover an accurate species phylogeny or to test
a phylogenetic hypothesis. There has been much discus-
sion in the literature regarding appropriate techniques
for phylogenetic analysis of AFLP data (Albach 2007;
Bonin et al. 2007; Meudt and Clarke, 2007, and references
therein); by contrast, very little has been done with re-
spect to the scoring of AFLP data and the effect this has
on downstream analyses. To our knowledge, our study
is the first quantitative, objective, and thorough investi-
gation on the effect of different automated scoring pa-
rameter settings on phylogenetic resolution.

Optimizing the parameter settings for automated
AFLP scoring significantly increased phylogenetic reso-
lution in this study, allowing relationships to be resolved
that were obscured when using default scoring parame-
ters. We predict that similar improvements in resolution
can be obtained in other phylogenetic studies and recom-
mend that automated scoring parameters are optimized
wherever possible. Interestingly, we found that it was
not always best to choose the character matrices with
the lowest error rates, as the benefits of increasing the
number of characters could outweigh some reduction in
character quality.

The optimal settings differed for the Ourisia and Ipo-
moea data sets, suggesting that, for at least some param-
eters, there are not universal optimal settings. The best
settings for minimum fragment length varied for the two
data sets in terms of both resolution and error rates. In
contrast, there is a case for a universally optimal setting
for bin width in GeneMapper; several lines of evidence
suggest that 0.5 bp is a good choice. This is supported for
both data sets by the high-resolution scores, the greater
number of replicate pairs appearing as sister taxa, and
the fact that almost all peaks of truly identical fragments
in the replicate study fell within 0.5 bp. However, we
caution that these results are based on analysis of data
from two data sets that were run on the same capillary
instrument. Therefore, rather than suggesting particular
parameter settings, we recommend that users of AFLP
use a similar procedure to that described here (Fig. 3) to
investigate the effect of changing AFLP scoring parame-
ters’ settings on phylogenetic resolution, assignment of
replicate pairs, and error rates. As more results are built
up for different data sets, it will be possible to determine
if there are some universally good settings. Neverthe-
less, it is clear that reducing bin widths from the default
1.0-bp setting is potentially beneficial.

One potential shortcoming of using the same data set
to optimize parameter settings via bootstrap resolution
and to make phylogenetic estimates is that this could up-
wardly bias support values in the phylogenetic analysis.
A way to mitigate against this effect could be to use only
a subset of the taxa of interest to optimize the parameters
(indeed, this is what we have done here).

Error rates found in this study were higher than those
previously reported for data sets generated using semi-
automated scoring (2% to 5%; Bonin et al., 2004). We
provide evidence that the calculation used to quantify
genotyping error rate depends on the number of taxa in
the data set and the genetic distance between them, but
these effects are not sufficient to explain the difference
in error rates between semiautomated and automated
scoring. The results from ReplicateError suggest that the
majority of errors were scoring errors (rather than PCR
errors). This suggests that the incorporation of improved
scoring algorithms into current software packages such
as GeneMapper and GeneMarker would further increase
their power and usefulness.

Despite error rates that are higher than ideal, au-
tomated scoring still produces character matrices that
are phylogenetically informative and where most or all
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replicates are correctly assigned. When parameter set-
tings are chosen carefully, character matrices can be
produced using automatic scoring that result in well-
resolved trees. As well as its application to phylogenet-
ics, we predict that optimizing automated AFLP scor-
ing parameters will provide increased resolution in other
important applications of the technique such as linkage
mapping and population genetics. In these cases, differ-
ent measures of accuracy and resolution will be required,
although in all applications of the AFLP technique mea-
sures of error rate from replicate samples are critical. Fu-
ture studies should focus on calculating and publishing
error rates, optimizing parameter settings prior to analy-
sis, improving automated scoring algorithms, as well as
taking a step back and thoroughly assessing the appro-
priateness of AFLP for phylogenetic reconstruction.
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